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Abstract

The periodically forced light-limited Droop model represents microalgae growth

under co-limitation by light and a single substrate, accounting for periodic fluc-

tuations of factors such as light and temperature. In this paper, we describe the

global dynamics of this model, considering general monotone growth and uptake

rate functions. Our main result gives necessary and sufficient conditions for the

existence of a positive periodic solution (i.e. a periodic solution characterized

by the presence of microalgae) which is globally attractive. In our approach,

we reduce the model to a cooperative planar periodic system. Using results on

periodic Kolmogorov equations and on monotone sub-homogeneous dynamical

systems, we describe the global dynamics of the reduced system. Then, using

the theory of asymptotically periodic semiflows, we extend the results on the re-

duced system to the original model. To illustrate the applicability of the main

result, we include an example considering a standard microalgae population

model.

Keywords: Variable quota model, Positive periodic solution, Global stability,

Microalgae, Cooperative System

∗Corresponding author
∗∗INRIA Sophia Antipolis, 2004, route des Lucioles BP 93, 06902 Sophia Antipolis Cedex,

France
Email addresses: carlos.martinez@inria.fr (Carlos Mart́ınez ),

francis.mairet@ifremer.fr (Francis Mairet), olivier.bernard@inria.fr (Olivier Bernard)

Preprint submitted to Journal of Differential Equations November 6, 2019



1. Introduction

Microalgae are photosynthetic microorganisms, converting light energy into

chemical energy [1]. Microalgae have many applications, among them biomass

production for food and fine chemicals, biodiesel production, and wastewater

treatment [1, 2]. For industrial applications, microalgae are grown in open5

ponds or photobioreactors [3]. In these systems, algae growth is mainly lim-

ited by the amount of nutrients and light availability. Different mathematical

models have been developed to describe microalgae growth under these limi-

tations. Under nutrient limitation, we find the Monod model and the Droop

(or Cell Quota) model [4]. The former relates the growth rate to the nutrient10

concentration in the medium, while the latter relates the growth rate to an in-

tracellular pool of nutrient known as cell quota. The applicability of the Monod

model is limited to steady state condition [5]. The applicability of the Droop

model is more widespread and has successfully described the growth rate even

under fluctuations of the environmental conditions [4, 6, 7]. On the other hand,15

to describe the growth under light-limitation, Huisman and collaborators [8]

introduced the theory of light-limited chemostat. Light-limitation differs con-

siderably from nutrient-limitation. Light rapidly decreases as it passes through

the microalgae culture due to absorption and scattering by algal cells. This re-

sults in a light gradient whose pattern depends on the microalgae concentration.20

As a consequence, the growth rate depends on the microalgae concentration. On

top of that, the light source in microalgae cultures is not always constant along

time. Outdoor cultures are subject to a light phase (day) and a dark phase

(night) following a periodic pattern. Thus, the growth rate, that depends on

light availability, becomes a periodic function in time. Periodicity on the models25

can also be induced by water temperature or nutrient supply fluctuations. Many

theoretical works analyze single microalgae population growth with the Droop

model [9, 10], or light limitation [11, 12, 13]. Models with both substrate and

light limitations are studied in [13, 14, 15] with Monod approach, and in [16]

with variable quota. Finally, a few studies deal with periodic forcing. Microal-30
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gae cultures under light limitation with a periodic light source are analyzed in

[17, 18], and the Droop model with periodic nutrient supply is studied in [19].

But, to our knowledge, nothing has yet been done for both light and substrate

limitations under periodic forcing.

35

In this work we study the asymptotic behavior of the periodically forced

light-limited Droop model i.e. a model that results from combining the mod-

elling approaches of Droop [4] and Huisman [8], when the growth rate, the

uptake rate, the nutrient supply, and the dilution rate are periodic functions of

time. We consider general monotone growth and uptake rate functions. In our40

approach, we reduce the model to a cooperative two-dimensional system to show

that any solution approaches asymptotically to a periodic solution. Following

results on Kolmogorov periodic equations [20], we find conditions such that any

solution of the reduced system is asymptotic to a positive periodic solution i.e.

a solution characterized by the presence of microalgae. This proves the exis-45

tence of positive periodic solutions for the original system. Using results of the

theory of subhomogeneous (or sublinear) dynamical systems [26], we give condi-

tions for the uniqueness of positive periodic solutions. Finally, using the theory

of asymptotically periodic semiflows [21] and classical results of the theory of

differential equations such as the comparison method [22], we find a result on50

the global dynamics of the original model.

This article is organized as follows. In Section 2, we introduce the period-

ically forced light-limited Droop model and we state some basic results on the

existence, uniqueness, and boundedness of solutions. In Section 3, we study a55

limiting two-dimensional periodic system of the model. We prove that any so-

lution of this system is asymptotic to a periodic solution (Proposition 3.3), and

we give conditions for the extinction (Proposition 3.5) and persistence (Theo-

rem 3.6) of the population. We also determine conditions for the uniqueness of

positive periodic solutions (Theorem 3.8). In Section 4, we present the main60

result (Theorem 4.1), a result on the global dynamics of the model. In Section
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5, we apply our results to study a model describing microalgae growth under

limitation by phosphorus and light. In Section 6, we discuss our results and

some possible extensions. Finally, we include two appendices. In Appendix A

we present some results on the asymptotic of scalar differential equations. In65

Appendix B we prove some properties of a growth rate function.

2. Model description and basic properties

2.1. Model description

Let us consider a well-mixed culture system with a biomass x(t) of microal-

gae. Microalgae growth is only limited by light and a nutrient at concentration70

s(t) in the medium. The light is provided by an external light source (artificial

or natural) and its intensity can vary with time. The nutrient is supplied at vari-

able concentration sin(t), from an external reservoir at the variable volumetric

flow rate Qin(t). The dilution rate is the ratio D(t) := Fin(t)/V (t) with V (t)

the volume of the culture. Following the Droop model [4], microalgae growth de-75

pends on the internal quota of nutrient q(t). The quota increases with nutrient

uptake and decreases with cell growth (by the effect of intracellular dilution).

Following the theory of light-limited chemostats [8], the growth of microalgae

affects their own light environment (self-shading). Then, the cell growth rate

depends on the biomass concentration x(t). Since the incident light may vary80

over time, the growth rate depends on time. The light-limited Droop model

takes the following form:

dx

dt
= [µ(t, x, q)−D(t)]x,

dq

dt
= ρ(t, q, s)− µ(t, x, q)q,

ds

dt
= D(t)(sin(t)− s)− ρ(t, q, s)x.

(1)
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The functions µ and ρ represent the growth rate of microalgae and the

nutrient uptake rate respectively. Let J = [q0,∞) with q0 > 0. We assume that

µ : R2
+×J −→ R, ρ : R+×J×R −→ R, and D, sin : R+ −→ R+ are continuous85

functions and satisfy the following set of assumptions:

H 2.1. µ, ρ, D, and sin are ω-periodic in t with ω > 0.

H 2.2. q 7−→ ρ(t, q, s) is decreasing, s ∈ [0,∞) 7−→ ρ(t, q, s) is increasing, and

ρ(t, q, s) = 0 for all s ≤ 0.

H 2.3. µ(t, x, q0) ≤ 0 for any t, x ≥ 0, and q 7−→ µ(t, x, q) is increasing.90

H 2.4. For any q > q0, x 7−→ µ(t, x, q) is decreasing.

H 2.5. limq→∞ ρ(t, q, s) = 0 and limx→∞ µ(t, x, q) ∈ (−∞, 0], both uniformly

for t ∈ [0, ω].

H 2.6.

∫ ω

0

D(t)dt > 0 and

∫ ω

0

D(t)sin(t)dt > 0.

H 2.7. µ and ρ are locally Lipschitz uniformly for t in [0, ω].95

H 2.8. There exists q′ > q0 such that

∫ ω

0

µ(t, 0, q′)dt > 0.

Remark 2.9. (Subsistence quota) The parameter q0 is known as the subsistence

quota and represents the value of q at which growth ceases. H2.3 shows that

there cannot be growth when q = q0. In particular, this implies that the quota

cannot be smaller than q0. Indeed, the derivative of q(t) is non-negative when100

q = q0 (see the second equation in (1)).

Remark 2.10. In H2.5, the existence of the limits is given by the monotonicity

of µ and ρ. The limit for µ is allowed to be −∞.

Remark 2.11. (Respiration rate) In hypothesis H2.3, the growth rate is allowed

to be negative. When microalgae is measured in terms of carbon biomass, µ105

corresponds to the carbon gain rate i.e. µ = p − m, with p the photosynthe-

sis (carbon uptake) rate and m the specific carbon loss rate. Thus, µ may be

negative, especially in absence of light when p = 0.
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Remark 2.12. From a biological point of view, H2.8 states that there is a quota

such that a very small population can grow. Hypothesis H2.8 is necessary to110

avoid the extinction of the population and unbounded values of the cell quota

(see Remarks 2.15 and 2.18).

2.2. Existence, uniqueness, and boundedness of solutions

We define the total amount of limiting nutrient both in the substrate and in

the biomass by means of S = s+xq. A simple calculation shows that S satisfies

the differential equation:

dS

dt
= D(t)(sin(t)− S). (2)

With respect to the solutions of (2), we have the following lemma.

Lemma 2.13. Equation (2) admits a unique ω-periodic solution s∗(t) which is115

positive and globally attractive.

Proof. From a direct calculation we have that:

S(t) = (S(0) + f(t))e−d(t), (3)

and that s∗(t) is given by:

s∗(t) = e−d(t)
(

f(ω)

ed(ω) − 1
+ f(t)

)
, (4)

with d(t) =
∫ ω
0
D(t)dt and f(t) =

∫ t
0
ed(τ)sin(τ)D(τ)dτ . Since sin and D are

non-negative, we have that f is a non-negative function. Since
∫ ω
0
D(t)sin(t)dt >

0 (see H2.6), we have that f(ω) > 0. Thus, s∗(t) is positive. For the global

stability, it easily follows that |S(t)− s∗(t)| → 0 as t→∞.120

Now we state the existence and uniqueness of solutions for system (1).

Lemma 2.14. System (1) admits a unique global solution for any initial con-

dition on R+ × J × R+.
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Proof. The existence and uniqueness of solutions is given by hypothesis H2.7.

Let (x, q, s) be a solution of (1) such that x(0), s(0) ≥ 0 and q(0) ≥ q0, with ∆125

the maximal interval of existence. We have (x(t), q(t), s(t)) ∈ R+ × J × R+ for

any t ∈ ∆. Since the variable S = xq + z satisfies the differential equation (2)

and (x, q, s) is non-negative, by Lemma 2.13, xq and s cannot be unbounded in a

finite interval of time. Now we note that x(t)q(t) ≥ x(t)q0, then x(t) ≤ S(t)/q0

for all t ∈ ∆. Finally, since dq/dt ≤ ρ(t, q0, S(t))−µ(t, S(t)/q0, q0)q, we conclude130

that q cannot be unbounded in a finite interval of time. Thus, ∆ = [0,∞).

Remark 2.15. Let (x, q, s) be a solution of (1). If H2.8 does not hold, then

x(t)→ 0 as t→∞. Indeed, since µ is decreasing in x we have that:

dx(t)

dt
≤ x(t)[µ(t, 0, q(t))−D(t)]. (5)

Since H2.8 does not hold,
∫ nω
0

µ(t, 0, q(t))dt < 0 for any integer n ≥ 1. Thus,

applying Gronwall’s inequality to (5) on the interval [t− ω[t/ω], t] we obtain:

x(t) ≤ x(t− ω[t/ω])e−α[t/ω], (6)

where [t/ω] is the greatest integer less than or equal to t/ω and α =
∫ ω
0
D(τ)dτ >

0. Letting t→∞ in (6) we obtain that x(t)→ 0.

The following lemma will be repeatedly used in the rest of the paper.

Lemma 2.16. For any non-negative continuous function σ there is Q > 0 such

that: ∫ ω

0

(
ρ(t, Q, σ(t))

Q
− µ(t, 0, Q)

)
dt < 0.

Proof. From H2.5 we have that limq→∞
∫ ω
0
ρ(t, q, s)dt = 0 for any s ≥ 0. Then

there exists Q > q′, with q′ given by H2.8, such that:∫ ω

0

ρ(t, Q, max
t∈[0,ω]

σ(t))dt < ε := q′
∫ ω

0

µ(t, 0, q′)dt. (7)

From the monotonicity of µ and ρ as functions of q (see H2.2 and H2.3), we

have that:

Q

∫ ω

0

µ(t, 0, Q)dt > q′
∫ ω

0

µ(t, 0, q′)dt = ε ≥
∫ ω

0

ρ(t, Q, σ(t))dt,

from where we complete the proof.135
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Lemma 2.17. Solutions of (1) starting on R+×J×R+ are uniformly bounded.

Proof. From Theorem 8.5 in [23], the ultimate boundedness of solutions of a

periodic system implies the uniform boundedness of solutions. Thus, we prove

that solutions of (1) starting on R+ × J × R+ are ultimately bounded. Let

(x̄, q̄, s̄) be a solution of (1) with x̄(0), s̄(0), q̄(0)− q0 ≥ 0. We have that S̄(t) =

x̄(t)q̄(t) + s̄(t) satisfies the differential equation (2). From Lemma 2.13, there is

t′ > 0 such that S̄(t) ≤ s′ for all t ≥ t′, with s′ := 1 + max s∗(t). By similar

arguments as in Proof of Lemma 2.14, we have x̄(t) ≤ s′/q0 and s̄(t) ≤ s′ for

all t > t′. It remains to prove the existence of a constant β, not depending

on initial conditions, such that lim supt→∞ q̄(t) ≤ β . For this purpose, let us

define h(t, q) := ρ(t,q,s′)
q − µ(t, 0, q) and g(t, q) = ρ(t,q,s′)

q −D(t). From Lemma

2.16 and H2.5, there exists Q > q̄(0) such that:∫ ω

0

h(t, Q)dt < 0 and

∫ ω

0

g(t, Q)dt < 0. (8)

Now, if q̄(t) ≤ Q for all t ≥ t′, then the proof is ready. Then, let us assume that

q̄(t1) = Q for some t1 > t′ and that q(t) ≥ Q for all t ≥ t1. Then we have that

x̄s(t) := x̄(t)q̄(t) satisfies the following equation for all t ≥ t1:

dxs
dt

=

(
ρ(t, q̄(t), s̄(t))

q̄(t)
−D(t)

)
xs ≤ g(t, Q)xs. (9)

Using Gronwall’s inequality on the interval [t1, t1 + t], t > 0 gives:

x̄s(t1 + t) ≤ x̄s(t1 + t− ω[t/ω])e−α[t/ω],

where [t/ω] is the greatest integer less than or equal to t/ω and α = −
∫ ω
0
g(τ,Q)dτ >

0. Since s′ is an upper bound for x̄s and q0 is a lower bound for q̄, we obtain:

x̄(t1 + t) ≤ s′

q0
e−α[t/ω]. (10)

Now, from H2.7, there exists δ0 > 0 such that:

|µ(t, x,Q)− µ(t, 0, Q)| ≤ l|x|, (11)

for all t ∈ [0, ω] and x ∈ [−δ0, δ0], with l the Lipschitz constant of µ. Let

ε := − 1
2

∫ ω
0
h(t, Q)dt and let us choose t2 > t1 such that s′

q0
e−[(t2−t1)/ω]α <
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min{δ0, ε/l}. Thus, from (10) and (11), we obtain that |µ(t, x̄(t), Q)−µ(t, 0, Q)| <

ε for all t ≥ t2, and consequently:

dq̄(t)

dt
≤ q̄(t) (h(t, Q) + ε) . (12)

using Gronwall’s inequality on the interval [t2, t2 + nω] gives q̄(t2 + nω) ≤

q̄(t2)e−nε. Let γ := maxt∈[0,ω]
ρ(t,q0,s

′)
q0

− µ(t, s′/q0, q0). Then dq̄(t)/dt ≤ γq̄(t).

Applying Gronwall’s inequality on the interval [t1, t2] gives q̄(t2) ≤ Qeγ(t2−t1).

Consequently q̄(t2 + nω) ≤ Qeγ(t2−t1)+nε. Thus, for n > γ(t2 − t1)/ε, we have140

that q̄(t2 +nω) < Q. Therefore q̄ must return to Q in a finite time smaller than

T := t2 − t1 + nω. Since T does not depends on initial conditions, we conclude

that q is ultimately bounded by QeTγ .

Remark 2.18. If H2.8 does not hold, then solutions of (1) are not bounded.

Indeed, let (x, q, s) be a solution of (1) with x(0), s(0) ≥ 0 and q(0) ≥ q0. Let us

assume that q is bounded from above by Q > 0. Since ρ is non-negative and µ

is decreasing in x, we have dq(t)
dt ≥ −µ(t, 0, Q)q. Applying Gronwall’s inequality

on the interval [0, nω] with n ≥ 1 an integer, we obtain:

q(nω) = q(0)e−n
∫ ω
0
µ(t,0,Q)dt. (13)

If H2.8 does not hold, then
∫ ω
0
µ(t, 0, Q)dt < 0. Thus, letting n → ∞ in (13),

we conclude that q is not bounded which is a contradiction.145

A solution (x, q, s) of (1) will be called an ω-periodic solution provided each

component is ω-periodic. An ω-periodic solution with absence of microalgae is

called washout periodic solution. The following proposition shows that (1) has

a washout periodic solution.

Proposition 2.19. The system (1) has at least one washout periodic solution.150

Proof. It is not difficult to see that any washout periodic solution must be of

the form (0, q(t), s∗(t)) with s∗(t) the periodic solution of (2). Thus, putting

x = 0 and s = s∗(t) in the second equation of (1) results in:

dq

dt
= ρ(t, q, s∗(t))− µ(t, 0, q)q. (14)
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Let us define:

F0(t, q) =
ρ(t, q, s∗(t))

q
− µ(t, 0, q). (15)

From Lemma 2.16, there exists Q > 0 such that
∫ ω
0
F0(t, Q)dt < 0. From H2.3

we have that F0(t, q0) ≥ 0 for all t ≥ 0. Thus, the proof follows from a direct

application of Proposition 6.4 in Appendix A.

Remark 2.20. (Uniqueness of the washout) The uniqueness of the washout can

be stated under additional assumptions over the monotonicity of ρ and µ. For155

example, consider F0 defined in (15). If for some t the function q 7−→ F0(t, q)

is strictly decreasing, then we have the uniqueness of the washout.

3. Reduced system

Dropping the equation for s and replacing s in (1) by s = s∗(t)− xq results

in the following reduced ω-periodic system for (x, q):

dx

dt
= [µ(t, x, q)−D(t)]x,

dq

dt
= ρ(t, q, s∗(t)− xq)− µ(t, x, q)q.

. (16)

In the following we study the asymptotic behavior of the reduced system (16).

We are interested in solutions of (16) starting with a positive initial microalgae

concentration and an internal quota not lower than q0 i.e. solutions with initial

conditions on the set:

P := {(x, q) ; x > 0, q ≥ q0}.

Our first lemma states a basic property of solutions of (16).

Lemma 3.1. For any solution (x, q) of (16) starting on P we have that x(t) > 0,160

q(t) ≥ q0 for all t > 0. Moreover, there is t′ ≥ 0 such that s∗(t) ≥ x(t)q(t) for

all t ≥ t′.

Proof. Since dq
dt |q=q0 ≥ 0, if q(0) ≥ q0 then q(t) ≥ q0 for all t ≥ 0. If x(0) > 0,

x cannot reach x = 0 in a finite time by the uniqueness of solutions of initial

10



value problems. Then x(t) > 0 for all t ≥ 0. The variable xs := xq satisfies the

differential equation:

dxs
dt

= xs

(
ρ(t, q, s∗(t)− xs)

q
−D(t)

)
. (17)

Thus, the variable y(t) = s∗(t)− xs(t) satisfies:

dy

dt
= D(t)(sin(t)− y) + (y − s∗(t))

ρ(t, q, y)

q
. (18)

We note that dy
dt |y=0 = sin(t)D(t) ≥ 0, therefore if y(t′) ≥ 0 for some t′ ≥ 0

then y(t) ≥ 0 for all t ≥ t′ and the proof is completed. Then we have to prove

the existence of t′ > 0 such that y(t′) ≥ 0. By contradiction, let us assume that165

y(t) < 0 for all t ≥ 0. From (18) and H2.2 we have dy/dt = D(t)(sin(t) − y).

From Lemma 2.13, y approaches asymptotically to s∗, which is a contradiction

because s∗ is positive.

The following convergence results for the reduced system need the uniqueness

of the washout periodic solution.170

Proposition 3.2. Let us assume that (16) admits a unique washout periodic

solution (0, q∗). Then, for any solution (x, q) of (16) satisfying limt→∞ x(t) = 0,

we have that limt→∞ |q(t)− q∗(t)| = 0.

Proof. Let (x̄, q̄) a solution of (16). Following the proof of Proposition 2.19, we

define F (t, q) = ρ(t, q, s∗(t) − qx̄(t))/q − µ(t, x̄(t), q). From H2.3 we have that175

F (t, q0) ≥ 0 for all t ≥ 0. Since limt→∞ x̄(t) = 0, we have that limt→∞ |F0(t, q)−

F (t, q)| = 0. Thus, the proof follows from a direct application of Proposition

6.4b) in Appendix A.

Now we prove that any solution of (16) is asymptotic to an ω-periodic solu-

tion. The heart of the proof lies in the fact that the change of variables xs = xq180

leads the reduced system to a cooperative system.

Proposition 3.3. If (16) admits a unique washout periodic solution, then any

solution of (16) starting on P approaches asymptotically to an ω-periodic solu-

tion.
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Proof. Let (x̄, q̄) be a solution of (16) with x̄(0) > 0 and q̄(0) ≥ q0. Let x̄s(t) :=

x̄(t)q̄(t). From Lemma 3.1, it easily follows that x̄s(t) and x̄(t) are bounded.

Considering the change of variables xs := qx, we have that (x̄(t), x̄s(t)) is a

solution of the following system:

dx/dt = f1(t, x, xs) := [µ(t, x, xs/x)−D(t)]x,

dxs/dt = f2(t, x, xs) := ρ(t, xs/x, s∗(t)− xs)x−D(t)xs.
(19)

The system (19) is cooperative i.e. f1 and f2 are increasing in xs and x respec-

tively. Following the proof of Theorem 4.2 in Chapter 7 in the Book [24], we

have that the sequences x̄n := x̄(nω) and x̄sn := x̄s(nω) are convergent. Let

l := limn→∞ x̄n and l′ := limn→∞ x̄sn. If l > 0, then l′ > 0 and consequently

q̄n := q̄(nω) = x̄sn/x̄n → l/l′ as n → ∞. Thus, (x̄, q̄) approaches asymp-

totically an ω-periodic solution of (16) with initial conditions (l, l′/l). Let us

assume now that l = 0 and let g(t) := µ(t, x̄(t), q̄(t)) − D(t). We can write

x̄(t) = x̄(0)eα(t)+β(t), with:

α(t) =

∫ ω[t/ω]

0

g(τ)dτ, and β(t) =

∫ t

ω[t/ω]

g(τ)dτ.

Let Q be an upper bound for q̄ given by Lemma 2.17, then we have g(t) ≤185

µ(t, 0, Q). Thus, β(t) ≤ b := ωmaxt∈[0,ω] µ(t, 0, Q). We have that x̄n =

x̄(0)eα(nω). Since x̄n → 0, we conclude that α(nω) → −∞. Then, it is trivial

that α(t) → −∞ as t → ∞. Thus, we conclude that x̄(t) ≤ x̄(0)eα(t)+b → 0

as t→∞. From Proposition 2.19, we conclude that (x̄, q̄) is asymptotic to the

washout periodic solution.190

Remark 3.4. The monotonicity of µ as a function of x is not essential in the

proof of Proposition 3.3. Indeed, the system (19) does not lose the property of

being cooperative.

The following proposition states conditions for the extinction of the popula-

tion.195

Proposition 3.5. Let us assume that (16) admits a unique washout periodic

solution (0, q∗). If one of the following conditions holds:
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a)

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt < 0;

b)

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt = 0 and the function x 7−→ µ(t, x, q∗(t)) is strictly

decreasing for some t ∈ [0, ω];200

then, any solution of (16) starting on P approaches asymptotically (0, q∗(t)).

Proof. Let (x, q) be a solution of (16) starting on P , and let xs = xq. Following

the proof of Lemma 2.3 in [25], we define x̄(t) to be the unique solution of:

dx̄

dt
= [µ(t, x̄, q∗(t))−D(t)]x̄, (20)

with x̄(0) := max{x(0), xs(0)/q∗(0)}. We also define x̄s(t) := x̄(t)q∗(t). It is

easy to verify that:

dx̄s
dt

= ρ(t, x̄s/x̄, s∗(t))x̄−D(t)x̄s.

Let us consider the functions fi, i = 1, 2 defined in (19). We have the following

inequality:
dx̄

dt
≥ f1(t, x̄, x̄s),

dx̄s
dt

≥ f2(t, x̄, x̄s),

(21)

with x̄(0) ≥ x(0) and x̄s(0) ≥ xs(0). Applying Theorem B.1 from Appendix B

in [24], we conclude that x(t) ≤ x̄(t) and xs(t) ≤ x̄s(t).

Now, let us define the sequence x̄n = x̄(nω), n ∈ N. Since µ is decreasing in

x and

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt ≤ 0 (in a) and b)), we have:

x̄n+1 = x̄n exp

(∫ ω

0

[µ(t, x̄, q∗(t))−D(t)]dt

)

≤ x̄n exp

(∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt

)

≤ x̄n,

13



hence x̄n is a decreasing sequence. Since x̄n ≥ 0 for all n ∈ N, we conclude

that x̄n is convergent and therefore x̄ approaches asymptotically an ω-periodic

solution of (20). We prove now that in both cases, a) and b), x = 0 is the unique

periodic solution. By contradiction, let x̄p be a positive periodic solution. Then

we have ∫ ω

0

[µ(t, x̄p(t), q∗(t))−D(t)]dt = 0. (22)

However, in case a):∫ ω

0

[µ(t, x̄p(t), q∗(t))−D(t)]dt ≤
∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt < 0,

which contradicts (22). In case b):∫ ω

0

[µ(t, x̄p(t), q∗(t))−D(t)]dt <

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt = 0,

which again contradicts (22). Hence x = 0 is the unique periodic solution of (20)205

and we have that limt→0 x̄(t) = 0. This implies limt→∞ x(t) = 0. By Lemma

3.2, we conclude that limt→∞ |q(t)− q∗(t)| = 0.

An ω-periodic solution (x, q) of (16) will be called positive ω-periodic

solution, if x(t) > 0, q(t) ≥ q0, and x(t)q(t) ≤ s∗(t) for all t ∈ [0, ω]. The

following theorem gives conditions to ensure that any solution of (16) approaches210

a positive ω-periodic solution.

Theorem 3.6. Let us assume that (16) admits a unique washout periodic so-

lution (0, q∗) and that

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt > 0. Then, (16) admits at

least one positive ω-periodic solution and any solution of (16) starting in P

approaches asymptotically a positive ω-periodic solution.215

Proof. Along the proof we will write u = (x, q). Let us define G = (G1, G2) :

R2
+ × J × R+ −→ R2 by:

G1(t, u, v) = µ(t, u)−D(t) and G2(t, u, v) = ρ̂(t, u2, v−u1u2)/u2−µ(t, u), (23)

with ρ̂ a continuous extension of ρ on R+ × J × R to R2
+ × R such that ρ̂ is ω-

periodic in t and locally Lipschitz in u uniformly in t. Consider the Kolmogorov
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periodic system:
dui
dt

= uiGi(t, u, s∗(t)), i = 1, 2, (24)

For initial conditions on R+× [0, q0], solutions of (24) stay on R+× [0, q0] or

they intersect the set R+ × J for some t > 0. Thus, solutions of (24) exist for

any initial condition on R2
+ and they are uniformly bounded. Let φ0(t, u) be the

unique solution of (24) with φ0(0, u) = u ∈ R2
+ and let ϕ := φ(ω, ·) : R2

+ −→ R2
+

be the Poincaré map associated to (24). From Lemma 1 in the appendix of [20],220

we conclude that there is δ > 0 such that limn→∞ d(ϕn(u), (0, q∗(0))) ≥ δ for all

u ∈ int(R2
+). This implies that for any u ∈ (0,∞)×J , φ0(t, u) is not asymptotic

to the washout periodic solution. From Proposition 3.3, we conclude that φ(t, u)

approaches an ω-periodic solution (x∗, q∗) different from the washout periodic

solution. From Lemma 3.1, we have that x∗(t)q∗(t) ≤ s∗(t) for all t ≥ 0. Thus225

(x∗, q∗) is a positive periodic solution and the proof is completed.

The following result that states an order of the positive periodic solutions of

(16).

Lemma 3.7. For any two periodic solutions (x∗i , q
∗
i ), i = 1, 2 of (16) with

x∗i (0) > 0, we have that either230

• x∗1(t) ≤ x∗2(t) and x∗1(t)q∗1(t) ≤ x∗2(t)q∗2(t) for all t ∈ [0, ω], or

• x∗1(t) ≥ x∗2(t) and x∗1(t)q∗1(t) ≥ x∗2(t)q∗2(t) for all t ∈ [0, ω].

Proof. We write x∗si = x∗i (t)q
∗
i (t), i = 1, 2. Then, we have that (x∗i , x

∗
si), i = 1, 2

are periodic solutions of (19). We claim that either (a) x∗1s(t) ≤ x∗2s(t) for all

t ∈ [0, ω] or (b) x∗1s(t) ≥ x∗2s(t) for all t ∈ [0, ω]. Indeed, let us assume that235

there is t0 ∈ [0, ω] such that x∗1s(t0) = x∗2s(t0), otherwise the claim is trivial.

Then either (I) x∗1(t0) < x∗2(t0) or (II) x∗2(t0) > x∗1(t0), otherwise both periodic

solutions are the same. If (I) holds, then by a Kamke’s Theorem argument, we

have that x∗1s(t) ≤ x∗2s(t) for all t ≥ t0, and by the periodicity of x∗1s and x∗2s

we conclude that (a) holds. In the same way, if (II) holds then (b) holds. Thus,240

the claim is proved. Now, since f1 (see (19)) is increasing in xs, we conclude
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that (a) implies x∗1(t) ≤ x∗2(t), and (b) implies x∗1(t) ≥ x∗2(t). This completes

the proof.

We end this section with a theorem that gives conditions for the uniqueness

of positive ω-periodic solutions of (16). For an interpretation of the hypotheses245

in the following theorem, see the remarks at the end of this section.

Theorem 3.8. We recall the subsistence quota q0 introduced in Section 2. As-

sume that:

I) ρ(t, q0, s) > 0 for all t ∈ [0, ω], s > 0,

and that for any continuous function q on [0, ω], satisfying q(t) > q0 for all250

t ∈ [0, ω], we have:

II) the function x 7−→ µ(t, x, q(t)) is strictly decreasing for some t ∈ [0, ω],

and

III) the function s 7−→ ρ(t, q(t), s) is either strictly increasing or equal to zero

for all s ≥ 0.255

Then, (16) admits at most one ω-periodic solution (x∗, q∗) with x∗(0) > 0 and

q∗(0) ≥ q0.

Proof. Let φ(t, v) be the unique solution of (19) satisfying φ(0, v) = v, let K :=

int(R2
+) and ϕ = φ(ω, ·) : K −→ K be the Poincaré map associated to (19).

Let u be a positive fixed point of ϕ and let α ∈ (0, 1). We define the variables

y(t) := αφ(t, u) and z(t) := φ(t, αu). Let us consider the functions fi, i = 1, 2

defined in (19). We can easily verify that for all t ∈ [0, ω]:

dyi(t)

dt
= αfi(t, y1(t)/α, y2(t)/α) ≤ fi(t, y1(t), y2(t)), i = 1, 2,

y(0) = αu,

(25)

and that:
dzi(t)

dt
= fi(t, z1(t), z2(t)), i = 1, 2,

z(0) = αu.

(26)

16



Applying Theorem B.1 from Appendix B in [24], we conclude that yi(t) ≤ zi(t)

for all t ∈ [0, ω], i = 1, 2.

260

Let qy(t) := y2(t)/y1(t). Since y(t)/α corresponds to an ω-periodic solution

of (19), (y1(t)/α, qy(t)) corresponds to an ω-periodic solution of (16). We claim

that qy(t) > q0 for all t ∈ [0, ω]. Indeed, from Lemma 3.1, we know that qy(t)

cannot be lower than q0. Thus, by contradiction, if qy(t′) = q0 for some t′,

then qy reaches a minimum at t = t′. Hence, dqy(t′)/dt = 0. However, from

hypothesis I), we have that dqy(t′)/dt > 0 which is a contradiction. Therefore

our claim is true. From hypothesis II), we conclude that x 7−→ µ(t′, x, qy(t′)) is

strictly decreasing for some t′ ∈ [0, ω]. Consequently, for i = 1, the inequality

in (25) is strict for t′. Again, since y(t)/α is an ω-periodic solution of (19), we

have: ∫ ω

0

ρ(t, y2(t)/y1(t), s∗(t)− y2(t)/α) =

∫ ω

0

D(t)dt > 0,

from where there exists an interval of time t′′ such that:

ρ(t′′, y2(t′′)/y1(t′′), s∗(t
′′)− y2(t′′)/α) > 0

From hypothesis III), we conclude that for i = 2, the inequality in (25) is strict

for some t′′. Since inequalities in (25) are strict at some moment and f1 and f2

are continuous, we obtain that for i = 1, 2:

0 = α

∫ ω

0

fi(t, y1(t)/α, y2(t)/α)dt <

∫ ω

0

fi(t, y1(t), y2(t))dt. (27)

We prove now that yi(t) < zi(t), i = 1, 2 for some t ∈ [0, ω]. Without loss of

generality, we do it for i = 1. By contradiction, if z1(t) = y1(t) for all t ∈ [0, ω],
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then we have:

z1(ω)− z1(0) =

∫ ω

0

f1(t, z1(t), z2(t))dt

=

∫ ω

0

f1(t, y1(t), z2(t))dt

≥
∫ ω

0

f1(t, y1(t), y2(t))dt.

> 0 (see (27)).

Thus, we conclude that z1(0) 6= z1(ω) which is a contradiction because y1(0) =

y1(ω). Therefore there exists t0 such that z1(t0) > y1(t0). Let us consider z1

defined by:
dz1
dt

= f1(t, z1, z2(t)), z1(t0) = y1(t0). (28)

Since dy1
dt ≤ f1(t, y1, z2(t)), by a comparison argument, we have that y1(ω) ≤

z1(ω). By an uniqueness argument, we have that z1(ω) < z1(ω). Hence, we

conclude that y1(ω) < z1(ω). Similarly, we can argue that y2(ω) < z2(ω).

Since αϕ(u) = y(ω) and z(ω) = ϕ(αu), and due to arbitrary choice of α and

u, we conclude that for any α ∈ (0, 1) and u ∈ K:

αϕ(u) < ϕ(αu). (29)

Now, let us assume that ϕ admits two different fixed points u, u′ ∈ K. From265

a Kamke’s Theorem argument, it follows that ϕ is monotone. Thus, following

the same arguments as in the proof of Lemma 2.3.1 in Chapter 2 in [26], we

obtain the existence of σ > 0 such that u = σu′. From Lemma 3.7 we can

assume that u ≤ u′ (component-wise inequality). Therefore, σ ∈ (0, 1). Thus,

u = ϕ(u) = ϕ(σu′) > σϕ(u′) = σu′ = u, which is a contradiction. Therefore, ϕ270

admits at most one fixed point and the proof is completed.

Remark 3.9. (Interpretation of hypotheses in Theorem 3.8) Hypothesis I) sim-

ply says that at any moment of the day, if microalgae reach their minimal quota
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(subsistence quota q0), they will absorb nutrients from the medium. To interpret

hypothesis II), first we must consider that any increase of the microalgae pop-275

ulation is expected to reduce the light availability in the medium (self-shading).

Thus, hypothesis II) states the existence of a moment at which any decrease of

the light availability reduces the specific growth rate, in other words, there is

a moment of the day at which the culture is light limited. Hypothesis III) is

inspired by the fact that for high values of the quota microalgae stop absorbing280

nutrients, independent of the concentration of nutrients in the medium. Thus,

hypothesis III) says that at any moment of the day, if there is absorption of nu-

trients (low values of quota), then increasing the nutrient concentration in the

medium will increase the absorption rate. However, if there is no absorption of

nutrients (high values of quota), then it is impossible to initiate the consumption285

of nutrients by increasing their concentration in the medium.

4. Main result

An ω-periodic solution (x∗, q∗, s∗) of (1) is known as positive ω-periodic

solution if x∗(t) > 0, q∗(t) ≥ q0, and s∗(t) ≥ 0. The following theorem

states a threshold type result on the global asymptotics of (1). In particular, it290

gives necessary and sufficient conditions for the existence of a globally attractive

positive periodic solution.

Theorem 4.1. Let us assume that (1) admits a unique washout periodic so-

lution (0, q∗, s∗) and that assumptions of Theorem 3.8 hold. Let (x, q, s) be a

solution of (1) with x(0) > 0, q(0) ≥ q0, and s(0) ≥ 0. We have:295

a) If

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt > 0, (1) admits a unique positive ω-periodic

solution (x∗, q∗, s∗), and

lim
t→∞

|(x(t), q(t), s(t))− (x∗(t), q∗(t), s∗(t))| = 0.

b) If

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt ≤ 0, then

lim
t→∞

|(x(t), q(t), s(t))− (0, q∗(t), s∗(t))| = 0.
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Proof. As in the proof of Theorem 3.6, we write u = (x, q) and we consider the

functionsGi, i = 1, 2 defined in (23). Consider the Kolmogorov non-autonomous

system:
dui
dt

= uiGi(t, u, S(t)), i = 1, 2, (30)

where S(t) is the unique solution of (2) with S(0) ≥ u1(0)u2(0). Recalling the

proof of Theorem 3.6, solutions of (24) and (30) exist for any initial condition on

R2
+ and they are uniformly bounded. Let φ0(t, s, u) and φ(t, s, u) be the unique

solutions of (24) and (30) respectively with φ(s, s, u) = φ0(s, s, u) = u ∈ R2
+.

We note that for initial conditions on R+ × J , (1) is equivalent to (30) (take300

s(0) = S(0)− u1(0)u2(0)). From Theorems 3.6 and 3.8 and Proposition 3.5 we

obtain the following result on the global asymptotics of (24).

I) If

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt > 0, (24) admits a unique positive ω-periodic

solution (x∗, q∗), and for any u ∈ (0,∞)× J we have limt→∞ |φ0(t, 0, u)−

(x∗(t), q∗(t))| = 0.305

II) If

∫ ω

0

[µ(t, 0, q∗(t))−D(t)]dt ≤ 0, for any u ∈ [0,∞)×J , limt→∞ |φ0(t, 0, u)−

(0, q∗(t))| = 0.

From Theorem 3.6, x∗(t)q∗(t) ≤ s∗(t) for all t ∈ [0, ω]. Then, (x∗, q∗, s∗ −

x∗q∗) is the unique positive ω-periodic solution of (1). Given the equivalence

between (30) and (1), we have to prove that I) and II) remain valid when re-310

placing φ0 by φ.

From Lemma 2.13, limt→∞ |S(t)−s∗(t)| = 0, and hence limt→∞ |G(t, u, S(t))−

G(t, u, s∗(t))| = 0. By Proposition 3.2 in [21], φ(t, s, u) is asymptotic to the ω-

periodic semiflow T (t) := φ0(t, 0, ·) : R2
+ −→ R2

+, and hence Tn(u) = φ(nω, 0, u),315

n ≥ 0, is an asymptotically autonomous discrete dynamical process with limit

discrete semiflow ϕn : R2
+ −→ R2

+, n ≥ 0, where ϕ = T (ω) is the Poincaré map

associated to (24). By Theorem 3.1 in [21], it suffices to prove in case a) that

limn→∞ Tn(u) = u∗ := (x∗(0), q∗(0)) for any u ∈ (0,∞)×J , and in case b) that
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limn→∞ Tn(u) = u∗ := (0, q∗(0)) for any u ∈ R+ × J320

In case a), by conclusion I), u∗ is a globally attractive fixed point of ϕ in

(0,∞) × R+. Thus, the only fixed points of ϕ are u∗ and the washout u∗. By

Theorem 2.4 in [21], the ω-limit of u is a fixed point of ϕ. By Lemma 2 (with

n = 2) in [20], we have:

{u ∈ R2
+ ; lim

n→∞
Tn(u) = (0, q∗(0))} ∩ int(R2

+) = φ.

Thus, limn→∞ Tn(u) = u∗ for any u ∈ int(R2
+), which proves a).

In case b), by conclusion II), u∗ is a globally attractive fixed point of ϕ in

R+ × R+. Thus, the only fixed point of ϕ is u∗. By Theorem 2.4 in [21], the325

ω-limit of u is a fixed point of ϕ, hence u∗. This proves b).

5. Application: Microalgae growth under phosphorus and light limi-

tation.

Here we consider a periodic version of the light-limited Droop model pro-

posed by Passarge and collaborators in [27] for describing microalgae growth

under light and phosphorus limitation. The model reads:

dx/dt = [min {µI(t, x), µP (q)} −D]x,

dq/dt = ρ(q, s)−min {µI(t, x), µP (q)} q,

ds/dt = D(sin − s)− ρ(q, s)x,

(31)

with sin and D constant and positive, and the functions µI , µP defined as fol-

lows. µP (q) = µmax

(
1− q0

q

)
is the specific growth rate as described by Droop

[4] under nutrient limitation, and µI(t, x) = 1
L

∫ L
0
p(I(t, x, z))dz is the vertical

average of the local specific growth rate p(I) = µmax
I

KI+I
when microalgae is

only limited by light. I(t, x, z) is the light intensity perceived by microalgae at

a distance z from the surface of the culture vessel and is determined from the

Lambert-Beer law:

I(t, x, z) = Iin(t)e−(kx+Kbg)z, z ∈ [0, L], (32)
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Figure 1: Iin as a function of t.

with Iin(t) the incident light intensity, k > 0 the specific light extinction coeffi-

cient of microalgae, and Kbg ≥ 0 the background turbidity. A direct integration

shows that:

µI(t, x) =
µmax

(kx+Kbg)L
ln

(
KI + Iin(t)

KI + Iout(t, x)

)
, (33)

with Iout(t, x) = I(t, x, L) the light intensity at the bottom of the culture. The

incident light intensity varies periodically according to

Iin(t) = Imax max{0, sin(2πt/ω)}2, (34)

with ω > 0 the length of a day and Imax the maximal incident light (at midday).

Figure 1 illustrates the function Iin.330

The uptake rate function is:

ρ(q, s) =

 ρmax
s

Ks+s
qL−q
qL−q0 if q ≤ qL,

0 if q > qL,
(35)

where ρmax is the maximal uptake rate of phosphorus, qL is the hypothetical

maximal quota, and Ks is a half-saturation constant.

It is not difficult to see that (31) satisfies the hypotheses H2.1-H2.8 presented

in section 2 (see Appendix B for the properties of µI). Thus, we can apply335

Theorem 4.1 to obtain the following result.
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Figure 2: Periodic solutions of (31) and their asymptotic behavior. System (31) admits only

two periodic solutions, the ω periodic solution represented by x = 0 and q∗, and a positive

ω-periodic solution represented by x∗ > 0 and q∗. Any solution starting with a positive

microalgae concentration approaches the positive ω-periodic solution. In this case, x1, q1 and

x2, q2 correspond to two different solutions of (31) with x1(0), x2(0) > 0 and q1(0) = q2(0).

We note that the cell quota remains between q0 and qL. A. Microalgae population density.

B. Cell quota.

Theorem 5.1. System (31) admits a unique washout ω-periodic solution, (0, q∗(t), sin).

Moreover, for

∆ :=
1

ω

∫ ω

0

min{µI(t, 0), µP (q∗(t))}dt−D,

we have:

a) if ∆ > 0, then (31) admits a unique positive ω-periodic solution (x∗(t), q∗(t), s∗(t))

and any solution to (31) with a positive initial population density approaches

it asymptotically,340

b) if ∆ ≤ 0, then any solution to (31) asymptotically approaches the washout

ω-periodic solution.

Proof. We recall equation (14) to study the uniqueness of the washout periodic

solution. We note that
∫ ω
0
F0(t, q(t))dt < 0 for any function q(t) ∈ [qL,∞).

Thus, the quota associated to any washout must intersect the set [q0, qL]. Since345

µ(t, x, q) := min{µI(t, x), µP (q)} ≥ 0, we have that [q0, qL] is positively invari-

ant with respect to (14). Thus, the quota associated to any washout stays on
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Figure 3: Unique positive periodic solution of (31). A. Population density. B. Intracellu-

lar phosphorus content. C. External phosphorus concentration. D. Light and phosphorus

limitation.
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[q0, qL]. Since q 7−→ ρ(q, sin) is strictly decreasing on [q0, qL], we have that

q 7−→ F0(t, q)/q is also strictly decreasing on [q0, qL]. This implies the unique-

ness of the washout and part a) is proved.350

Let q : [0, ω] −→ (q0,∞) be a continuous function and qm := mint∈[0,ω] q(t).

Since qm > q0, we have µP (qm) > 0. Now, we note that

µI(t, x) ≤ ν(t) :=

 µmax
Iin(t)

KI+Iin(t)
if Kbg = 0,

µmax

KbgL
ln
(

1 + Iin(t)
KI

)
if Kbg > 0.

Thus, from the definition of Iin(t), it is clear that we can choose t′ ∈ [0, ω] such

that Iin(t′) > 0 and µI(t
′, x) ≤ ν(t′) ≤ µP (qm) ≤ µP (q(t′)) for all x ≥ 0 i.e.355

µ(t′, x, q(t′)) = µI(t
′, x) for all x ≥ 0. Then we have that x 7−→ µ(t′, x, q(t′))

is strictly decreasing (see Proposition 6.5 in Appendix B). We note now that

s 7−→ ρ(q, s) is strictly increasing for any q ∈ [q0, qL] and that ρ(q0, s) > 0 for

any s > 0. Thus, applying Theorem 4.1 we conclude the proof.

Remark 5.2. A crucial fact to ensure the uniqueness of positive periodic solutions360

of (31) is that the incident light intensity Iin(t) is continuous, and zero during

some time (night period). Indeed, this implies that Iin(t) can take values as close

to zero as we want. Hence, for any evolution of the quota q(t) (greater than q0),

it is possible to find a time t′ at which µI(t
′, x) ≤ µP (q(t′)) for all x ≥ 0 (details

are in the proof of Theorem 5.1). In other words, there is a moment during the365

day at which limitation by light is predominant. This implies hypothesis II) in

Theorem 3.8 (see Remark 3.9).

To illustrate Theorem 5.1, let us consider the kinetic parameters for Chlorella

vulgaris provided in [27]. The rest of parameters are chosen as D = 0.02h−1,

Kbg = 6m−1, sin = 15µmol /L, L = 0.4m, and Imax = 2000µmolm−2 s−1.370

Figure 2 illustrates the microalgae population density and the cell quota associ-

ated to the periodic solutions of (31) and their attractiveness property. Figure

3 illustrates the positive periodic solution (x∗, q∗, s∗) and its evolution during

one day. The shaded area corresponds to the night (i.e. Iin(t) = 0). Figure
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3D shows that during the day (t ∈ [0, 0.5]) microalgae growth is mainly limited375

by phosphorus, while during the night (t ∈ [0.5, 1]), there is no growth due to

the absence of light. Thus, microalgae population only grows during the day

(see Figure 3A), and consequently the internal cell quota and external nutrient

concentration decrease during the day (see Figures 3B and 3C).

6. Discussion and conclusions380

In this work, we studied the asymptotic behavior of a single microalgae

model accounting for nutrient and light limitation. We found conditions such

that prolonged continuous periodic culture operation (periodic dilution rate and

nutrient supply) under periodic fluctuations of environmental conditions (such

as the light source or the medium temperature) allows periodic concentrations

to be maintained in the culture. More precisely, if (1) admits only one washout

periodic solution (0, q∗, s∗), then the following condition:∫ ω

0

D(t)dt <

∫ ω

0

µ(t, 0, q∗(t))dt, (36)

is sufficient and necessary for the existence of a unique positive periodic solu-

tion. This solution is globally attractive (Theorem 4.1).

As an application of our results, we gave necessary and sufficient conditions

for the existence of a unique positive globally attractive periodic solution for a385

periodic version of the model proposed by Passarge and collaborators [27] (see

Theorem 5.1). In this model, the specific growth rate is represented by the law

of minimum. If in (31) the specific growth rate is a multiplicative function i.e.

µI(t, x)(1− q0/q), a new version of Theorem 5.1 can be readily stated.

390

A possible extension of this work consist in allowing the function µ not to

be monotone as a function of x. In [28] it is shown that when microalgae suffer

from photoinhibiton (i.e. a decrease of the photosynthetic rate due to an excess

of light), then an Allee effect may occurs i.e. µ in (1) is increasing as a function
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of x for small values of x. In such a case, the cooperativity of the reduced395

system (16) is not lost (see Remark 3.4). Thus, a similar result to Proposition

3.3 could be obtain for this new model.

Appendix A

Consider the non-autonomous Kolmogorov equation:

du

dt
= uF (t, u), u ∈ R+ = [0,∞), (37)

and the ω-periodic Kolmogorov equation:

du

dt
= uF0(t, u), u ∈ R+, (38)

where F (t, u) : R2
+ −→ R is continuous, decreasing in u and locally Lipschitz

in u, and F0(t, u) : R2
+ −→ R is continuous, ω-periodic in t (ω > 0), decreasing400

in u and locally Lipschitz in u uniformly in t ∈ [0, ω]. Consider the following

assumptions:

A 6.1. limt→∞ |F (t, u) − F0(t, u)| = 0 uniformly for u in any bounded subset

of R+.

A 6.2.
∫ ω
0
F0(t, R)dt < 0 for some R > 0.405

Lemma 6.3. Assume that A6.1 and A6.2 hold. Then, solutions of (37) are

ultimately bounded.

Proof. Let φ(t, s, u), t ≥ s ≥ 0, be the unique solution of (37) with φ(s, s, u) = u.

From 6.1, there is t0 > 0 such that |F (t, 0) − F0(t, 0)| < 1 for all t ≥ t0. Since

F is decreasing in u, we have that

F (t, u) ≤ F (t, 0) < 1 + max
t∈[0,ω]

F0(t, 0), for all t ∈ [t0,∞), u ∈ R+

and

F (t, u) ≤ max
t∈[0,t0]

F (t, 0), for all t ∈ [0, t0), u ∈ R+.
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From these inequalities we conclude that F (t, u) is bounded from above, and

consequently φ(t, s, u) exists for all t ≥ s ≥ 0.

410

LetR > 0 be according to 6.2 and let ε > 0 be such that ε < − 1
ω

∫ ω
0
F0(t, R)dt.

From 6.1, there is t∗ such that |F (t, R)− F0(t, R)| < ε for all t ≥ t∗. Then, for

all t ≥ t∗ we have

∫ t+ω

t

F (τ,R)dτ < −ε1 := εω +

∫ ω

0

F0(t, R)dt < 0. (39)

If u = 0 then φ(t, 0, u) = 0 for all t ≥ 0, hence suppose that u > 0. In that

case φ(t, 0, u) > 0 for all t ∈ R+. For the rest of the proof we need the following415

claim:

Claim 1: If there is t1 ≥ t∗ such that φ(t, 0, u) ≥ R for all t ∈ [t1, t1 + ω]

then φ(t1 + ω, 0, u) < φ(t1, 0, u)e−ε1 .

420

The proof of the claim follows directly from the following inequality:

ln

(
φ(t1 + ω, 0, u)

φ(t1, 0, u)

)
=

∫ t1+ω

t1

F (t, φ(t, 0, u))dt ≤
∫ t1+ω

t1

F (t, R)dt < −ε1.

Let us assume that φ(t, 0, u) ≥ R for all t ≥ t∗. Using Claim 1 we obtain

that

φ(t∗ + kω, 0, u) < φ(t∗, 0, u)exp(−kε1), for any k ∈ N

and a contradiction is achieved letting k →∞. We may therefore assume with-

out loss of generality that φ(t∗, 0, u) < R.

Now suppose that there is t1 > t∗ such that φ(t1, 0, u) = R. Let us define

∆ := max{δ ≥ 0 ; φ(t1 + δ, 0, u) ≥ R} and I := [t1, t1 + ∆]. From the Claim 1

we have that φ(t1 +ω, u) < Re−kε1 < R, therefore ∆ is well defined and smaller

than ω. For each t ∈ I we have:

ln

(
φ(t, 0, u)

φ(t1, 0, u)

)
=

∫ t

t1

F (t, φ(τ, 0, u))dτ ≤ (t− t1)M ≤ ωM, (40)
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with M an upper bound for F (t, u). From 40, we conclude that φ(t, 0, u) ≤

ReMω for all t ∈ I. This implies that φ(t, 0, u) ≤ β = ReMω for all t ≥ t∗, and425

consequently lim supt→∞ φ(t, 0, u) ≤ β.

The following proposition is inspired by part b) of Theorem 2.1 in [20].

Proposition 6.4. Assume that A6.1-A6.2 hold. Let a > 0 and J = [a,∞). If

F0(a, t) ≥ 0 for all t ≥ 0, then:

a) The periodic equation (38) admits an ω-periodic solution u∗ satisfying u∗(t) ≥430

a for all t ∈ [0, ω].

b) Assume that F (t, a) ≥ 0 for all t ≥ 0. If (38) admits a unique ω-periodic so-

lution u∗ satisfying u∗(t) ≥ a, then any solution to (37) with initial condition

on J approaches asymptotically to u∗.

Proof. Let φ(t, s, u) and φ0(t, s, u) be the unique solutions of (37) and (38) re-435

spectively with φ(s, s, u) = φ0(s, s, u) = u ∈ R+. From Lemma 6.3, solutions

of (38) and (37) are ultimately bounded, and hence, uniformly bounded. Let

S : J −→ J be the Poincaré map associated to (38). We note that J is positively

invariant with respect to (38), then S is well defined. Let u ∈ J . Since Sn(u)

is monotone and bounded, Sn(u) is convergent. Since J is positively invariant440

with respect to (38), u0 = limn→∞ Sn(u) ∈ J . Thus, u∗(t) = φ0(t, s, u0) is an

ω-periodic solution satisfying u∗(t) ∈ J , and the part a) is proved.

For the part b), let u∗ be the unique ω-periodic solution with u∗(0) ∈ J .

By Proposition 3.2 in [21], φ(t, s, u) is asymptotic to the ω-periodic semiflow445

T (t) := φ0(t, 0, ·) : R+ −→ R+, and hence Tn(u) = φ(nω, 0, u), n ≥ 0, is

an asymptotically autonomous discrete dynamical process with limit discrete

semiflow Sn : R+ −→ R+, n ≥ 0. Since u∗(0) is the unique globally stable fixed

point of S, by Theorem 2.4 in [21], we conclude that limn→∞ Tn(u) = u∗(0) for

any u ∈ J . Applying Theorem 3.1 in [21], we conclude the proof.450
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Appendix B

Here, we state some properties of the function µI defined in (33).

Proposition 6.5. Let us consider µI given in (33). Then

a) limx→∞ µI(t, x) = 0 uniformly for t ∈ [0, ω].

b) x 7−→ µI(t, x) is strictly decreasing for all t ∈ (0, ω/2) and µI(t, x) = 0 for455

all t ∈ [ω/2, ω].

c) µI is Lipschitz in x uniformly in t.

Proof. We recall that µI(t, x) =
∫ L
0
p(I(t, x, z))dz. By doing the change of

variable I = I(t, x, z), we rewrite µI as:

µI(t, x) =
g(q)

(kx+Kbg)L

∫ Iin(t)

Iout(t,x)

p(I)

I
dI (41)

where Iout(t, x) = I(t, x, L). We can easily verify that:

0 ≤ µI(t, x) ≤ 1

kxL
Imaxµmax. (42)

Letting x→∞ in (42), we prove a). For b), if Iin(t) > 0 we have:

∂µI(t, x)

∂x
=

g(q)kL

(kx+Kbg)2L2

∫ Iin(t)

Iout(t,x)

p(Iout(t, x))− p(I)

I
dI. (43)

Since p is strictly increasing and Iout(t, x) < I for all I ∈ (Iout(t, x), Iin(t)] and

x > 0, we conclude that ∂µ(t,x,q)
∂x < 0 for all x > 0, and consequently µ is strictly

decreasing in x. For c), let us define θ = (kx + Kbg)L. Let l be a Lipschitz

constant of p, then we have:∣∣∣∣∂µI(t, x)

∂x

∣∣∣∣ ≤ kL

θ2

∫ Iin(t)

Iout(t,x)

|p(I)− p(Iout(t, x))|
I

dI

≤ klL

θ2

∫ Iin(t)

Iout(t,x)

|I − Iout(t, x)|
I

dI

≤ lkLImax
1− e−θ

θ
≤ lkLImax.

Thus µI is Lipschitz in x uniformly in t and c) is proved.
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