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Abstract

Stochastic fluid flow models and in particular those driven by Markov
chains have been intensively studied in the last two decades. Not only
they have been proven to be efficient tools to mimic Internet traffic flow
at a macroscopic level but they are useful tools in many areas of applica-
tions such as manufacturing systems or in actuarial sciences to cite but
a few. This chapter proposes to focus on such a model in the context
of performance analysis of a potentially congested system. The latter is
modeled by means of a finite-capacity system whose content is described
by a Markov driven stable fluid flow. We step-by-step describe a method-
ology to compute exactly the loss probability of the system. Our approach
is based on the computation of hitting probabilities jointly with the peak
level reached during a busy period, both in the infinite and finite buffer
case. Accordingly we end up with differential Riccati equations that can
be solved numerically. Moreover we are able to characterize the complete
distribution of both the duration of congestion and of the total informa-
tion lost during such a busy period.

Keywords: fluid queues; Markov chains; busy period; congestion; volume
and duration of losses; loss probability; matrix differential Riccati equations

1 Introduction

In this chapter, we consider advanced queuing models arising in the perfor-
mance evaluation of telecommunication networks, notably the Internet. The
basic assumption underlying these models is that information flows through the
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network as a fluid. The packet nature of traffic is thus ignored: A packet stream
actually appears as a fluid flow. While this assumption may be too rough at
the micro-flow level (for instance a single TCP connection), it becomes very
relevant when considering the superposition of a large number of micro-flows.
From a mathematical point of view, this amounts to replacing discrete time ar-
rival processes (arrivals of packets) with piecewise continuous arrival processes.
Fluid flow models are very useful to study the performance of networks at a
macroscopic level when aggregating a large number of flows. This is all the
more relevant in current backbone networks with very high speed transmission
links (above 100 Gbit/s) capable of aggregating millions of flows. This is why
fluid flow models have gained ever growing attention in the past two decades in
the study of telecommunication networks, see for instance [21], [1], [2], [9], [10],
[11], [15], [16] and [17].

The benefit of fluid flow models is in that it becomes easier to estimate
key performance indicators characterizing the network. In particular, modern
telecommunication networks heavily rely on statistical multiplexing, which al-
lows a better usage of network capacities by exploiting the fluctuating nature
of traffic flows. Typically, TCP or more recently QUIC transport protocols are
based on end-to-end congestion protocols and generate sporadic flows (bursts of
IP packets). Moreover, the large number of applications used today in networks
(notably, video streaming) give rise to variable bit rate traffic. A direct conse-
quence of statistical multiplexing is that a transmission link may be temporally
congested. A key performance metric for characterizing statistical multiplexing
in packet networks is then the volume of information lost during congestion
periods of the network.

The fraction of lost information is a global performance measure reflect-
ing congestion phenomenons occurring on each transmission link of the net-
work when performing statistical multiplexing. In practice, several packet flows
are statistically multiplexed on a same transmission link, which is in general
equipped with a buffer to store packets when the arrival rate is momentarily
greater than the link transmission capacity. This buffer aims at preventing as
much as possible from the loss of information. However, such a buffer is necessar-
ily with finite capacity and the arrival rate can exceed the transmission capacity
for a sufficiently long time period, causing transient overflow of the buffer. Such
phenomenons become more and more frequent in the current Internet since new
versions of TCP or QUIC are ever more aggressive for the network; the slow
start mechanism is sometimes disabled, leading to the transmission of bulks of
data at very high rate.

In the following, we consider a single transmission link equipped with a buffer
of finite or infinite capacity. We model the arrival of packets as a continuous
process χ(t) denoting the input rate at time t and we denote by r(t) the net
input rate at time t (i.e., the difference between the instantaneous arrival and
service rates). The link is congested at time t when r(t) > 0 and the buffer
capacity (denoted by x ≤ ∞) is reached. Denoting by X(t) the volume of
information in the buffer at time t, the fraction of lost information when x <∞

2



is the long run ratio

πloss = lim
t→∞

∫ t

0

r(s)1{X(s)=x}ds∫ t

0

χ(s)ds

,

where 1A denotes the characteristic function of the set A. (Note that we can
have X(t) = x only if r(t) ≥ 0.) When the process (r(t)) is stationary and
ergodic, the above equation can be rewritten as

πloss =
E
(
r1{X=x}

)
E(χ)

, (1.1)

where χ, r and X denote the input rate, the net input rate and the buffer
occupancy in the stationary regime, respectively.

The major difficulty for estimating the quantity πloss is the computation of
the joint probability distribution of the couple (r,X). One classical approach
consists of approximating the quantity πloss by the buffer overshoot probability
P{X > x}, where X is the buffer occupancy when the buffer capacity is infinite
and the system is stable (i.e., E(r) < 0). For large x, large deviations techniques
can be used to approximate this latter probability.

To study the quantity πloss defined by Equation (1.1) we develop a method
of computing this quantity when the input process is modulated by a Markov
process. More specifically, we assume that the input rate is of the form χϕ(t),
where the phase process (ϕ(t)) is a Markov process with a finite state space S
and χ is some real valued function from S → R. We specifically establish the
law of the volume of fluid lost during an overflow period (i.e., a time period
during which the occupancy of the buffer is x) as well as the duration of such a
period.

The model considered is a stochastic fluid model and in particular a Markov
modulated fluid queue. These models have widely been used in several domains
of system performance evaluation such as manufacturing systems, communica-
tion networks, risk processes in insurance and environmental problems, see for
instance [8] and the references therein. The transient and stationary behav-
iors of these models have been extensively studied and numerous performance
metrics with their corresponding numerical algorithms have been proposed and
derived in the literature, see [12] for a long list of references on the subject.

Hitting probabilities for stochastic fluid models have been analyzed in [4,
7, 8]; the relevant algorithms have been developed in [5, 6]. It is worth noting
that the authors of [14] consider similar performance metrics via the use of
Laplace transforms. The key difference with that paper is that we compute
here the distribution of the random variables under consideration instead of
their Laplace transforms. In particular, we compute the joint distributions of
the congestion durations and the lost volumes in successive congestion periods
in a same busy period. We finally prove that the total congestion duration and
lost volume in a typical stationary busy period have phase type distributions.
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This chapter is divided into two main parts : In Section 2 we analyze the
infinite buffer case while the finite case is treated in Section 3. Techniques
developed in the infinite case will be of crucial help in the finite buffer case.
Both cases are studied with the help of the hitting probabilities together with
the maximum peak observed within a busy period. This permits us to obtain
differential Riccati equations that can be solved numerically.

In Section 2, we first introduce the model and define the quantities of interest,
such as, among others, the maximum peak or the number of such peaks observed
within a busy period. These probabilities are obtained step by step and allow us
to finally establish the matrix differential Riccati equations for the probability
that starting at any level u with an increasing buffer content, we observe at
return to level u a given phase and a maximum peak level less than or equal to
x + u. We next extend our approach to the analysis of time periods when the
buffer occupancy is below a given threshold.

These latter results are first extended in Section 3 to the finite buffer case.
These permit us to obtain congestion metrics in terms of the complete distribu-
tion of the total lost information as well as the duration of congestion within a
busy period. These finally allow us to characterize the πloss probability.

2 Modeling a link under congestion and buffer
fluctuations

We consider in this section a classical fluid queue with infinite buffering capacity.
This allows us to describe the buffer fluctuations and introduce the notation and
the variables necessary to study the fluid queue when the buffer is finite.

2.1 Model description

The input and service rates are controlled by a homogeneous Markov chain
ϕ = (ϕ(t), t ≥ 0) taking values in the finite state space S, with infinitesimal
generator T and initial probability distribution α. The process ϕ is also called
the phase process and we denote by X(t) the amount of fluid in the buffer at
time t. It is well-known that the process ((X(t), ϕ(t)), t ≥ 0) forms a Markov
process having a pair of continuous and discrete states.

Let χi be the input rate and ηi be the service rate of the queue when the
Markov chain ϕ is in state i. We denote by ri the net (or effective) input rate
of state i, that is ri = χi − ηi and we define the diagonal matrix of net input
rates R = diag(ri, i ∈ S). We denote by S0, S− and S+ the subsets of states
i ∈ S such that ri = 0, ri < 0 and ri > 0, respectively. In the same way,
we denote by R0, R− and R+ the diagonal matrices R0 = diag(ri, i ∈ S0),
R− = diag(−ri, i ∈ S−) and R+ = diag(ri, i ∈ S+). We clearly have R0 = 0,
the null matrix.

The numbers of states in S0, S+ and S− are denoted by n0, n+ and n−,
respectively. By using this partition of states, we decompose the transition
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matrix T as

T =

 T−− T−0 T−+

T0− T00 T0+

T+− T+0 T++

 .

The Markov chain ϕ is supposed to be irreducible and we denote by p =
(pi, i ∈ S) its stationary distribution. We thus have pT = 0 and p1 = 1, where
1 is the column vector with all entries equal to 1; its dimension is specified by
the context.

We suppose that the stability condition for the fluid queue is satisfied, which
means that

lim
t−→∞

E(rϕ(t)) =
∑
i∈S

ripi < 0.

This condition ensures that all the busy periods are of finite length a.s. and
that the maximum level of the queue during every busy period is finite a.s., in
the infinite buffer case.

Let us introduce the (n− + n+)× (n− + n+) matrix

Q =

(
Q−− Q−+

Q+− Q++

)
,

where Q−− = R−1
−
(
T−− − T−0T

−1
00 T0−

)
, Q−+ = R−1

−
(
T−+ − T−0T

−1
00 T0+

)
,

Q+− = R−1
+

(
T+− − T+0T

−1
00 T0−

)
and Q++ = R−1

+

(
T++ − T+0T

−1
00 T0+

)
.

These matrices allow us to restrict our problem to a Markov chain with
state space S− ∪ S+ with infinitesimal generator Q and effective input rates
equal to −1 or 1. For instance the matrix Q−− governs the transitions from
i ∈ S− to j ∈ S− without any visit to S+. More formally, as shown in [19]
and [4], eQ−−x(i, j) is the probability, starting from state i, to reach state j
with an accumulated reward equal to x and without leaving the set S0 ∪ S−.
Here the accumulated reward corresponds to the amount of fluid generated
from the effective input rates of the matrix R−. A symmetric interpretation
holds for matrix Q++. Concerning the matrix Q−+, the entry Q−+(i, j) is
the rate, rescaled according to matrix R−, at which state j is reached from
state i either directly from state i or after some time spent in subset S0. A
symmetric interpretation holds for matrix Q+−. Such a transformation consists
in considering that the time spent in the zero rate states is immaterial.

Since we are concerned by quantities such as the minimum valley, the max-
imum level and hitting probabilities, the fluid queue with parameters (T,R) is
equivalent to the fluid queue with parameters (Q,C) where C is the (n−+n+)×
(n− + n+) matrix

C =

(
−I 0
0 I

)
,

where I is the identity matrix whose dimension is specified by the context of its
use. This transformation has been also suggested in [3] and [18].

In view of the above observations, we will consider in the following a fluid
queue driven by a Markov chain ϕ = (ϕ(t), t ≥ 0) with state space S = S−∪S+,
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infinitesimal generator Q and effective input rates given by matrix C, i.e. equal
to −1 or 1.

2.2 Peaks and valleys

Let us consider a busy period of a fluid queue. The buffer occupancy X(t) is
piecewise linear as illustrated in Figure 1a with peaks followed by valleys. Let
M be the maximum peak level in the queue during a busy period. We moreover
denote by H the fluid level at the minimum valley and by L the integer-valued
random variable representing the index of the smallest valley, when valleys are
numbered in the order of their occurrence, if they exist. Note that a busy period
can have a single peak as illustrated in Figure 1b.

X(t)

t0
0

1

1

2

2

3

3

4

4

5

5

6

6

7

H

H uθ(H) θ(0)

M

a) A busy period with valleys (u = θ(0)−H)

X(t)

t0
0

1

θ(0)

M

b) A busy period without valley

Figure 1: A classical busy period.

For any x ≥ 0, let θ(x) denote the first instant greater than x at which the
fluid level is equal to x, that is,

θ(x) = inf{t > x | X(t) = x}. (2.1)

When X(0) = 0 and ϕ(0) ∈ S− then, by definition, we have θ(0) = 0.
When X(0) = 0 and ϕ(0) ∈ S+, the instants 0 and θ(0) are respectively

the initial and the final instants of the busy period. These variables are shown
in Figure 1 in the case where the effective input rates are either equal to −1
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or 1. We have numbered the successive peaks and valleys arising during a busy
period.

For every n ≥ 2, ` = 1, . . . , n−1 and x ≥ 0, we consider the n+×n− matrix
F (n, `, y) whose entries are defined, for i ∈ S+ and j ∈ S−, by

Fi,j(n, `, y) = P{ϕ(θ(0)) = j,N = n,L = `,H ≤ y | ϕ(0) = i,X(0) = 0}, (2.2)

where N is the number of peaks arising during a busy period. In the case N = 1,
as shown in Figure 1b, there is only one peak during the busy period and so,
since there is no valley, we do not define the matrix for n = 1. In the path
described in Figure 1a, we have N = 7 and L = 3. Fi,j(`, n, y) is the probability
that a busy period, starting in phase i, contains n peaks, has its minimum valley
index equal to `, its minimum valley less than or equal to x and ends in phase j.

We also consider the n+ × n− matrix Ψ(x, y) whose entries are defined, for
i ∈ S+, j ∈ S−, x ≥ 0 and 0 ≤ y ≤ x, by

Ψi,j(x, y) = P{ϕ(θ(0)) = j,M ≤ x,H ≤ y | ϕ(0) = i,X(0) = 0},

and the n−×n+ matrix Θ(x) whose entries are defined, for i ∈ S−, j ∈ S+ and
x > 0, by

Θi,j(x) = P{ϕ(γ(x)) = j | ϕ(0) = i,X(0) = x},

where, for any x ≥ 0, γ(x) denotes the first positive instant at which the fluid
level is equal to x, i.e.

γ(x) = inf{t > 0 | X(t) = x}. (2.3)

The quantity Ψi,j(x, y) is the probability that a busy period, starting in phase i,
has its maximum peak less than or equal to x, its minimum valley less than or
equal to y and ends in phase j. Θi,j(x) is the probability that a busy period,
starting in phase i, ends in phase j.

Note that γ(x) is the first time at which the fluid level is equal to x. The
function θ(x) is used to detect the time at which the minimum valley H when
X0 = 0 (see Figure 1a) or the maximum peak M when X0 > 0 (see Figure 2a)
occur.

By definition of H and M , when X0 = 0, θ(H) is the second instant at
which the fluid level is equal to H (see Figure 1a) and, when X0 > 0, θ(M) is
the second instant at which the fluid level is equal to M (see Figure 2a).

2.3 Minimum valley height in a busy period

For i ∈ S+, j ∈ S−, n ≥ 2, ` = 1, . . . , n− 1 and y ≥ 0, we denote by fi,j(n, `, y)
the joint density associated with the distribution Fi,j(n, `, y) given by Equa-
tion (2.2) and defined by fi,j(n, `, y) = dFi,j(n, `, y)/dy. We also introduce, for
n ≥ 1, the n+ × n− matrix W (n) whose entries are defined, for i ∈ S+ and
j ∈ S−, by

Wi,j(n) = P{ϕ(θ(0)) = j,N = n | ϕ(0) = i,X(0) = 0}.
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X(t)

t0
0

M

x

γ(x)ux−M θ(M)

a) with at least 2 valleys (u = γ(x)− x+M)

X(t)

t0
0

x

x

b) without valley

X(t)

t0
0

x

c) with only one valley

Figure 2: A period under level x.

The quantity Wi,j(n) is the probability that a busy period, starting in phase i,
contains n peaks and ends in phase j. Summing and integrating the density
fi,j(`, n, y) over the location and the value of the minimum valley, we obtain,
for n ≥ 2,

Wi,j(n) =

∫ ∞
0

n−1∑
`=1

fi,j(n, `, y)dy. (2.4)

The n+×n− matrix containing the terms fi,j(n, `, y) is denoted by f(n, `, y)
and is given together with matrix W (1) by the following theorem.

Theorem 1. We have

W (1) =

∫ ∞
0

eQ++yQ+−e
Q−−ydy, (2.5)

and for n ≥ 2

W (n) =

∫ ∞
0

eQ++y
n−1∑
`=1

W (`)Q−+W (n− `)eQ−−ydy. (2.6)

Proof. The proof follows the same arguments as those developed in [4]. To
obtain the expression for W (1) we consider a sample path starting from fluid
level 0 in phase i ∈ S+ and returning to level 0 in phase j ∈ S− with only one
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peak of height y. Such a sample path (see Figure 1b) can be decomposed into
three stages as follows :

1. The phase process ϕ starts in phase i ∈ S+ and reaches some state k ∈ S+

at time y without leaving subset S+. This means that the fluid level
increases from level 0 to level y. As seen in the previous section, the
corresponding probability is equal to eQ++y(i, k).

2. Since a peak (of height equal to y) occurs, this means that a transition
of the phase process ϕ occurs from state k to some state h ∈ S−. The
corresponding transition rate is equal to Q+−(k, h).

3. Starting from state h ∈ S−, the process ϕ reaches state j ∈ S− at time
y without leaving subset S−. This means that the fluid level decreases
from level y to level 0. As seen in the previous section, the corresponding
probability is equal to eQ−−y(h, j).

We thus obtain

Wi,j(1) =

∫ ∞
0

∑
k∈S+

∑
h∈S−

eQ++y(i, k)Q+−(k, h)eQ−−y(h, j)dy,

that is

W (1) =

∫ ∞
0

eQ++yQ+−e
Q−−ydy.

Let now n ≥ 2 and 1 ≤ ` ≤ n− 1. A typical example of such a sample path
is shown in Figure 1a. It is a path starting from fluid level 0 in phase i ∈ S+

and returning to level 0 in phase j ∈ S− with N = n peaks, with the minimum
valley of height H = y at position L = `. Such a sample path can be broken up
into five stages as follows :

1. As we can observe, H denotes the minimum level as well as the amount
of time needed to reach it. The phase process ϕ starts in phase i ∈ S+

and reaches some state k ∈ S+ at time H = y without leaving subset S+.
This means that the fluid level increases from level 0 to level y. As seen in
the previous section, the corresponding probability is equal to eQ++y(i, k).

2. Starting from phase k ∈ S+ and level y, the fluid process returns for the
first time to level y in some phase h ∈ S−. By definition of H and L,
the number of peaks between instants H and θ(H) is equal to `. By the
spatial homogeneity of the process, the corresponding probability is equal
to Wk,h(`).

3. Since a valley (of height equal to y at time θ(H)) occurs, this means that
a transition of the phase process ϕ occurs from state h ∈ S− to some state
m ∈ S+. The corresponding transition rate is equal to Q−+(h,m).
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4. Once again, starting from phase m ∈ S+ and level y, the fluid process
returns for the first time to level y in some phase v ∈ S−. By definition of
H and L, the number of peaks between instants θ(H) and θ(0)−H is equal
to n − `. By the spatial homogeneity of the process, the corresponding
probability is equal to Wm,v(n− `).

5. The phase process ϕ starts in phase v ∈ S− and level y. It reaches level
0 in state j without leaving subset S−, at time ϕ(θ(0)). This means that
the fluid level decreases from level y to level 0. As seen in the previous
section, the corresponding probability is equal to eQ−−y(v, j).

We thus obtain

fi,j(n, `, y) =∑
k∈S+

∑
h∈S−

∑
m∈S+

∑
v∈S−

eQ++y(i, k)Wk,h(`)Q−+(h,m)Wm,v(n− `)eQ−−y(v, j),

that is f(n, `, y) = eQ++yW (`)Q−+W (n − `)eQ−−y. Equation (2.6) follows by
using Equation (2.4).

Let Ψ denote n+ × n− the stochastic matrix whose entries are defined, for
i ∈ S+ and j ∈ S−, by Ψi,j = P{ϕ(θ(0)) = j | ϕ(0) = i,X(0) = 0}. Ψi,j is the
probability that the phase at the instant of the first return to the initial level is
equal to j. By spatial homogeneity, this probability is independent of the value
of the initial level. We have

Ψ =

∞∑
n=1

W (n).

In the next theorem, we give a relation satisfied by matrix Ψ.

Theorem 2.

Ψ =

∫ ∞
0

eQ++yQ+−e
Q−−ydy +

∫ ∞
0

eQ++yΨQ−+ΨeQ−−ydy.

Proof. From Equation (2.6), we have for n ≥ 2

W (n) =

∫ ∞
0

eQ++y
n−1∑
`=1

W (`)Q−+W (n− `)eQ−−ydy.
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By summation over n, we get, using the monotone convergence theorem,

Ψ = W (1) +

∞∑
n=2

∫ ∞
0

eQ++y
n−1∑
`=1

W (`)Q−+W (n− `)eQ−−ydy

= W (1) +

∫ ∞
0

eQ++y
∞∑
n=2

n−1∑
`=1

W (`)Q−+W (n− `)eQ−−ydy

= W (1) +

∫ ∞
0

eQ++y
∞∑
`=1

∞∑
n=`+1

W (`)Q−+W (n− `)eQ−−ydy

= W (1) +

∫ ∞
0

eQ++y
∞∑
`=1

W (`)Q−+

∞∑
n=`+1

W (n− `)eQ−−ydy

= W (1) +

∫ ∞
0

eQ++yΨQ−+ΨeQ−−ydy,

which is the desired result.

It is easily checked that matrix Ψ is solution to the following matrix algebraic
Riccati equation Q++Ψ+ΨQ−−+ΨQ−+Ψ+Q+− = 0. This equation has been
considered in several papers and several algorithms have been developed to
compute Ψ which is the minimal solution of this equation, see for instance [4],
[5] and the references therein. An explicit expression for Ψ has been obtained
in [20] by means of an auxiliary matrix.

Let F (x) denote the n+ × n− matrix whose entries are defined, for i ∈ S+

and j ∈ S−, by Fi,j(x) = P{ϕ(θ(0)) = j,H ≤ x | ϕ(0) = i}. Fi,j(x) is the
probability that the phase at the instant of the first return to the initial level
is equal to j with a minimum valley of height less than or equal to x. This
probability is defined only when the minimum valley exists. The minimum
valley exists if and only if the number of peaks N is greater than or equal to 2.
Moreover, when it exists, we have H > 0. Thus we define the event H = 0
to represent the non-existence of the minimum valley, i.e. the case where the
number of peaks is equal to 1 (see Figure 1b). We then have the following result.

Corollary 3. For every x ≥ 0,

F (x) =

∫ ∞
0

eQ++yQ+−e
Q−−ydy +

∫ x

0

eQ++yΨQ−+ΨeQ−−ydy.

Proof. By definition, we have, for i ∈ S+ and j ∈ S−,

Fi,j(x)

= P{ϕ(θ(0)) = j,H = 0|ϕ(0) = i}+P{ϕ(θ(0)) = j, 0 < H ≤ x|ϕ(0) = i}
= P{ϕ(θ(0)) = j,N = 1|ϕ(0) = i}+P{ϕ(θ(0)) = j,N ≥ 2, H ≤ x|ϕ(0) = i}

= Wi,j(1) +

∫ x

0

∞∑
n=2

n−1∑
`=1

fi,j(n, `, y)dy.

Following the same lines used in the proof of Theorem 2, we get the result.
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2.4 Maximum peak level in a busy period

We consider in this section the maximum fluid level M reached during a busy
period. A typical path is shown in Figure 1. For i ∈ S+, j ∈ S−, x ≥ 0 and
0 ≤ y ≤ x, we denote by ψi,j(x, y) the marginal density associated with the
distribution

Ψi,j(x, y) = P{ϕ(θ(0)) = j,M < x,H ≤ y | ϕ(0) = i,X(0) = 0},

and defined by ψi,j(x, y) = ∂Ψi,j(x, y)/∂y. For x ≥ 0, we denote by Ψ(x) the
n+ × n− matrix containing the Ψi,j(x) defined, for i ∈ S+ and j ∈ S−, by

Ψi,j(x) = P{ϕ(θ(0)) = j,M ≤ x | ϕ(0) = i,X(0) = 0}. (2.7)

Ψi,j(x) is the probability that, starting from phase i ∈ S+ and any level u ≥ 0,
the phase at the instant of the first return to the initial level u is equal to j and
the maximum level is less than or equal to x + u. By the spatial homogeneity,
this probability is independent of u, that is why we define Ψ(x) only for u = 0.
The n+ × n− matrix containing the terms ψi,j(x, y) is denoted by ψ(x, y) and
is given by the following theorem.

Theorem 4. For x ≥ 0 and 0 ≤ z ≤ x, we have

Ψ(x, z) =

∫ x

0

eQ++yQ+−e
Q−−ydy +

∫ z

0

eQ++yΨ(x− y)Q−+Ψ(x− y)eQ−−ydy.

(2.8)

Ψ(x) =

∫ x

0

eQ++yQ+−e
Q−−ydy +

∫ x

0

eQ++yΨ(x− y)Q−+Ψ(x− y)eQ−−ydy.

(2.9)

Proof. We proceed as for the proof of Theorem 1. The term Ψ(x, 0) corresponds
to the case where there is only one peak (see Figure 1b), and thus no valley,
which means, as defined in the previous section, that H = 0. To obtain the
expression for Ψ(x, 0) we consider a sample path starting from fluid level 0 in
phase i ∈ S+ and returning to level 0 in phase j ∈ S− with only one peak of
height y (with y ≤ x). Such a sample path can be broken up into three stages
as follows :

1. The phase process ϕ starts in phase i ∈ S+ and reaches some state k ∈ S+

at time y without leaving subset S+. This means that the fluid level
increases from level 0 to level y. As seen in the previous section, the
corresponding probability is equal to eQ++y(i, k).

2. Since a peak (of height equal to y) occurs, this means that a transition
of the phase process ϕ occurs from state k to some state h ∈ S−. The
corresponding transition rate is equal to Q+−(k, h).

3. Starting from state h ∈ S−, the process ϕ reaches state j ∈ S− at time
y without leaving subset S−. This means that the fluid level decreases
from level y to level 0. As seen in the previous section, the corresponding
probability is equal to eQ−−y(h, j).
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We thus obtain

Ψi,j(x, 0) =

∫ x

0

∑
k∈S+

∑
h∈S−

eQ++y(i, k)Q+−(k, h)eQ−−y(h, j)dy,

that is

Ψ(x, 0) =

∫ x

0

eQ++yQ+−e
Q−−ydy.

We consider now the case where a minimum valley exists, i.e. H > 0. A typical
example of such a sample path is shown in Figure 1a. It is a path starting from
fluid level 0 in phase i ∈ S+ and returning to level 0 in phase j ∈ S− with at
least two peaks (i.e. H > 0), with the minimum valley and the maximum level
less than or equal to x. Such a sample path can be broken up into five stages
as follows :

1. The phase process ϕ starts in phase i ∈ S+ and reaches some state k ∈ S+

at time H = y (with y ≤ x) without leaving subset S+. This means that
the fluid level increases from level 0 to level y. As seen in the previous
section, the corresponding probability is equal to eQ++y(i, k).

2. Starting from phase k ∈ S+ and level y, the fluid process returns for the
first time to level y in some phase h ∈ S−, without exceeding level x. By
the spatial homogeneity of the process, the corresponding probability is
equal to Ψ(x− y).

3. Since a valley (of height equal to y at time θ(H)) occurs, this means that
a transition of the phase process ϕ occurs from state h ∈ S− to some state
m ∈ S+. The corresponding transition rate is equal to Q−+(h,m).

4. Once again, starting from phase m ∈ S+ and level y, the fluid process
returns for the first time to level y in some phase v ∈ S− without exceeding
level x. By the spatial homogeneity of the process, the corresponding
probability is equal to Ψ(x− y).

5. The phase process ϕ starts in phase v ∈ S− and level y. It reaches level
0 in state j without leaving subset S−, at time ϕ(θ(0)). This means that
the fluid level decreases from level y to level 0. As seen in the previous
section, the corresponding probability is equal to eQ−−y(v, j).

We thus obtain

ψi,j(x, y) =∑
k∈S+

∑
h∈S−

∑
m∈S+

∑
v∈S−

eQ++y(i, k)Ψk,h(x−y)Q−+(h,m)Ψm,v(x−y)eQ−−y(v, j),
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which can be rewritten as ψ(x, y) = eQ++yΨ(x− y)Q−+Ψ(x− y)eQ−−y. Equa-
tion (2.8) follows by writing

Ψ(x, z) = Ψ(x, 0) +

∫ z

0

ψ(x, y)dy.

Since Ψ(x) = Ψ(x, x), Equation (2.9) follows.

We have limx−→∞Ψ(x, z) = F (z) and limx−→∞Ψ(x) = Ψ. We denote by
Ψ′(x) the derivative of Ψ(x) with respect to x. We then have the following
result.

Theorem 5. The function Ψ(x) satisfies the following matrix differential Ric-
cati equation

Ψ′(x) = Q++Ψ(x) + Ψ(x)Q−− + Ψ(x)Q−+Ψ(x) +Q+−, (2.10)

with Ψ(0) = 0 as initial condition.

Proof. By definition of function Ψ(x) in Relation (2.7), the initial condition is
trivially given by Ψ(0) = 0, since the maximum level M during a busy period
is positive. Using a variable change, Relation (2.9) can be written as

Ψ(x) =

∫ x

0

eQ++yQ+−e
Q−−ydy +

∫ x

0

eQ++(x−y)Ψ(y)Q−+Ψ(y)eQ−−(x−y)dy.

In order to avoid too long expressions in the derivation of Ψ′(x), we introduce
the following notation

α(x) =

∫ x

0

eQ++yQ+−e
Q−−ydy and β(x) =

∫ x

0

e−Q++yΨ(y)Q−+Ψ(y)e−Q−−ydy.

It is easy to check that eQ++xQ+−e
Q−−x −Q++α(x)− α(x)Q−− = Q+−. Dif-

ferentiating (2.9), we get

Ψ′(x) = eQ++xQ+−e
Q−−x +Q++e

Q++xβ(x)eQ−−x

+eQ++x
[
β′(x)eQ−−x + β(x)eQ−−xQ−−

]
= eQ++xQ+−e

Q−−x +Q++ [Ψ(x)− α(x)] + eQ++xβ′(x)eQ−−x

+ [Ψ(x)− α(x)]Q−−

= Q++Ψ(x) + Ψ(x)Q−− + eQ++xβ′(x)eQ−−x +Q+−

= Q++Ψ(x) + Ψ(x)Q−− + Ψ(x)Q−+Ψ(x) +Q+−,

which is the desired result.

With the initial condition Ψ(0) = 0, the Cauchy-Lipschitz Theorem ensures
that the matrix differential Riccati equation (2.10) has a unique solution. This
solution is thus given, for x ≥ 0, by (2.7). By definition of diagonal matrix C,
we have

CQ =

(
−Q−− −Q−+

Q+− Q++

)
.
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According to the decomposition S = S−∪S+, we define the four matrices A(x),
B(x), C(x) and D(x) occurring in the matrix eCQx by writing

eCQx =

(
A(x) B(x)
C(x) D(x)

)
. (2.11)

The following theorem gives an expression of the solution Ψ(x) to the matrix
differential Riccati equation (2.10).

Theorem 6. For every x ≥ 0, we have Ψ(x) = C(x)A(x)−1.

Proof. Let us consider the following linear differential equation

Y ′(x) = (−Q−− −Q−+Ψ(x))Y (x) with Y (0) = I. (2.12)

The function Ψ being continuous, this linear system has a unique solution which
is invertible. We now define the n+ × n− matrix Z(x) by Z(x) = Ψ(x)Y (x).
Using this definition, equation (2.12) becomes

Y ′(x) = −Q−−Y (x)−Q−+Z(x). (2.13)

Differentiating Z(x) with respect to x, we obtain from (2.10) and (2.13)

Z ′(x) = Ψ′(x)Y (x) + Ψ(x)Y ′(x)

= (Q++Ψ(x) + Ψ(x)Q−− + Ψ(x)Q−+Ψ(x) +Q+−)Y (x)

+Ψ(x)(−Q−−Y (x)−Q−+Z(x))

= Q++Z(x) + Ψ(x)Q−+Ψ(x)Y (x) +Q+−Y (x)−Ψ(x)Q−+Z(x)

= Q++Z(x) +Q+−Y (x). (2.14)

Putting together equations (2.13) and (2.14) we obtain(
Y ′(x)
Z ′(x)

)
=

(
−Q−− −Q−+

Q+− Q++

)(
Y (x)
Z(x)

)
= CQ

(
Y (x)
Z(x)

)
,

with Y (0) = I and Z(0) = 0. The solution to that equation is given by(
Y (x)
Z(x)

)
= eCQx

(
I
0

)
=

(
A(x)
C(x)

)
,

which means that Y (x) = A(x), Z(x) = C(x) and thus, since A(x) is invertible,
we have Ψ(x) = C(x)A(x)−1.

2.5 Maximum peak under a fixed fluid level

In this section, we still consider an infinite fluid queue and we are interested in
time periods when the buffer occupancy is below a given threshold x.

We consider the first return to the initial level x when x > 0 and the initial
phase is in S−. More formally, we introduce the n−× n+ matrix G(x, y) whose
entries are defined, for i ∈ S−, j ∈ S+, x > 0 and 0 ≤ y ≤ x, by

Gi,j(x, y) = P{ϕ(γ(x)) = j,M ≤ y | ϕ(0) = i,X(0) = x},
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where M denotes the maximum peak between instants 0 and γ(x). When there
are no peaks, we take as convention M = 0. The n− × n+ matrix Θ(x) whose
entries are defined, for i ∈ S−, j ∈ S+ and x > 0, by

Θi,j(x) = P{ϕ(γ(x)) = j | ϕ(0) = i,X(0) = x},

satisfies Θ(x) = G(x, x). By spatial homogeneity, we have, for i ∈ S+ and
j ∈ S−, P{ϕ(γ(x)) = j | ϕ(0) = i,X(0) = x} = Ψi,j . For i ∈ S− and j ∈ S+,
the problem is more complicated because of the influence of the boundary level
zero which makes the hitting probability Θi,j(x) dependent of x. A typical
example of such a sample path is shown in Figure 2.

We denote by gi,j(x, y) the density associated with the distributionGi,j(x, y),
i.e. gi,j(x, y) = ∂Gi,j(x, y)/∂y.

Theorem 7. For x > 0, we have

G(x, 0) =

∫ x

0

eQ−−yQ−+e
Q++ydy + (−Q−−)−1eQ−−xQ−+e

Q++x (2.15)

and, for 0 ≤ y ≤ x,

g(x, y) = eQ−−yΘ(x− y)Q+−Θ(x− y)eQ++y. (2.16)

Proof. We proceed as for the proof of Theorems 1 and 4. The term G(x, 0)
corresponds to the case where there are no peaks in the interval [0, γ(x)], i.e.
where M = 0. This situation corresponds to the paths shown in Figures 2b
and 2c. Figure 2b corresponds to the case where the height of the unique valley,
denoted by H, is zero and Figure 2c corresponds to the case where H is positive.
We thus have

G(x, 0) = P{ϕ(γ(x)) = j,M = 0, H > 0 | ϕ(0) = i,X(0) = x}
+P{ϕ(γ(x)) = j,M = 0, H = 0 | ϕ(0) = i,X(0) = x}.

The first term is the symmetric term of Ψ(x, 0), so we easily get

P{ϕ(γ(x)) = j,M = 0, H > 0 | ϕ(0) = i,X(0) = x} =

∫ x

0

eQ−−yQ−+e
Q++ydy.

For the second term, which corresponds to the sample path of Figure 2b, the
phase process ϕ starts in phase i ∈ S− with a level x. It stays in subset S− for
a duration y ≥ x, reaching some state k ∈ S− and thus with a level 0. Next a
transition occurs from state k ∈ S− to state h ∈ S+, with rate Q+−(k, h), and
the process ϕ reaches state j ∈ S+ at time x without leaving subset S+. We
thus have

P{ϕ(γ(x)) = j,M = 0, H = 0 | ϕ(0) = i,X(0) = x}

=

∫ ∞
x

eQ−−ydyQ−+e
Q++x = (−Q−−)−1eQ−−xQ−+e

Q++x.

We consider now the case where there is at least one peak, i.e. M > 0. A
typical example of such a sample path is shown in Figure 2a. Such a sample
path can be broken up into five stages as follows :
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1. The phase process ϕ starts in phase i ∈ S− and reaches some state k ∈ S−
at time x−M = y without leaving subset S−. This means that the fluid
level decreases from level x to level x− y. As seen in the previous section,
the corresponding probability is equal to eQ−−y(i, k).

2. Starting from phase k ∈ S− and level x− y, the fluid process returns for
the first time to level x−y in some phase h ∈ S+, without exceeding level
x− y. The corresponding probability is equal to Θ(x− y).

3. Since a peak (of height equal to x − y at time θ(M)) occurs, this means
that a transition of the phase process ϕ occurs from state h ∈ S+ to some
state m ∈ S−. The corresponding transition rate is equal to Q−+(h,m).

4. Once again, starting from phase m ∈ S− and level x− y, the fluid process
returns for the first time to level x − y in some phase v ∈ S+ without
exceeding level x − y. By the spatial homogeneity of the process, the
corresponding probability is equal to Θ(x− y).

5. The phase process ϕ starts in phase v ∈ S+ and level x − y. It reaches
level x in state j without leaving subset S+, at time ϕ(γ(x)). This means
that the fluid level increases from level x − y to level x. As seen in the
previous section, the corresponding probability is equal to eQ++y(v, j).

We thus obtain
gi,j(x, y) =∑

k∈S−

∑
h∈S+

∑
m∈S−

∑
v∈S+

eQ++y(i, k)Θk,h(x− y)Q+−(h,m)Θm,v(x− y)eQ++y(v, j),

that is g(x, y) = eQ−−yΘ(x− y)Q+−Θ(x− y)eQ++y.

The matrices Θ(x) and G(x, z) have been defined only for x > 0. Clearly, if
we set x = 0, and thus z = 0, in these definitions, we obtain the zero matrix.
In fact, we write Θ(0) for Θ(0+) and G(0, 0) for G(0+, 0) which means that
Θ(0) = limx−→0 Θ(x) = limx−→0G(x, 0) = G(0, 0). This simply means that
x = 0 is not a continuity point of these two functions.

The matrices G(x, z) and Θ(x) are given by the following corollary.

Corollary 8. For x ≥ 0 and 0 ≤ z ≤ x, we have

G(x, z) =

∫ x

0

eQ−−yQ−+e
Q++ydy + (−Q−−)−1eQ−−xQ−+e

Q++x

+

∫ z

0

eQ−−yΘ(x− y)Q+−Θ(x− y)eQ++ydy. (2.17)

Θ(x) =

∫ x

0

eQ−−yQ−+e
Q++ydy + (−Q−−)−1eQ−−xQ−+e

Q++x

+

∫ x

0

eQ−−yΘ(x− y)Q+−Θ(x− y)eQ++ydy. (2.18)
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Proof. It suffices to write

G(x, z) = G(x, 0) +

∫ z

0

g(x, y)dy,

and Θ(x) = G(x, x).

The following result shows that Θ(x) satisfies a matrix differential Riccati
equation.

Theorem 9. Θ(0) = (−Q−−)−1Q−+ and, for x > 0, we have

Θ′(x) = Q−−Θ(x) + Θ(x)Q++ + Θ(x)Q+−Θ(x) +Q−+. (2.19)

Proof. The proof is based on Equation (2.18) and is thus quite similar to the
proof of Theorem 5.

Again, the Cauchy-Lipschitz Theorem ensures that the matrix differential
Riccati equation (2.19) with the initial condition Θ(0) = (−Q−−)−1Q−+ has a
unique solution. The following theorem gives an expression of the solution Θ(x)
to that equation. Note that Θ(0) is a stochastic matrix.

Theorem 10. For every x ≥ 0, we have Θ(x) = Z(x)Y (x)−1, where the ma-
trices Y (x) and Z(x) are given by(

Z(x)
Y (x)

)
= e−CQx

(
Θ(0)
I

)
. (2.20)

Proof. Let us consider the following linear differential equation

Y ′(x) = (−Q++ −Q+−Θ(x))Y (x) and Y (0) = I. (2.21)

The function Θ(x) being continuous, this linear system has a unique solu-
tion which is invertible. We now define the n− × n+ matrix Z(x) by Z(x) =
Θ(x)Y (x). Using this definition, equation (2.21) becomes

Y ′(x) = −Q++Y (x)−Q+−Z(x). (2.22)

Differentiating Z(x) with respect to x, we obtain from (2.19) and (2.22)

Z ′(x) = Θ′(x)Y (x) + Θ(x)Y ′(x)

= (Q−−Θ(x) + Θ(x)Q++ + Θ(x)Q+−Θ(x) +Q−+)Y (x)

+Θ(x)(−Q++Y (x)−Q+−Z(x))

= Q−−Z(x) + Θ(x)Q+−Θ(x)Y (x) +Q−+Y (x)−Θ(x)Q+−Z(x)

= Q−−Z(x) +Q−+Y (x). (2.23)

Putting together equations (2.22) and (2.23) we obtain(
Z ′(x)
Y ′(x)

)
=

(
Q−− Q−+

−Q+− −Q++

)(
Z(x)
Y (x)

)
= −CQ

(
Z(x)
Y (x)

)
,
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with Y (0) = I and Z(0) = Θ(0) = (−Q−−)−1Q−+. The solution to that
equation is given by (

Z(x)
Y (x)

)
= e−CQx

(
Θ(0)
I

)
,

which completes the proof.

Note also that Relation (2.20) can also be written as(
Z(x)
Y (x)

)
=

(
A(x) B(x)
C(x) D(x)

)−1(
Θ(0)
I

)
.

3 Fluid queue with finite buffer

We suppose now that the fluid queue is of finite capacity and we denote that
capacity by x.

3.1 Congestion metrics

Assume that the buffer is initially empty (X(0) = 0) and that ϕ(0) ∈ S+, so
that a busy period starts at time 0.

We characterize congestion by the distribution of the two random variables :

• the total time τ(x) during which the buffer is full in a busy period,

• the total quantity of fluid V (x) lost in a busy period.

The random variables τ(x) and V (x) are formally defined by

τ(x) =

∫ θ(0)

0

1{X(t)=x}dt and V (x) =

∫ θ(0)

0

rϕ(t)1{X(t)=x}dt.

Note that X(t) = x implies that ϕ(t) ∈ S+ ∪ S0 and when ϕ(t) ∈ S0, rϕ(t) = 0.
We consider the successive periods when the buffer capacity x is reached by

process (X(t)). We denote by K the number of such periods occurring during
a busy period of the buffer. Clearly, K is an integer valued random variable
and if K = 0, which means that process never reaches level x during the busy
period, then we have V (x) = 0. We thus consider the case when K ≥ 1.

For every k ≥ 1, we denote by γk the k-th instant at which X(γk) = x and
X(γ−k ) < x. We also denote by τk(x) the duration of the k-th period during
which the fluid level is equal to x. More precisely, if we set γ0 = 0 and τ0(x) = 0,
we have for every k ≥ 1

γk = inf{t ∈ (γk−1 + τk−1(x), θ(0)) | X(t) = x},
τk(x) = inf{t > γk | X(t) < x} − γk.

We have γ1 = γ(x). In addition, γk also depends on x but we do not mention
this dependence to simplify the notation. When K ≥ 1, for k ∈ {1, . . . ,K}, we
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denote by Vk(x) the volume of fluid lost during period τk(x). This volume is
easily expressed by

Vk(x) =

∫ τk(x)+γk

γk

rϕ(t)dt

and we have

τ(x) =

K∑
k=1

τk(x) and V (x) =

K∑
k=1

Vk(x).

The above variables are shown in Figure 3 in the case when K = 3. To
simplify the figure, we have chosen the nonzero effective input rates equal to −1
or 1. We have represented in this figure, above the axis X(t) = x, the successive
volumes of fluid lost during the busy period.

X(t)

t0
0

τ1(x)

V1(x)

γ1

τ2(x)

V2(x)

γ2

τ3(x)

V3(x)

γ3

x

θ(0)

Figure 3: A busy period with losses

Note that, for every k ≥ 1 and for every j ∈ S+, we have

ϕ(γk) = j =⇒ ϕ(γk) ∈ S+ ⇐⇒ K ≥ k. (3.1)

3.2 Minimum valley height in a busy period

We are first interested by the evaluation of the probability, starting from a phase
i ∈ S+ and a level z, to reach level z in phase j while staying above level z.
This probability is denoted by Γi,j(x, z) which is defined below.

We first introduce the n+ × n− matrix K(x, y, z) whose entries are defined,
for i ∈ S+, j ∈ S−, x > 0 and 0 ≤ z ≤ y ≤ x, by

Ki,j(x, y, z) = P{ϕ(γ(z)) = j,H ≤ y | ϕ(0) = i,X(0) = z},

where H denotes the minimum valley between instants 0 and γ(z). When there
are no valley, we take as convention H = 0. This corresponds either to the
situation of Figure 4b, i.e. no peak, or to the situation of Figure 4c, i.e. only
one peak.
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X(t)

t0
z

H

H − z

x

γ(z)u

a) with at least 2 peaks (u = γ(z)−H + z)

X(t)

t0
z

x

x− z

b) without peak

X(t)

t0
z

x

c) with only one peak

Figure 4: A period of level greater than z

By the spatial homogeneity, we have Ki,j(x, y, z) = Ki,j(x−z, y−z, 0). The
n+ × n− matrix Γ(x, z) whose entries are defined, for i ∈ S+, j ∈ S−, x > 0
and 0 ≤ z ≤ x, by

Γi,j(x, z) = P{ϕ(γ(z)) = j | ϕ(0) = i,X(0) = z},

satisfies Γ(x, z) = K(x, x, z) = K(x − z, x − z, 0) = Γ(x − z, 0). The n+ × n−
matrix Γ(x) whose entries are defined, for i ∈ S+, j ∈ S− and x > 0, by

Γi,j(x) = P{ϕ(γ(0)) = j | ϕ(0) = i,X(0) = 0},

satisfies Γ(x) = Γ(x, 0). A typical example of such paths is shown in Figure 4.
We denote by ki,j(x, y, z) the joint density associated with the joint distri-

bution Ki,j(x, y, z), i.e. ki,j(x, y, z) = ∂Ki,j(x, y, z)/∂y.
This situation is symmetric to the one studied in Section 2.5 where we have

considered the maximum peak between two successive visits to level x, starting
with a negative net input rate and with a barrier at level 0. This barrier is
natural but it is important to mention it for the comparison with the finite
buffer case. Here, we consider the minimum valley between two successive visits
to level z, starting with a positive net input rate and with a barrier at level x.
When z = 0, if we take the symmetry of Figure 3 with respect to the line
X(t) = x/2 we obtain a figure similar to Figure 2. Actually, if we exchange the
indices + and − of the submatrices of Q, in the expression of g(x, y) and Θ(x)
we obtain respectively, as we shall see, k(x, y, 0) and Γ(x).
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Theorem 11. For x > 0 and 0 ≤ z ≤ y ≤ x, we have

K(x, z, z) =

∫ x

z

eQ++(y−z)Q+−e
Q−−(y−z)dy

+ (−Q++)−1eQ++(x−z)Q+−e
Q−−(x−z), (3.2)

k(x, y, z) = eQ++(y−z)Γ(x− y)Q−+Γ(x− y)eQ−−(y−z). (3.3)

Proof. The proof is quasi-identical to the proof of Theorem 7.

Using the spatial homogeneity, the matrices K(x, y, z) and Γ(x) are given
by the following equations. For x ≥ 0 and 0 ≤ z ≤ y ≤ x, we have

K(x, y, z) = K(x, z, z) +

∫ y

z

k(x, u, z)du. (3.4)

For x ≥ 0, we have Γ(x) = Γ(x, 0) = K(x, x, 0), that is

Γ(x) =

∫ x

0

eQ++yQ+−e
Q−−ydy + (−Q++)−1eQ++xQ+−e

Q−−x

+

∫ x

0

eQ++yΓ(x− y)Q−+Γ(x− y)eQ−−ydy. (3.5)

This equation is the symmetric version of equation (2.18). We thus obtain, in
the same way we got for equation (2.18), the matrix differential Riccati equation

Γ′(x) = Q++Γ(x) + Γ(x)Q−− + Γ(x)Q−+Γ(x) +Q+−. (3.6)

This equation is identical to equation (2.10). The only difference concerns the
initial condition. Here we have, from (3.5), Γ(0) = (−Q++)−1Q+−. Following
the same lines used in the proof of Theorem 6, we obtain Γ(x) = Z(x)Y −1(x),
where (

Y (x)
Z(x)

)
= eCQx

(
I

Γ(0)

)
.

Note that Γ(0) = (−Q++)−1Q+− is a stochastic matrix. This can be written as{
Y (x) = A(x) +B(x)Γ(0)
Z(x) = C(x) +D(x)Γ(0)

which gives

Γ(x) = [C(x) +D(x)Γ(0)] [A(x) +B(x)Γ(0)]
−1
. (3.7)

3.3 Reduction of the state space

As we did in Section 2.2, we introduce the (n− + n+)× (n− + n+) matrix

Q =

(
Q−− Q−+

Q+− Q++

)
,
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where Q−− = R−1
−
(
T−− − T−0T

−1
00 T0−

)
, Q−+ = R−1

−
(
T−+ − T−0T

−1
00 T0+

)
,

Q+− = R−1
+

(
T+− − T+0T

−1
00 T0−

)
and Q++ = R−1

+

(
T++ − T+0T

−1
00 T0+

)
. As

shown in [4] and [19], when considering quantities such as hitting probabilities
and accumulated rewards during sojourn times in S+∪S0, the fluid queue with
parameters (T,R) is equivalent to the fluid queue with parameters (Q,C) where
C is the (n− + n+)× (n− + n+) matrix

C =

(
−I 0
0 I

)
.

The distribution of τk(x), given that the phase at time γk is j ∈ S+, is given
by

P{τk(x) > t | ϕ(γk) = j} =
(
eAt1

)
j
,

where A is the (n+ + n0)× (n+ + n0) matrix defined by

A =

(
T00 T0+

T+0 T++

)
and 1 is the column vector with all its entries equal to 1, its dimension being
defined by the context. Since j ∈ S+, we only need the entries of eAt1 corre-
sponding to the subset S+, so we decompose vector eAt1 with respect to subsets
S0 and S+, by writing

eAt1 =

( (
eAt1

)0(
eAt1

)+
)
.

We then have
P{τk(x) > t | ϕ(γk) = j} =

(
eAt1

)+
j
. (3.8)

Now, if we consider the volume of fluid Vk(x) lost during period τk(x), given
that the phase at time γk is j, Vk(x) can also be seen as the accumulated
reward during a sojourn of Markov chain (ϕ(t)) in subset S0 ∪ S+, starting in
state j ∈ S+. Using the results of [19], we get, for j ∈ S+,

P{Vk(x) > v | ϕ(γk) = j} =
(
eQ++v1

)
j
. (3.9)

Thus, in the following, we will consider a fluid queue driven by a Markov chain
(ϕ(t)) with state space S = S− ∪ S+, infinitesimal generator Q and effective
input rates given by matrix C, i.e. equal to −1 or 1.

3.4 Distributions of τ1(x) and V1(x)

3.4.1 Matrix differential equation

In order to determine the distribution of τ1(x) and V1(x), we need the distri-
bution of the Markov chain (ϕ(t)) at time γ1. We introduce, for i ∈ S+ and
j ∈ S+,

Mi,j(x) = P{ϕ(γ1) = j | ϕ(0) = i,X(0) = 0}
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and we denote by M(x) the matrix with entries Mi,j(x). By definition of matrix
Ψ(x), which has already been defined in the infinite buffer case by Relation (2.7),
for all i ∈ S+, the quantity

∑
j∈S− Ψi,j(x) is the probability that the process

does not hit level x in a busy period starting from state i and an empty buffer
and

∑
j∈S+ Mi,j(x) is the probability of the complementary event. Hence, for

all i ∈ S+, we have
∑
j∈S− Ψi,j(x) +

∑
j∈S+ Mi,j(x) = 1. This can be written

in matrix form as Ψ(x)1+M(x)1 = 1, where we recall that the dimension of 1
is given by the context of its use.

Matrices M(x) and Ψ(x) are related one to each other via a differential
and an integral equation. As shown in Theorem 4 and Theorem 5, Matrix
Ψ(x) satisfies the integral equation (2.9) and the matrix differential Riccati
equation (2.10). Matrix M(x) is then related to Ψ(x) by the following result.

Theorem 12. For every x ≥ 0, we have

M(x) = eQ++x +

∫ x

0

eQ++yΨ(x− y)Q−+M(x− y)dy, (3.10)

M ′(x) = (Q++ + Ψ(x)Q−+)M(x). (3.11)

Proof. The proof of (3.10) follows the arguments developed in the proof of The-
orem 4 and (3.11) is obtained by differentiating (3.10).

3.4.2 Distributions of the random variables

The distributions of τ1(x) and V1(x) are given by the following theorem.

Theorem 13. For every i ∈ S+ and for all v, t ≥ 0, we have

P{τ1(x) > t | ϕ(0) = i} =
(
M(x)

(
eAt1

)+)
i
, (3.12)

P{V1(x) > v | ϕ(0) = i} =
(
M(x)eQ++v1

)
i
, (3.13)

P{K ≥ 1 | ϕ(0) = i} = (M(x)1)i . (3.14)

Proof. Using the Markov property, we obtain, for every i ∈ S+,

P{τ1(x) > t | ϕ(0) = i} =
∑
j∈S+

P{τ1(x) > t | ϕ(γ1) = j}P{ϕ(γ1) = j | ϕ(0) = i}

=
∑
j∈S+

Mi,j(x)
(
eAt1

)+
j

=
(
M(x)

(
eAt1

)+)
i
.

The same argument leads to Relation (3.13). From Equivalence (3.1), we get,
by definition of Mi,j(x), P{K ≥ 1 | ϕ(0) = i} = P{ϕ(γ1) ∈ S+ | ϕ(0) = i} =
(M(x)1)i.

In the next subsection, we study the distributions of the state initiating the
successive idle and busy periods of the buffer.
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3.5 Sequences of idle and busy periods

We decompose the initial probability distribution α of Markov chain (ϕ(t))
through the partition S−, S0, S+, by writing α = (α−, α0, α+). Recall that we
suppose that the buffer is initially empty, i.e. that X(0) = 0 with probability 1.
For every n ≥ 1, we denote by SIn the state or the phase by which the n-th
idle period starts and we denote by SBn the state or the phase by which the
n-th busy period starts. We then have SI1 ∈ S− ∪ S0 if α0 6= 0, SIn ∈ S−, for
n ≥ 2 and SBn ∈ S+. We denote respectively by vn and wn the probability
distributions of SIn and SBn, i.e.

wn =
(
P{SBn = j}, j ∈ S+

)
,

v1 =
(
P{SI1 = j}, j ∈ S− ∪ S0

)
and, for n ≥ 2, vn =

(
P{SIn = j}, j ∈ S−

)
.

Recall that for i ∈ S+ and j ∈ S−, the probability Γi,j(x) that a busy period of
the buffer with capacity x, ends in phase j given that it starts in phase i, that
is

Γi,j(x) = P{ϕ(θ(0)) = j | ϕ(0) = i}
is given by Relation (3.7). Remark that for every x ≥ 0, we have Γ(x)1 = 1.
Using the results of [19], we have

v1 =
(
α− + α+Γ(x), α0

)
and w1 = α+ + (α−, α0) (−A′)−1

B′, (3.15)

where matrices A′ and B′ are defined by

A′ =

(
T−− T−0

T0− T00

)
and B′ =

(
T−+

T0+

)
.

Defining Q00 = T00 − T0−T
−1
−−T−0 and Q0+ = T0+ − T0−T

−1
−−T−+, we have

(−A′)−1
=

(
(−Q−−)

−1
R−1
− (−Q−−)

−1
R−1
− T−0 (−T00)

−1

(−Q00)
−1
T0− (−T−−)

−1
(−Q00)

−1

)
(3.16)

and

(−A′)−1
B′ =

(
(−Q−−)

−1
Q−+

(−Q00)
−1
Q0+

)
(3.17)

which leads to

w1 = α+ + α− (−Q−−)
−1
Q−+ + α0 (−Q00)

−1
Q0+. (3.18)

In the following theorem, we give the expressions of vn and wn, for n ≥ 2.

Theorem 14. For every n ≥ 2, we have

vn =
(
α− + α+Γ(x)

)
Ln−1(x) + α0 (−Q00)

−1
Q0+Γ(x)Ln−2(x),

wn =
(
α+ + α− (−Q−−)

−1
Q−+ + α0 (−Q00)

−1
Q0+

)
Kn−1(x),

where matrices L(x) and K(x) are given by

L(x) = (−Q−−)
−1
Q−+Γ(x) and K(x) = Γ(x) (−Q−−)

−1
Q−+.
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Proof. For every j ∈ S−, we have

P{SI2 = j} =
∑

i∈S−∪S0

P{SI1 = i}
[
(−A′)−1

B′Γ(x)
]
i,j
,

which gives, in matrix notation, using (3.17) and (3.15),

v2 = v1 (−A′)−1
B′Γ(x)

=
(
α− + α+Γ(x)

)
(−Q−−)

−1
Q−+Γ(x) + α0 (−Q00)

−1
Q0+Γ(x)

=
(
α− + α+Γ(x)

)
L(x) + α0 (−Q00)

−1
Q0+Γ(x).

For every n ≥ 3 and j ∈ S−, we have, by homogeneity,

P{SIn = j} =
∑
i∈S−

P{SIn−1 = i}
[
(−A′)−1

B′Γ(x)
]
i,j
.

We thus get, in matrix notation, again using (3.17) and (3.15),

vn = vn−1 (−Q−−)
−1
Q−+Γ(x) = vn−1L(x).

This leads, for n ≥ 2, to vn = v2Ln−2(x), which is the desired result. In the
same way, we have for every n ≥ 2 and j ∈ S+, using (3.17),

P{SBn = j} =
∑
i∈S+

P{SBn−1 = i}
∑
`∈S−

Γi,`(x)
[
(−A′)−1

B′
]
`,j

=
∑
i∈S+

P{SBn−1 = i}
[
Γ(x) (−Q−−)

−1
Q−+

]
i,j

=
∑
i∈S+

P{SBn−1 = i}Ki,j(x).

This gives in matrix notation, using (3.18), wn = wn−1K(x), that is wn =
w1Kn−1(x).

The Markov chain (ϕ(t)) being finite and irreducible, matrices L(x) and
K(x) which are stochastic matrices are also irreducible and aperiodic. We thus
have

lim
n−→∞

vn = π− and lim
n−→∞

wn = π+, (3.19)

where π− is a row vector of dimension n− which is the unique solution to the
system π− = π−L(x), with π−1 = 1 and π+ is a row vector of dimension n+

which is the unique solution to the system π+ = π+K(x), with π+
1 = 1.

In the sequel, we suppose that the queue is in stationary regime, that is that

the distribution of ϕ(0) is π+. We thus have P{τ1(x) > t} = π+M(x)
(
eAt1

)+
,

P{V1(x) > v} = π+M(x)eQ++v1 and P{K ≥ 1} = π+M(x)1. The above
result gives the distribution of the first congestion event. In the next section,
we compute the characteristics of several congestion events.
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3.6 Joint distributions of loss periods and loss volumes

In this section, we study the joint distribution of the times τk(x) and the joint
distribution of the volumes Vk(x). To deal with these distributions, we need
to evaluate the probability Hi,j(x), starting from level x in phase i ∈ S−, that
the phase at the time of the first return to level x is equal to j, without hitting
level 0. This probability can be interpreted as the symmetric probability of
Ψ(x) with respect to levels 0 and x. It is defined, for every i ∈ S− and j ∈ S+,
by

Hi,j(x) = P{ϕ(γ(x)) = j,X(s) > 0 for 0 ≤ s ≤ γ(x) | ϕ(0) = i,X(0) = x}.

Theorem 15. For every x ≥ 0, we have

H(x) =

∫ x

0

eQ−−yQ−+e
Q++ydy +

∫ x

0

eQ−−yH(x− y)Q+−H(x− y)eQ++ydy.

(3.20)

Proof. The proof is quite similar to the proof leading to Equation (2.9). It can
also be seen as a particular case of the way in which Equation (2.18) has been
obtained since here we do not consider the paths hitting level 0.

In the same way we obtained Equation (2.10), matrixH(x) satisfiesH(0) = 0
and

H ′(x) = Q−−H(x) +H(x)Q++ +H(x)Q+−H(x) +Q−+. (3.21)

Note that, by homogeneity of ϕ, we also have, for every i ∈ S−, j ∈ S+ and
k ≥ 1,

Hi,j(x) = P{ϕ(γk+1) = j | ϕ(γk + τk) = i}.

This relation is used to prove the next lemma. We introduce the matrix B
defined by

B =

(
T+−
T0−

)
.

Lemma 16. For every k ≥ 1, v ≥ 0 and i, j ∈ S+, we have

P{Vk(x) > v,ϕ(γk+1) = j | ϕ(γk) = i} =
(
eQ++v(−Q++)−1Q+−H(x)

)
i,j

and

P{τk(x) > t, ϕ(γk+1) = j | ϕ(γk) = i} =
([
eAt(−A)−1B

]
+−H(x)

)
i,j
,

where matrix
[
eAt(−A)−1B

]
+− is the block n+ × n− of matrix eAt(−A)−1B.

Proof. The homogeneity of Markov chain ϕ implies that, for every k ≥ 1,

P{Vk(x) > v,ϕ(γk+1) = j | ϕ(γk) = i} = P{V1(x) > v,ϕ(γ2) = j | ϕ(γ1) = i},
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so we set k = 1. Note that the entry (i, `) of matrix eQ++v(−Q++)−1Q+− is, see
[19], the probability, starting from i ∈ S+, that the accumulated reward during
a sojourn of ϕ in S+ ∪S0 is greater than v and that the first state of S− visited
after this sojourn is `. Conditioning on the phase at time γ1 + τ1 and using the
Markov property, we get

P{ϕ(γ2) = j, V1(x) > v | ϕ(γ1) = i}

=
∑
`∈S−

P{ϕ(γ2) = j | ϕ(γ1 + τ1) = `}P{ϕ(γ1 + τ1) = `, V1(x) > v | ϕ(γ1) = i}

=
∑
`∈S−

H`,j

(
eQ++v(−Q++)−1Q+−

)
i,`

=
(
eQ++v(−Q++)−1Q+−H(x)

)
i,j
.

To get the second relation, we proceed in the same way noting that the entry
(i, `) of matrix

[
eAt(−A)−1B

]
+− is, see [19], the probability, starting from i ∈

S+, that a sojourn of ϕ in S+ ∪ S0 is greater than t and that the first state of
S− visited after this sojourn is `.

Remark that we have the following relations:[
(−A)−1B

]
+− = (−Q++)−1Q+− and (−Q++)−1Q+−1 = 1. (3.22)

Theorem 17. For every k ≥ 1 and v1, . . . , vk ≥ 0, we have

P{V1(x) > v1, V2(x) > v2, . . . , Vk(x) > vk}

= π+M(x)

(
k−1∏
`=1

eQ++v`(−Q++)−1Q+−H(x)

)
eQ++vk1. (3.23)

Proof. Note that by convention the product is equal to 1 for k = 1. Let us
define Fi,j(k), for every k ≥ 1 and i, j ∈ S+, by

Fi,j(k) = P{V1(x) > v1, . . . , Vk(x) > vk, ϕ(γk+1) = j | ϕ(0) = i}.

Conditioning on ϕ(γk) and using the Markov property, we have

Fi,j(k) =
∑
`∈S+

P{V1(x) > v1, . . . , Vk(x) > vk, ϕ(γk+1) = j, ϕ(γk) = ` | ϕ(0) = i}

=
∑
`∈S+

Fi,`(k − 1)P{Vk(x) > vk, ϕ(γk+1) = j | ϕ(γk) = `}.

Denoting by F (k) the matrix [Fi,j(k)]i,j∈S+ , we obtain, using Lemma 16,

F (k) = F (k − 1)eQ++vk(−Q++)−1Q+−H(x),

and thus,

F (k) = F (1)

k∏
`=2

eQ++v`(−Q++)−1Q+−H(x).
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Matrix F (1) is obtained in the same way, using the Markov property and
Lemma 16, as

Fi,j(1) =
∑
`∈S+

P{V1(x) > v1, ϕ(γ2) = j, ϕ(γ1) = ` | ϕ(0) = i}

=
∑
`∈S+

P{ϕ(γ1) = ` | ϕ(0) = i}P{V1(x) > v1, ϕ(γ2) = j | ϕ(γ1) = `}

=
∑
`∈S+

Mi,`(x)
[
eQ++v1(−Q++)−1Q+−H(x)

]
`,j
.

Finally, we have

F (k) = M(x)

k∏
`=1

eQ++v`(−Q++)−1Q+−H(x).

To obtain the joint distribution of V1(x), . . . , Vk(x), we use Relation (3.9), the
previous relation and the Markov property, by writing

P{V1(x) > v1, V2(x) > v2, . . . , Vk(x) > vk | ϕ(0) = i}

=
∑
j∈S+

P{V1(x) > v1, . . . , Vk−1(x) > vk−1, ϕ(γk) = j, Vk(x) > vk | ϕ(0) = i}

=
∑
j∈S+

Fi,j(k − 1)P{Vk(x) > vk | ϕ(γk) = j}

=
∑
j∈S+

Fi,j(k − 1)
(
eQ++vk1

)
j

=
[
F (k − 1)eQ++vk1

]
i
.

Since the distribution of ϕ(0) is π+, we get by unconditioning

P{V1(x) > v1, V2(x) > v2, . . . , Vk(x) > vk} = π+F (k − 1)eQ++vk1,

which completes the proof.

Similar arguments are used to get the joint distribution of the τk(x).

Theorem 18. For every k ≥ 1 and t1, . . . , tk ≥ 0, we have

P{τ1(x) > t1, τ2(x) > t2, . . . , τk(x) > tk}

= π+M(x)

(
k−1∏
`=1

(
eAt`(−A)−1B

)
+−H(x)

)(
eAtk1

)+
.

(3.24)

Note that the joint distribution of the τk, given by (3.24), can be rewritten
as

P{τ1(x) > t1, . . . , τk(x) > tk} = a(x)

(
k−1∏
`=1

eAt`(−A)−1BR(x)

)
eAtk1, (3.25)

29



where a(x) is the row vector defined by a(x) = (π+M(x) 0), 0 being here the null
row vector of dimension n0, and R(x) is the matrix defined by R(x) = (H(x) 0),
0 being here the n− × n0 null matrix.

Corollary 19. For every k ≥ 1 and v, t ≥ 0, we have

P{Vk(x) > v} = π+M(x)
(
(−Q++)−1Q+−H(x)

)k−1
eQ++v1, (3.26)

P{τk(x) > t} = π+M(x)
(
(−Q++)−1Q+−H(x)

)k−1 (
eAt1

)+
. (3.27)

Proof. To get Relation (3.26), put v1 = · · · = vk−1 = 0 and vk = v in (3.23).
To get Relation (3.27), put t1 = · · · = tk−1 = 0 and tk = t in (3.24) and observe
that

(
(−A)−1B

)
+− = (−Q++)−1Q+−.

Corollary 20. For every k ≥ 0, we have

P{K > k} = π+M(x)
(
(−Q++)−1Q+−H(x)

)k
1. (3.28)

Proof. For every k ≥ 0, we have Vk+1(x) > 0⇐⇒ τk+1(x) > 0⇐⇒ K > k. We
thus get the result using either (3.26) or (3.27).

As we did for the joint distribution of the τk, obtained in (3.25), the distri-
bution of K, given by (3.28), can be rewritten as

P{K > k} = a(x)
(

(−A)
−1
BR(x)

)
1. (3.29)

3.7 Total duration of losses and volume of information lost

We determine in this section the distribution of the total loss duration τ(x) in
a busy period and the distribution of the total volume of information lost V (x)
in a busy period. We have seen in Section 3.1 that we have

τ(x) =

K∑
k=1

τk(x) and V (x) =

K∑
k=1

Vk(x).

To get the distribution of τ(x) and V (x), we need some results about absorbing
Markovian arrival processes.

3.7.1 Absorbing Markovian arrival process

The Markovian arrival process is well-known in the queuing literature and were
introduced in [13]. We consider here a variant of this process in which we
add an absorbing state. This process is defined as a continuous-time Markov
chain {(N(t), J(t)), t ≥ 0}, with N(0) = 0, on the state space S = {(a, 0)} ∪
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(N× {1, . . . ,m}), with m ≥ 1 and where state (a, 0) is absorbing. Its infinites-
imal generator G is given by

G =


0 0 0 0 0 0 0 · · ·
V D0 D1 0 0 0 0 · · ·
V 0 D0 D1 0 0 0 · · ·
V 0 0 D0 D1 0 0 · · ·
...

...
...

...
...

. . .
. . .

. . .

 ,

where the first row and the first column correspond to the absorbing state a.
Matrices D0 and D1 are non zero (m,m) matrices and column vector V is a non
zero vector with dimension m. The matrices G being an infinitesimal generator,
we have D01 + D11 + V = 0. We moreover assume that all the states, except
state (a, 0), are transient. This implies in particular that matrix D0 is invertible.
For ` ≥ 0, we define the subset of states S` = {(`, 1), . . . , (`,m)}. As in [22],
we set ξ0 = 0 and we denote, for all n ≥ 1, by ξn the instant at which either
the n-th arrival occurs or the absorbing state is reached. Variable ξn is then
defined, for all n ≥ 0, by ξn = inf{t ≥ 0 | N(t) ∈ {n, a}}. The n-th inter-arrival
time Γn is then defined, for n ≥ 1, by Γn = ξn − ξn−1. We also define Y as the
number of subsets S` visited by the process until absorption, i.e.

Y =

∞∑
`=1

1{Γ`>0}.

We then have ξn = ξY for n ≥ Y and thus ΓY > 0 and Γn = 0 for n ≥ Y + 1.
Since N(0) = 0, the initial probability distribution is concentrated on the states
(0, 1), . . . , (0,m). We denote by β the row vector of dimension m defined by
βi = P{J(0) = i}, for i = 1, . . . ,m. We thus have β1 + · · ·+ βm = 1. The joint
distribution of Γ1, . . . ,Γk is given, following the results of [22], by

P{Γ1 > t1, . . . ,Γk > tk} = β

[
k−1∏
`=1

eD0t` (−D0)
−1
D1

]
eD0tk1. (3.30)

We then have, for every k ≥ 0, Γk+1 > 0 ⇐⇒ Y > k. By taking t1 = · · · =
tk−1 = 0 and tk = t in (3.30), we get, for every k ≥ 1 and t ≥ 0,

P{Γk > t} = β
(

(−D0)
−1
D1

)k−1

eD0t1,

that is

P{Y > k} = β
(

(−D0)
−1
D1

)k
1. (3.31)

We denote by Γ the total time spent by the process in the transient states, that
is Γ = inf{t ≥ 0 | N(t) = a}. By definition of Y , we have

Γ =

Y∑
k=1

Γk =

∞∑
k=1

Γk.
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The distribution of Γ is given, for every t ≥ 0, by P{Γ > t} = (β, 0, 0, . . .)eLt1,
where

L =


D0 D1 0 0 0 0 · · ·
0 D0 D1 0 0 0 · · ·
0 0 D0 D1 0 0 · · ·
...

...
...

...
. . .

. . .
. . .

 .

It is easily checked that for every k ≥ 0, we have

Lk1 =

 (D0 +D1)k1
(D0 +D1)k1

...

 .

We then get
P{Γ > t} = βe(D0+D1)t

1. (3.32)

3.7.2 Distribution of τ(x) and V (x)

Using the notation a(x) and R(x) introduced in (3.25), we obtain the following
result.

Theorem 21. For every v, t ≥ 0, we have

P{V (x) > v} = π+M(x)e(Q+++Q+−H(x))v
1, (3.33)

P{τ(x) > t} = a(x)e(A+BR(x))t
1. (3.34)

Proof. The joint distribution of the Vk, which is given by (3.23) is equal to the
joint distribution of the Γk given by (3.30) by taking β = π+M(x), D0 = Q++

and D1 = Q+−H(x). With these values, the distribution of K, given by (3.28),
and the distribution of Y , given by (3.31), are identical. We thus have, according
to (3.32),

P{V (x) > v} = π+M(x)e(Q+++Q+−H(x))v
1.

The joint distribution of the τk given by (3.25) is equal to the joint distribution
of the Γk given by (3.30) by taking β = a(x), D0 = A and D1 = BR(x). With
these values, the distribution of K, given by (3.29), and the distribution of Y ,
given by (3.31), are identical. We thus have, according to (3.32), P{τ(x) > t} =
a(x)e(A+BR(x))t

1.

3.7.3 Loss probability

Let E(IP ) and E(BP ) be the mean durations of an idle and a busy period
respectively, in stationary regime and recall that p is the stationary distribution
of Markov chain (ϕ(t)). The mean input rate in stationary regime is then
E(χ) =

∑
i∈S piχi, where we recall that χi is the input rate in the queue when
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the modulating Markov chain (ϕ(t)) is in state i. The quantity πloss defined by
Equation (1.1) is then given by

πloss =
1

E(IP ) +E(BP )

E(V (x))

E(χ)
. (3.35)

From Relation (3.33), we have

E(V (x)) = π+M(x) (−Q++ −Q+−H(x))
−1
1. (3.36)

The mean duration of an idle period is given, using (3.16) and (3.19) by

E(IP ) =
(
π−, 0

)
(−A′)−1

1 = π− (−Q−−)
−1
R−1
−

(
I + T−0 (−T00)

−1
)
1.

(3.37)
The mean durations E(BP ) and E(IP ) are related by the relation

P{X = 0} =
E(IP )

E(IP ) +E(BP )
,

where X is the fluid level in stationary regime. We then have from (3.35)

πloss =
P{X = 0}E(V (x))

E(IP )E(χ)
. (3.38)

The distribution of X and more precisely the quantity P{X = 0} has been
obtained in [10] using matrix analytic methods.

To conclude this section, we note that the matrices Ψ(x), M(x), H(x) and
Γ(x) are equivalent to the matrices G(0, x), H(0, x), H(x, x) in [4] and the
matrix Ψ0 in [8] respectively, and can efficiently be evaluated using the explicit
expressions in [7, Corollary 2] and [8, Theorem 3] (substitute s = 0) and the
quadratic algorithms in [5, 6], and without the use of numerical inversion of the
Laplace-Stieltjes transforms.

Matrices Ψ(x), H(x) and Γ(x) are expressed here in terms of matrix differen-
tial Riccati equations that can be solved using a classical method which consists
in computing the exponential of matrix CQx and then in solving a linear system
which parameters are blocks of matrix exp(CQx). Matrix M(x), see equation
(3.11), is the solution to a system of ODE with non-constant coefficient matrix
that can easily be solved numerically using a classical Runge-Kutta fourth order
method available in Matlab, for instance.

4 Conclusion

In this chapter, we have first deeply analyzed congestion when the buffer content
is described by means of a Markov modulated fluid flow model in the stationary
regime. In order to obtain such performance metrics we have analyzed hitting
probabilities together with the maximum peak observed within a busy period
in both the infinite and finite buffer case.
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The distributions of congestion metrics, defined as the total amount of lost
information or the duration of congestion within a busy period, have then been
obtained. We established that these distributions are of phase-type. Finally
we proposed an exact solution to compute the metric πloss as defined by Equa-
tion (1.1).
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