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ABSTRACT

We focus here on an integral approach to compute compressible or incompressible fluid flows in physical
congested domains with discontinuous fluid sections. This approach is based on a multidimensional integral
formulation of the fluid model equations and aims at unifying the porous approach used at component scale
and CFD used at local scale. Its discretization uses a semi-implicit collocated finite volume scheme with an
incremental pressure-correction algorithm, implemented in the open-source CFD software Code Saturne,
version 6.0. Numerical tests are completed by simulating a plane steady-channel flow with a fluid section
jump. The results are compared to the analytical solution and the computation obtained with a standard
equivalent porous model.
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1. INTRODUCTION

In this paper we introduce a way to numerically investigate fluid flows in thermal-hydraulic circuit compo-
nents in nuclear reactors where the computational domain is congested with many axial rod bundles, as the
reactor core. The aim is the numerical simulation of channel flow with variable cross section with coarse
meshes. An issue is to compute steady state flows in presence of discontinuous cross sections, see Figure 1,
sketch of the core entrance. Herein, an integral formulation of the fluid flow governing equations, developed
in [1, 2], is used to deal with this flow configuration. This approach demonstrated in [1] its ability to deal
with fast transient scenarii and to converge to the CFD solution when refining the mesh. In this framework,
the cross section discontinuity is then taken into account in the mesh of the computational domain by a fluid
and solid volume in cells and a reduction of fluid surfaces.
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Figure 1. Flow in a congested medium with discontinuous fluid sections at x = x0 with uinlet 6= 0.



Nevertheless, the legacy numerical scheme of the integral formulation does not allow to preserve the steady
state on either side of the discontinuous interface. This discrepancy is attributed to the fact that the pressure
drop at the discontinuous interface is not accounted for in an appropriate way at the discrete level in the
momentum balance equation. Indeed, a collocated finite volume scheme in space is used requiring cell value
interpolations to approximate the face values. These interpolations do not respect the piecewise smooth
profiles of the 1D steady state flow.

The proposed method consists in altering the collocated finite volume scheme in order to take up this discon-
tinuous cross section issue by ensuring the steady state at the discrete level. We initially focus on the Euler
equations governing inviscid barotropic compressible fluid flows over a finite time interval (0, T ), T ∈ R∗+
and in an open connected bounded domain Ω ⊂ Rd (d = 1, 2 or 3):{

∂tρ+ divQ = 0,
∂tQ+ div (u⊗Q) + ∇P (ρ) = 0,

(1)

where u : Ω×(0, T )→ R3 is the velocity and P : Ω×(0, T )→ R, the pressure of the fluid. Q = ρudenotes
the momentum per unit volume with ρ, the density. This system must be supplemented by an equation of
state P (ρ), initial conditions and boundary conditions on ∂Ω for the velocity or the pressure. In this paper,
we propose another interpolation of the pressure and the velocity at the internal faces of the mesh, based
on the local steady balances over a dual mesh attached to the face of the primal mesh of the computational
domain. It allows to enforce the preservation of the discontinuous steady state for flow configurations when
fluid section jumps at the interface. A verification test case shows the good behaviour of the new scheme
and we compare it to the classical porous approach with a staggered scheme (THYC software, [3]).

2. INTEGRAL FORMULATION

An integral formulation is applied to the Euler equations. Set of equations (1) is integrated over fixed control
volumes Ωi, i ∈ N, which may potentially contain many disjoint solid obstacles. Before proceeding further,
we note that obstacles may be completely or partially included in Ωi. Part of a control volume boundary
may coincide with the surface of an obstacle, see Figure 2 for an example of an obstructed cell. The whole
volume occupied by fluid within Ωi is denoted by Ωφ

i .

solid

fluid volume Ω
φ
i

cell Ωi
fluid surface Γ

φ
iΓwi

Figure 2. Sketch of a cell including fluid and solid.

The mean value of a quantity ϕ(x, t), with x∈ Ω and t ∈ R+, within each cell Ωi of the mesh of Ω, is:

ϕi(t) =
1∣∣∣Ωφ
i

∣∣∣
∫

Ωφi

ϕ(x, t)dx. (2)
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Integrating equations (1) over a bounded time interval (tn, tn+1) ⊂ (0, T ) and space with respect to the fluid
part of the cell Ωi, for all i ∈ {1, ..., N}, gives:

∣∣∣Ωφ
i

∣∣∣ (ρi (tn+1
)
− ρi (tn)

)
+

∫ tn+1

tn

∫
Γi

Q(x, t) · n(x)dγ(x)dt = 0,

∣∣∣Ωφ
i

∣∣∣ (Qi

(
tn+1

)
−Qi (tn)

)
+

∫ tn+1

tn

∫
Γi

(u(x, t)Q(x, t) · n(x) + P (x, t)n(x)) dγ(x)dt = 0,

(3)

where Γi = ∂Ωφ
i denotes the whole boundary of the fluid cell Ωφ

i and n(x) its unit outward normal vector.

The slip condition at the wall u · n|w = 0 means that the mass flux is equal to zero through the wall boundary
Γwi . Thus, the pressure integral on the wall boundary is the unique contribution. Integral formulation (3)
yields by decomposing on the fluid faces Γφi = ∪j∈N(i)Γ

φ
ij and wall Γwi boundaries, for all Ωi:

∣∣∣Ωφ
i

∣∣∣ (ρi (tn+1
)
− ρi (tn)

)
+

∫ tn+1

tn

∑
j∈N(i)

∫
Γφij

Q · ndγdt = 0,

∣∣∣Ωφ
i

∣∣∣ (Qi(t
n+1)−Qi(t

n)
)

+

∫ tn+1

tn

 ∑
j∈N(i)

∫
Γφij

(u(Q · n) + Pn) dγ

 dt+

∫ tn+1

tn

∫
Γwi

Pndγdt = 0.

(4)
The subscript ij refers to the interface between the neighbouring control volumes Ωi and Ωj , with j ∈ N(i)
and N(i) defining the set of neighbouring cells of Ωi.

3. DISCRETIZATION

The Euler equations are solved with a semi-implicit in time collocated finite volume method, using the same
control volumes for both the scalar and the vector unknowns. The algorithm, described below and inte-
grated in the open-source Code Saturne software [4, 5], corresponds to SIMPLEC (Semi-Implicit Method
for Pressure Linked Equations-Consistent) algorithm, commonly used to solve the incompressible Navier-
Stokes equations, and falls within the class of pressure-correction algorithm, so-called projection methods.
A fractional-step method, involving a prediction and a correction of the velocity, is used to solve the mo-
mentum conservation and the mass conservation. Numerical fluxes are evaluated by finite volume space
schemes [6], considering one approximate mean fluid value ϕni per cell Ωi at each discrete time tn. Many
standard first or second order finite volume schemes are available as upwind, centred with or without lim-
iters, SOLU, see [4] for more details. In the sequel, for the sake of simplicity, an upwind scheme is consid-
ered.

3.1. Time scheme

We denote ∆t = tn+1 − tn the time step, between two successive times tn and tn+1 of the time interval
(0, T ). Starting with ρn, un and Pn for all n ∈ N, momentum balance equation (5) is first solved and
provides a predicted velocity ũ, with a linearisation of the convective flux:

ρnũ− ρn−1un

∆t
+ div (ũ⊗Qn) + ∇Pn = 0. (5)
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The continuity equation is taken into account during the second step: the mass flux at the faces is corrected
by solving semi-discrete equation (6) on the pressure temporal increment:

ρn+1 − ρn

∆t
+ div

(
Qn+1

)
= 0,

Qn+1 − ρnũ
∆t

+ ∇
(
Pn+1 − Pn

)
= 0.

(6)

Equation (6) is used to update both the mass flux at the faces and the discrete velocity, un+1.

3.1.1. Prediction step: momentum balance

A predicted velocity field ũ is obtained by solving momentum balance equation (5) with a semi-implicit
scheme; the velocity is implicit, while the pressure is explicit. The time scheme of the integral formulation
of the momentum equation gives for any cell Ωi:∣∣∣Ωφ

i

∣∣∣ (ρni ũi − ρn−1
i uni

)
+ ∆t

∫
Γφi

(ũ− un) (Qn · n)dγ = −∆t

∫
Γφi

un(Qn · n)dγ −∆t

∫
Γφi ∪Γwi

Pnndγ. (7)

In equation (7), we make appear the steady-state momentum balance at the right hand side. This first step
provides, for all Ωi, the unknown ũi, by solving a linear system (using, by default, a block Gauss-Seidel
solver). This predicted velocity does not a priori fulfill the mass balance.

3.1.2. Correction step: mass balance

The second step, equation (6), corrects the momentum at the faces to impose the mass conservation over the
time interval ∆t. An implicit scheme of the integral formulation of the mass flux over this time interval, for
any cell Ωi, reads: ∣∣∣Ωφ

i

∣∣∣ (ρn+1
i − ρni

)
+

∫
Γφi

Qn+1 · ndγ = 0. (8)

The implicit mass flux Qn+1 · n is computed from semi-discrete simplified momentum equation (9) at the
fluid interfaces, with δPi = Pn+1

i − Pni the pressure temporal increment:

Qn+1 = ρnũ−∆t∇δP. (9)

Besides, the density time variation is linearly approximated with the linear acoustic relation:

ρn+1
i − ρni =

δPi
(c2
i )
n
, with (c2

i )
n = c2(ρni , P

n
i ).

Thus the integration of Equation (9) gives semi-discrete equation (10):∣∣∣Ωφ
i

∣∣∣ δPi
(c2
i )
n∆t

−
∫

Γφi

∆t∇δP · ndγ = −
∫

Γφi

ρũ · ndγ. (10)

This second step provides, for all cells Ωi, the unknown δPi by solving a linear system. Thus, the pressure
is updated such that: Pn+1

i = Pni + δPi and ρn+1
i = ρni + δPi

(c2i )
n .

Finally, the velocity is corrected with equation (6), which corresponds to the semi-discrete simplified mo-
mentum equation (9) written at cells:

un+1
i = ũi −

∆t∣∣∣Ωφ
i

∣∣∣ ρni
∫

Γφi ∪Γwi

δPndγ. (11)
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3.2. Space scheme

In the following, integral formulation (4) is discretized in space with a cell-centred finite volume scheme.
Numerical fluxes are evaluated from the discrete variables to compute the different boundary integrals. We
focus on the numerical fluxes on the boundary of a cell intersected by solids.

3.2.1. Prediction step: momentum balance

First the approximation of the convective flux is detailed. The numerical flux is summed on all the fluid
interfaces Γφij of the cell Ωi and approximated here by an upwind scheme.∣∣∣Ωφ

i

∣∣∣div i(ũ⊗Qn) =

∫
Γφi

ũ(Qn · n)dγ =
∑
j∈N(i)

∫
Γφij

ũ(Qn · n)dγ =
∑
j∈N(i)

ũupwij (Qn · n)ij S
φ
ij . (12)

The mass flux is known from the previous time step, and the implicit convected velocity at the fluid interfaces
is ũupwij = λnijũi + (1− λnij)ũj , with λnij = 1 if (Qn · n)ij ≥ 0, λnij = 0 otherwise.

Second, the approximation of the pressure gradient is detailed. The boundary integral is decomposed on the
fluid interfaces and the walls for all cells Ωi:∣∣∣Ωφ

i

∣∣∣∇iP
n =

∫
Γwi

Pnndγ +

∫
Γφi

Pnndγ =

∫
Γwi

Pnwndγ +
∑
j∈N(i)

PnijS
φ
ij . (13)

The fluid interface pressure is computed by a linear interpolation of the neighbouring cell pressures:

Pnij =
hij/jP

n
i + hij/iP

n
j

hij/i + hij/j
= αijP

n
i + (1− αij)Pnj . (14)

with αij =
hij/j

hij/i+hij/j
, and hij/i (respectively hij/j) stands for the distance from the mass centre of the cell

Ωi (respectively Ωj) to the interface Γφij .

For the interior walls of Γwi , a simple alternative for the wall pressure Pnw approximation is to take the cell
value:

Pnw = Pni . (15)

3.2.2. Correction step: mass balance

Semi-discrete equation (10) is discretized in space by a centred scheme. The explicit mass flux approxima-
tion is computed as:∣∣∣Ωφ

i

∣∣∣ div i(ρnũ) =

∫
Γφi

ρnũ · ndγ =
∑
j∈N(i)

∫
Γφij

ρnũ · ndγ =
∑
j∈N(i)

(ρnũ)centij · nijSφij , (16)

where nij is the unit outward normal vector at the fluid interface Γφij from Ωφ
i to Ωφ

j . The normal velocity at
the fluid interfaces is linearly interpolated between the two neighbouring cell values:

(ρnũ)centij · nij =
(
αijρ

n
i ũi + (1− αij) ρnj ũj

)
· nij .
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The pressure gradient increment at the fluid interface is approximated with a “two-point flux approximation”
scheme, which is consistent for admissible meshes, see [6, 7]:

∇δP · nij =
∂δP

∂n

∣∣∣∣
Γφij

=
δPj − δPi
hij/i + hij/j

.

Thus, the scheme yields for the Laplacian operator:

−
∣∣∣Ωφ

i

∣∣∣ div i(∆t∇δP ) = −
∑
j∈N(i)

∫
Γφij

∆t∇δP · ndγ = −
∑
j∈N(i)

∆t

hij/i + hij/j
(δPj − δPi)Sφij . (17)

Once equation (18) is solved:

−
∑
j∈N(i)

∆t

hij/i + hij/j
(δPj − δPi)Sφij = −

∑
j∈N(i)

(ρnũ)centij · nijSφij , (18)

we deduce the updated mass flux at each fluid interface, satisfying the free-divergence constraint at the
discrete level:∑

j∈N(i)

(
Qn+1 · n

)
ij
Sφij =

∑
j∈N(i)

(ρnũ)centij · nijSφij −
∑
j∈N(i)

∆t

hij/i + hij/j
(δPj − δPi)Sφij = 0. (19)

Rhie & Chow filter is usually added, see [4] for more details.

The velocity update (11) is discretized in space as for the pressure force in equation (7), with a centred
scheme: ∫

Γφi ∪Γwi

δPndγ =
∑
j∈N(i)

(
δP centij − δPi

)
nijS

φ
ij , (20)

with: δP centij = (1− αij)δPni + αijδP
n
j . The update of the discrete velocity then writes:

un+1
i = ũi −

∆t∣∣∣Ωφ
i

∣∣∣ ρni
∑
j∈N(i)

(
δP centij − δPi

)
nijS

φ
ij . (21)

As illustrated in §4.3.2 in Figure 5, this scheme does not recover the exact piecewise constant states in 1D
configurations when fluid sections jump.

3.3. A new scheme preserving steady state with fluid section jumps

The new scheme consists in modifying the interpolation at the interfaces in order to evaluate numerical
fluxes, in the case of a fluid section jump, with the local steady balances in the dual pyramid of each cell.

3.3.1. Dual mesh

A dual mesh, associated to the faces of the primal mesh, is defined with the diamond cells. For each
interface ij of the primal cell Ωi, the two pyramids Ω̂i/ij and Ω̂j/ij are built, in red in Figure 3, satisfying
Ωi = ∪j∈N(i)Ω̂i/ij .
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Sφij
nij

Sφij/i
Sφij/j

ui uj•
Pi

•
Pj

Figure 3. Dual cell and pyramid Ω̂i/ij .

Thus, the fluid dual-surface vector Sφij/i is defined as the fluid surface of the face of the diamond cell in

Ωi such that: Sφij/i = −
∫

(∂Ω̂i/ij)
φ\Γφij

ndγ. The mean value over the dual pyramid Ω̂φ
i/ij is also defined as

ϕi/ij =
1∣∣∣Ω̂φ
i/ij

∣∣∣
∫

Ω̂φ
i/ij

ϕ(x)dx.

3.3.2. Local discrete steady mass balance

The steady mass balance is integrated over the fluid part of the pyramid Ω̂φ
i/ij and holds:

∣∣∣Ω̂φ
i/ij

∣∣∣ div i/ij(ρu) =

∫
Ω̂φ
i/ij

div (ρu) dx = 0, (22)

giving at the discrete level ρiuij/i · nijS
φ
ij = ρiui · Sφij/i, with the approximation ρij/i = ρi. This relation

attaches the discrete velocity at cell to the velocity at face in taking into account the ratio of fluid section.
We thus define the velocity vector in the dual pyramid as:

uij/i =

ui ·
Sφij/i

Sφij

nij + (Id− nij ⊗ nij) ui. (23)

3.3.3. Local discrete steady momentum balance

Section jumps imply velocity jumps at interface, and therefore a non-zero convective acceleration term in
the steady momentum balance, over the fluid part of the pyramid Ω̂φ

i/ij . Let us define fi/ij , in the pyramid

Ω̂φ
i/ij , the opposite of the discrete convective acceleration due to section jumps:

fi/ij = −

∣∣∣Ω̂φ
i/ij

∣∣∣
hij/iS

φ
ij

div i/ij (u⊗Q) . (24)

The convective term reads:∣∣∣Ω̂φ
i/ij

∣∣∣div i/ij (u⊗Q) =

∫
Ω̂φ
i/ij

div (u⊗Q) dx =

∫
(∂Ω̂i/ij)

φ\Γφij
u(Q · n)dγ +

∫
Γφij

u(Q · n)dγ

= −ui(Qi · Sφij/i) + uij/i (Q · n)ij S
φ
ij

=
(
uij/i − ui

)
(Q · n)ij S

φ
ij .
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Indeed, assuming that the local steady mass balance is verified over the pyramid Ω̂φ
i/ij , we get:

Qi · Sφij/i = (Q · n)ij S
φ
ij .

Thus, using equation (23), the projection of equation (24) in the nij-direction gives:

fi/ij · nij = −
(Q · n)ij
hij/i

Sφij/i

Sφij
− nij

 · ui. (25)

We note that this convective acceleration per unit volume (25), normal to the face, is only non-zero for a fluid
section jump. Then, this convective acceleration (25) should be balanced by part of the pressure gradient to
satisfy the local discrete steady momentum balance over the cell Ωi, when the fluid section, between cells
Ωi and Ωj , is discontinuous.

3.3.4. Pressure interpolation at the interface

The interpolated pressure at face is modified to take into account the fluid section jump at the interface, and
thus to recover the steady momentum balance. We assume that the pressure field P (x, t), x ∈ Ω and t > 0,
can be decomposed into two parts, as follows:

P (x, t) = P s(x, t) + P d(x, t), (26)

where P s is a smooth part, at least C1(Ω), and P d is not necessary C1(Ω). Its discrete gradient over the
dual pyramid Ω̂φ

i/ij is fi/ij . At the discrete level, the pressure is also assumed to be split into two parts, over
the primal cell Ωi and Ωj and at the face centre:{

Pi = P si + P di ,

Pj = P sj + P dj , and Pij = P sij + P dij .
(27)

Thus each part of the pressure at the primal faces P sij or P dij is approximated separately. The pressure P sij at
each interface is defined by using a linear interpolation between the discrete pressures Pi and Pj :

P sij = αijP
S
out + (1− αij)P sj . (28)

The pressure P d(x∈ Ω̂φ
i/ij) is built as a linear function, locally P1 per pyramid Ω̂φ

i/ij , with P d(xi) = P di
and P d(xfij ) = P dij , where xfij is the mass centre of the face. We identify the convective acceleration (24)

with the pressure gradient per dual pyramid Ω̂φ
i/ij and Ω̂φ

j/ij :

∇i/ijP
d = fi/ij and ∇j/ijP

d = fj/ij .

The pressure P d is then defined by a first order expansion in the dual pyramids Ω̂i/ij and Ω̂j/ij :

P d(x) = P di + fi/ij · (x− xi), ∀x∈ Ω̂φ
i/ij ,

P d(x) = P dj + fj/ij · (x− xj), ∀x∈ Ω̂φ
j/ij .

(29)

Then, using decomposition (26) at the interface Pij = P sij + P dij and equation (28), the pressure at interface
reads:

Pij = P sij + P dij = αijP
s
i + (1− αij)P sj + P dij .
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Yet, using the decomposition (26) in the cell, P si = Pi − P di and P sj = Pj − P dj , we find:

Pij = αijPi + (1− αij)Pj − αijP di − (1− αij)P dj + P dij .

Finally, equations (29) allow to deduce the expression of the pressure at the interface of mass center xfij :

Pij = αijPi + (1− αij)Pj + αijfi/ij · (xfij − xi) + (1− αij)fj/ij · (xfij − xj). (30)

The first part is the legacy linear interpolation (14) for a continuous pressure and the second is a correction
to account for the steady state at an interface with section jump.

3.3.5. Velocity interpolation at the interface

The approximation of the normal velocity at face, projected in the nij-direction (the normal direction to the
face ij), is modified in order to comply with the local dual mass balance (23), as follows:

uij · nij =
λnijui · S

φ
ij/i + (1− λnij)uj · S

φ
ij/j

Sφij
, (31)

where λnij is deduced from the scheme choice (upwind, centred, ...).

Thus the interpolated velocity at the interface can be rewritten:

uij = λnijuij/i + (1− λnij)uij/j . (32)

Equation (30) (respectively (32)) is used to interpolate the pressure and its increment (respectively the ve-
locity and its increment) in (12), (13), (16) and (20).

4. VERIFICATION TEST CASE: PLANE STEADY-SATE CHANNEL FLOW WITH A DISCONTINUOUS
FLUID SECTION

This section is dedicated to the verification of the numerical scheme on steady configurations including
a fluid section jump. The aim is to simulate a plane steady-state inviscid fluid flow in a channel with a
discontinuous fluid section, see Figure 4. The exact velocity and pressure fields are piecewise constant.

4.1. One-dimensional analytic solution

The problem of the steady plane channel flow with a section jump is considered. The inlet fluid section is
denoted by Sin, while the outlet fluid section is Sout. The inlet mass flow rate QinSin 6= 0 is given, and also
the outlet pressure Pout. The analytical solution is computed by integrating the steady Euler equations in
space with respect to the computational fluid domain Ωφ. The density ρ(x), the velocity u(x), the pressure
P (x) are assumed to be uniform in the transverse directions to the x-direction. By definition, we have
Q(x) = ρ(x)u(x). At the steady state, the mass conservation and momentum balance give:

QoutSout −QinSin = 0,
(uoutQout + Pout)Sout − (uinQin + Pin)Sin + Pw (Sin − Sout) = 0.

(33)
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Sin > Sout Sout
Qinex

Pout

Ωφ

Pw

Figure 4. Channel flow with a constriction.

We note Pw = Pin + ∆Pw allowing to write:(
Q2
out

ρout
− Sout
Sin

Q2
out

ρin

)
Sout + (Pout − Pin)Sout + ∆Pw (Sin − Sout) = 0, (34)

with ρout = P−1(Pout, ho) and h being the specific enthalpy. We deduce the following equation, for
Sout 6= 0:

Sout
Sin

Q2
out

ρin
+ Pin −∆Pw

(
Sin
Sout

− 1

)
=
Q2
out

ρout
+ Pout. (35)

The aim is to compute unknown independent variables: for instance, the velocity uin, the pressure Pin
(the density ρin, hin for a compressible flow model). Thus, the pressure drop, Pin − Pout, due to the
discontinuous section of the channel, will be obtained. This result depends on the parameter ∆Pw, data
from the fluid model. For numerical applications, ∆Pw is assumed to be equal to zero, that is Pw = Pin.

4.1.1. Incompressible fluid flow

For the incompressible Euler equations with ρ = ρout = ρin constant, one gets:

uin =
Qin
ρin

=
Sout
Sin

Qout
ρ

=
Sout
Sin

uout. (36)

Pin = Pout +
Q2
out

ρ

(
1− Sout

Sin

)
+ ∆Pw

(
Sin
Sout

− 1

)
. (37)

4.1.2. Barotropic compressible fluid flow

For the barotropic compressible Euler equations with the thermodynamic law P = P(ρ), the equation is
implicit. Setting X = ρin, we look for the subsonic zero X of the function f :

f(X) =
Sout
Sin

Q2
out

X
+ P(X)−∆Pw

(
Sin
Sout

− 1

)
− Q2

out

ρout
− Pout. (38)

From the density ρin, we deduce the pressure Pin = P(ρin) and the velocity uin =
Sout
Sin

Qout
ρin

.

Application with an Ideal Gas (IG) equation of state: the reference entropy is s0 = 69785 with P = s0ρ
γ

(γ = 7
5 ).
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4.1.3. Compressible fluid flow with energy

The compressible Euler equations with the thermodynamic law P = P(ρ, h) is considered. The dis-
cretization of the energy balance equation is detailed in [1]. At the steady state, in addition to the mass
and momentum balance equations, the energy balance equation gives the conservation of the specific to-
tal enthalpy: Hout = Hin, where Hout = h(Pout, ρout) + 1

2u
2
out and Hin = hin + 1

2u
2
in. We deduce

hin = Hout − 1
2
S2
out

S2
in

Q2
out
X2 . The function f writes:

f(X) =
Sout
Sin

Q2
out

X
+ P

(
X,Hout −

1

2

S2
out

S2
in

Q2
out

X2

)
−∆Pw

(
Sin
Sout

− 1

)
− Q2

out

ρout
− Pout. (39)

We look for the subsonic zero of f allowing to compute ρin and to deducePin = P
(
ρin, Hout − 1

2
S2
out

S2
in

Q2
out

ρ2
in

)
and uin =

Sout
Sin

Qout
ρin

.

Application with an ideal gas equation of state, h = γ
γ−1

P
ρ : one haveP(X) = γ−1

γ X
(
Hout − 1

2
S2
out

S2
in

Q2
out
X2

)
.

For γ = 7
5 , we compute ρin = 47.4599 kg/m3 and deduce hin = 1143810.0776143975 J/kg.

variable incomp. IG baro. IG ener.
ρin (kg/m3) 47.5 47.4582 47.4599
Pin (Pa) 15509500 15509501.88649098 15510031.972163301
uin (m/s) 10 10.008807750820722 10.008449238198985
Out state Sin

Sout
= 2 Pout = 155 bar and QinSin = QoutSout = 475 kg/s

ρout = 47.437 kg/m3

4.2. Standard porous approach: THYC component code

Numerical computations are compared to the reference porous code THYC for thermal-hydraulic simulation
at the component scale [3]. Set of equations (40), based on the barotropic compressible Euler equations, is
the porous model involving a steady porosity ε:{

∂t(ερ) + div (ρεu) = 0,
∂t(ερu) + div (u⊗ ερu) + ε∇P = 0.

(40)

The discretization uses a staggered space scheme on a Cartesian grid and an incremental pressure-correction
time algorithm. In this model, the pressure drop, at the channel fluid section jump, is dealt with the non-
conservative term ε∇P . The approximation of the porosity at the discontinuous interface, x = x0, controls
the pressure drop value: ε = 1

2(εin + εout) is used here. The other approximation ε = min(εin, εout) is
actually relevant and allows to recover the analytic solution.

4.3. Numerical results

4.3.1. Case description

The one-dimensional computational domain Ω = (0, 40 m) is meshed with a uniform Cartesian grid with
N cells, N = 10, 80 or 1280. The jump section is located at x = 0 m. The section ratio is Sin

Sout
. The initial
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conditions are: ∀ x ∈ Ω, u(x, t = 0) = 0 m.s−1 and P (x, t = 0) = P0 = Pout. The computations are
performed with a constant time step complying with CFLu = uin∆t

∆x ≤ 1. The boundary conditions are
a Dirichlet condition on the mass flow on ∂Ωin, a Dirichlet condition on the pressure on ∂Ωout, and a slip
condition, implying u = u ex, on ∂Ωwall.

4.3.2. Results

For steady-state incompressible flows, the analytical piecewise constant fields are recovered with the solver
precision (10−12) for the velocity and the pressure (see Figure 5) for different mesh refinements. The discrete
L2 error∗ is 10−12 and the L2 time residuals of the velocity and the pressure are zero (machine precision
is obtained). In the case of Sin

Sout
= 2, for instance, with N = 10, the time convergence is reached after 63

iterations. The discrete pressure errors, in function of the cell centres xi, are given in Table I. For the other
section ratios, the velocity and pressure profiles are given in Figures 6 and 7 and the discrete pressure error
in Table I for the inlet condition uin = 1 m.s−1.

Profiles in Figure 8, for Sin
Sout

= 2, compare the results obtained with different models (incompressible or
compressible flows) and software (Code Saturne or THYC) for QinSin = 475 kg.s−1 and Pout = 155 bar.

Table I. Steady-state discrete pressure errors (Code Saturne incompressible).
Config. xi (m) 2 6 10 14 18 22 26 30 34 38
Sin
Sout

= 2 |Pi − Pexact| (Pa) 1.3e-11 2.8e-11 1.6e-11 1.2e-11 1.4e-11 6.7e-12 2.0e-12 2.3e-12 2.3e-12 8.9e-13
Sin
Sout

= 10 |Pi − Pexact| (Pa) 4.7e-10 3.6e-10 1.9e-10 1.0e-11 9.8e-11 5.3e-11 2.8e-10 3.4e-10 2.9e-10 1.2e-10
Sin
Sout

= 100 |Pi − Pexact| (Pa) 1.7e-9 1.1e-9 1.6e-10 6.6e-10 1.1e-9 3.9e-9 2.1e-9 2.3e-9 1.8e-9 7.0e-10
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Figure 5. Steady approximate solutions for Sin

Sout
= 2 (Code Saturne incompressible).

∗The discrete relative L2 error is defined as: eL2(Ω)(ϕ) =

√∑N
i=1

∣∣∣ϕexacti −ϕcomputedi

∣∣∣2∣∣∣Ωφi ∣∣∣∑N
i=1|ϕexacti |2

∣∣∣Ωφi ∣∣∣ .
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Figure 6. Steady approximate solutions for Sin

Sout
= 10 (Code Saturne incompressible).

0 10 20 30 40

0

50

100

x (m)

u
(m

.s
−

1
)

N = 10

(a) Velocity

0 10 20 30 40

0

0.5

1

·104

x (m)

P
−

P
0
(P

a
)

N = 10

(b) Pressure

Figure 7. Steady approximate solutions for Sin

Sout
= 100 (Code Saturne incompressible).

5. CONCLUSION

A multi-dimensional integral formulation has been proposed to approximate solutions of the Euler equations
in a medium with fluid section jumps on coarse meshes. The discontinuous geometry of the fluid section
does not need to be explicitly meshed by using a wall boundary condition. The integral formulation is
discretized by a semi-implicit collocated finite volume scheme using an incremental pressure projection
method. The proposed space scheme corrects the interpolation at the interface of both the velocity and
the pressure. This technique is based on the discrete local steady balance equations over a dual sub-mesh,
similarly to a staggered scheme. Numerical verification tests show the ability of the scheme to recover
the analytic steady-state flow solution. Indeed, the analytic piecewise constant solution is recovered on
a collocated mesh with the correct pressure drop and acceleration at the discontinuous interface. Even if
only illustrated on a one-dimensional case in this paper, this scheme is applicable to multi-dimensional
computations and its impact will decrease when refining the mesh in all directions. Additional ad hoc head
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Figure 8. Comparison of steady approximate solutions between THYC and Code Saturne for Sin

Sout
=

2.

loss correlations could be added to the present developments.
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1. C. Colas, M. Ferrand, J.-M. Hérard, J.-C. Latché, and E. Le Coupanec, “An Implicit Integral Formulation
to Model Inviscid Fluid Flows in Obstructed Media,” Computers & Fluids, 188, pp. 136–163 (2019).

2. J.-M. Hérard and X. Martin, “An integral approach to compute compressible fluid flows in domains
containing obstacles.,” International Journal on Finite Volumes, 12 (1), pp. 1–39 (2015).

3. S. Aubry, C. Caremoli, J. Olive, and P. Rascle, “The THYC three-dimensional thermal-hydraulic code
for rod bundles: recent developments and validation tests,” Nuclear technology, 112 (3), pp. 331–345
(1995).

4. EDF R&D, Code Saturne 6.0 Theory Manual, available on https://code-saturne.org/ (2019).
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