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Laminar-turbulent boundary layer transition has an important impact on wall heat exchange and friction, especially in case of high speed vehicles. Much work has been done to implement efficient transition prediction tools directly into RANS solvers, mostly in the transonic domain.

Current work aims at reaching Mach 8 in case of 2D ideal gas flow with a constant Prandtl number, and to develop a criterion based on stability computations taking into account both first and second modes of instability. Model development followed by a first implementation into a boundary layer code will be presented, followed by simple validations. Although the objective is to take into account pressure gradient effects as well as imposed wall temperatures, the first step presented here will be limited to adiabatic conditions.

INTRODUCTION

Transition prediction remains an important issue when wall friction and heating from the flow are significant. This is especially important in hypersonic conditions, in relation to thermal protection systems. While real gas effects become important above Mach 10, and require specific approaches, there is also a strong interest in developing prediction capabilities in the 'cold hypersonic' regime, up to about Mach 8, in which case ideal gas properties may be retained. Criteria compatible with RANS calculations are of great interest. A first extension of a criterion to Mach 4 was proposed in 2015 [START_REF] Perraud | Stability-based Mach zero to four longitudinal transition prediction criterion[END_REF], with a focus on the first mode of instability and a formulation based on the existing AHD criterion [START_REF] Arnal | Théorie de l'Instabilité Laminaire et Critères de Transition en Écoulement bi et Tridimensionnel Tridimensionnel[END_REF][START_REF] Cliquet | Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations[END_REF]. The goal is at present to take into account second mode instabilities, and to reach Mach 8 in cold hypersonic condition. Present work has been limited to adiabatic wall conditions, but issues relating to isothermal conditions will also be discussed.

The paper will first present the computation of boundary layer profiles, and the search of well adapted similarity parameters. Stability results will then be presented, and will be inserted into an interpolation based prediction tool. This first model, implemented into the ONERA 3C3D boundary layer code, will then be used for a set of validation tests.

COMPUTATION OF THE BOUNDARY LAYER PROFILES

Stability characteristics of compressible, attached similar velocity profiles are systematically computed for a number of flow conditions such that analytical description of the parameter induced variation becomes possible. Taking a constant Prandtl number 𝒫𝒫 = 0.725 and a viscosity based on Sutherland's law, the boundary layer profiles are obtained as similarity solutions for planar 2D flow with an (x,y) system of coordinates and a mean flow velocity 𝑈𝑈 𝑒𝑒 (and Mach number M e ). Following [START_REF] Cliquet | Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations[END_REF], the Levy-Lees transformation is first used to define coordinates 𝜉𝜉 and 𝜂𝜂

𝜉𝜉 = � 𝜑𝜑 𝑤𝑤 𝜇𝜇 𝑤𝑤 𝑥𝑥 0 𝑈𝑈 𝑒𝑒 𝑑𝑑𝑑𝑑 ; 𝜂𝜂 = 𝑈𝑈 𝑒𝑒 �2𝜉𝜉 � 𝜌𝜌𝑑𝑑𝜌𝜌 𝑦𝑦 0
Profiles are then obtained solving the following set of differential equations:

𝜕𝜕 𝜕𝜕𝜂𝜂 � 𝜌𝜌𝜇𝜇 𝜌𝜌 𝑤𝑤 𝜇𝜇 𝑤𝑤 𝑓𝑓′′� + 𝑓𝑓𝑓𝑓 ′′ = -𝛽𝛽 � 𝜌𝜌 𝑒𝑒 𝜌𝜌 -𝑓𝑓′ 2 � 𝜕𝜕 𝜕𝜕𝜂𝜂 � 𝜌𝜌𝜇𝜇 𝜌𝜌 𝑤𝑤 𝜇𝜇 𝑤𝑤 𝑔𝑔 ′ /𝒫𝒫� + 𝑓𝑓𝑔𝑔 ′ = 𝑈𝑈 𝑒𝑒 2 ℎ 𝑖𝑖𝑒𝑒 𝜕𝜕 𝜕𝜕𝜂𝜂 � 𝒫𝒫 -1 𝒫𝒫 𝜌𝜌𝜇𝜇 𝜌𝜌 𝑤𝑤 𝜇𝜇 𝑤𝑤 𝑓𝑓′𝑓𝑓′′�
where primes denote derivatives with respect to 𝜂𝜂 and

𝑓𝑓 ′ (𝜂𝜂) = 𝑢𝑢 𝑈𝑈 𝑒𝑒 ; 𝑔𝑔(𝜂𝜂) = ℎ 𝑖𝑖 ℎ 𝑖𝑖𝑒𝑒 -1 ; 𝛽𝛽 = 2𝜉𝜉 𝑈𝑈 𝑒𝑒
𝑑𝑑𝑈𝑈 𝑒𝑒 𝑑𝑑𝜉𝜉 with ℎ 𝑖𝑖 the total enthalpy, u the velocity, 𝜌𝜌 the gas density, 𝜇𝜇 the dynamic viscosity and 𝛽𝛽 a pressure gradient parameter. Subscripts w refers to wall values and e to boundary layer upper limit values.

These equations are solved using a pseudo unsteady method starting with a Blasius type velocity profile and a temperature profile based on Crocco's law. Attached solutions are obtained for given values of four parameters, (𝑀𝑀 𝑒𝑒 , 𝛽𝛽, 𝑇𝑇 𝑤𝑤 𝑇𝑇 𝑎𝑎𝑤𝑤 , 𝑇𝑇 𝑖𝑖 ) with 𝑇𝑇 𝑤𝑤 the wall temperature, 𝑇𝑇 𝑎𝑎𝑤𝑤 the recovery temperature, and 𝑇𝑇 𝑖𝑖 the total temperature. The pressure gradient parameter 𝛽𝛽 is linked to the Pohlhausen parameter The first equation reduces to the Falkner-Skan equation for an incompressible boundary layer, in which case solutions are self-similar. In compressible flows, solutions are only locally similar because flow parameters M e , Λ 2 cannot be both kept constant along a streamline when Λ 2 ≠ 0. Note that detached profiles are also solutions of the same equations, but at present only attached solutions are considered.

Value of the total temperature has a small impact on the solutions for Mach numbers below 4. Low Mach number cases were considered with T i = 300K. Keeping this value above Mach 4 results in very small static temperatures T e , and questionable use of the Sutherland law. To ensure a minimal value of 50K for T e , total temperature was defined as

𝑇𝑇 𝑖𝑖 𝑟𝑟𝑒𝑒𝑟𝑟 = max (300,50(1 + 𝛾𝛾 -1 2 𝑀𝑀 𝑒𝑒 2 )
The impact of the wall temperature is expressed in term of the ratio 𝑇𝑇 𝑤𝑤 /𝑇𝑇 𝑎𝑎𝑤𝑤 , with 𝑇𝑇 𝑎𝑎𝑤𝑤 defined as

𝑇𝑇 𝑎𝑎𝑤𝑤 = 𝑇𝑇 𝑒𝑒 �1 + 𝑟𝑟 𝛾𝛾 -1 2 𝑀𝑀 𝑒𝑒 2 �
with 𝑟𝑟 = √𝒫𝒫 = 0.85 the temperature recovery factor, which may be considered a function 

SIMILARITY PARAMETERS

The incompressible shape factor 𝐻𝐻 𝑖𝑖 = 𝛿𝛿 1𝑖𝑖 /𝜃𝜃 𝑖𝑖 is an effective parameter characterizing the stability of a profile, and is used in many criteria. When extending the range of Mach numbers up to 8, fig. 1 shows that the slope 𝜕𝜕𝐻𝐻𝜕𝜕/𝜕𝜕Λ 2 becomes very large, and that the range of Λ 2 allowing to obtain an attached similarity profile becomes very narrow. was found to present interesting qualities. Its range of variations remains bounded by zero as a lower limit, and tends to remain in a range [0 -0.35]. It is well correlated with the shape factor (fig. 2), and there is hope that its computation in RANS solver be less demanding than that of the shape factor. ) lies in a range 60°< 𝜑𝜑 < 80°.

Higher modes, acoustic in nature, with φ = 0 appear in the hypersonic regime [START_REF] Mack | Transition and Laminar Instability Theory[END_REF], above a Mach number limit function of pressure gradient and wall thermal condition. For the adiabatic flat plate, the second mode becomes the most amplified at Mach 4.5, but with a positive pressure gradient it already exists at Mach 3.5, as can be seen in fig. 3.

Several strategies are available to integrate amplification rates. Two are used in the present case, the envelope method and the constant 𝜑𝜑 strategy, with 𝜑𝜑 = 0. The envelope method consists in integrating, at each location, the most amplified instability wave: Stability diagrams were computed at Mach 6 with the two methods, in a case where the second mode is the most amplified. Fig. 4 shows that even when looking only at 2D waves, there is still a visible contribution of the first mode (visible in the lower part of the diagram). Using the envelope method increases this contribution, as may be seen in fig. 5, finally producing larger values of N-factors. Note that the saw tooth pattern between modes 1 and 2 comes from the fact that computations are done with a constant reduced frequency while the plot uses ω. As there is not a clear limit between first and second modes, it was decided to take into account contributions from both modes in the whole explored range. 𝑟𝑟𝑒𝑒𝑟𝑟 , and has a small impact up to Mach 4. A number of cases were computed with larger total temperature for Mach numbers above 4. In the range 4 < M e < 8, this parameter becomes significant and a temperature correction will be needed. These N-factor curves are then represented using three parameters as shown in fig. 9: a linear approximation of the form 𝑁𝑁 = 𝐴𝐴(𝑅𝑅𝑅𝑅 𝜃𝜃 -𝑅𝑅 10 ), with A a slope and R 10 a zero crossing point, and a critical Reynolds number 𝑅𝑅𝑅𝑅 𝜃𝜃 𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐 . Values expressed with the displacement thickness in fig. 9 are stored in term of momentum thickness in the database. The three parameters (A, 𝑅𝑅 10 and 𝑅𝑅𝑅𝑅 𝜃𝜃 𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐 ) are then stored together with the driving parameters of each case (boundary conditions and similarity coefficients). Term R 10 mainly follows the variations of 𝑅𝑅𝑅𝑅 𝜃𝜃 𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐 , but with larger values near separation. Again, with 𝜕𝜕𝜕𝜕 𝜕𝜕𝑑𝑑 < 0 ⁄ there is a strong change of evolution with the appearance of the second mode at Mach 3.5.

𝑁𝑁 𝑟𝑟 = ∫ �max 𝜑𝜑 (-𝛼𝛼 𝑖𝑖 (𝜑𝜑, 𝜔𝜔)�𝑑𝑑𝑑𝑑 𝑥𝑥 𝑥𝑥 𝑐𝑐 ; 𝑁𝑁 𝑒𝑒𝑒𝑒𝑒𝑒 = max 𝑟𝑟 (𝑁𝑁 𝑟𝑟 )

MODEL

A model, called JP8a, is then proposed based on interpolations for the prediction of the transition location. First, an N-factor is computed with

𝑁𝑁 = max �0. , 𝐴𝐴 �𝑀𝑀𝑅𝑅, 𝐶𝐶 𝑟𝑟 𝑅𝑅𝑅𝑅 𝜃𝜃 2 � �𝑅𝑅𝑅𝑅 𝜃𝜃 -𝑅𝑅 10 (𝑀𝑀𝑅𝑅, 𝐶𝐶 𝑟𝑟 𝑅𝑅𝑅𝑅 𝜃𝜃 2 )��
until N reaches 1.0 at a location noted 𝑠𝑠 1 .

From that point on,

𝑁𝑁 = 1. + � 𝐴𝐴 �𝑀𝑀𝑅𝑅, 𝐶𝐶 𝑟𝑟 𝑅𝑅𝑅𝑅 𝜃𝜃 2 � 𝑑𝑑 𝑑𝑑 𝑑𝑑 1 𝑅𝑅𝑅𝑅 𝜃𝜃
Transition is predicted when N reaches N T given by Mack's relation 𝑁𝑁 𝑇𝑇 = -2.4ln (𝑇𝑇𝑢𝑢) -8.43

It was implemented into the boundary layer code 3C3D, a very convenient platform for testing new models, allowing rapid evaluation. Input data to 3C3D is a velocity distribution in 2D or 3D, together with total pressure and temperature. External turbulence level 𝑇𝑇𝑢𝑢 is given specifically for transition detection. 3C3D contains a number of transition prediction methods, among which AHD [START_REF] Arnal | Théorie de l'Instabilité Laminaire et Critères de Transition en Écoulement bi et Tridimensionnel Tridimensionnel[END_REF], AHD4 [START_REF] Perraud | Stability-based Mach zero to four longitudinal transition prediction criterion[END_REF], and the 3D parabola method [START_REF] Perraud | Automatic transition predictions using simplified methods[END_REF]. First computation in 3C3D was done without pressure gradient and with a total temperature given by 𝑇𝑇 𝑖𝑖 𝑟𝑟𝑒𝑒𝑟𝑟 defined earlier and a T u value of 0.15%. Results in fig. 12 compare the two criteria AHD4 and JP8a with stability results computed on similarity solutions. A small difference is visible between the two criteria between Mach 2 and 5. AHD4 gives reasonable results up to Mach 5 for the flat plate case, but should be limited to Mach 4 with pressure gradients. In any case, comparisons are very good for both criteria in their application range. A second temperature correction is required because amplification rates do vary with temperature above Mach 6. Term A was modified as

𝐴𝐴(𝑇𝑇 𝑖𝑖 ) = 𝐴𝐴( 𝑇𝑇 𝑖𝑖 𝑟𝑟𝑒𝑒𝑟𝑟 ) �1 + 𝜅𝜅(𝑀𝑀 𝑒𝑒 )ln ( 𝑇𝑇 𝑖𝑖 𝑇𝑇 𝑖𝑖 𝑟𝑟𝑒𝑒𝑟𝑟 )�
with 𝜅𝜅(𝑀𝑀 𝑒𝑒 ) a second polynomial function of the Mach number. With these two corrections, fig. 13 gives the evolution of 𝑅𝑅𝑅𝑅 𝜃𝜃𝑇𝑇 for a flat plate at Mach numbers 4 to 8 (5 was not plotted because very close to 4 and 6) for a range of total temperature. Agreement with stability is not perfect, but it is greatly improved by the corrective terms. . These remain in the expected range in the laminar part of the flow, but become much larger in the turbulent region. Reference conditions given in fig. 14 are the same for the two criteria. The change in temperature has an impact on the Mach number, for the negative pressure gradient the Mach number range is moved to lower values in order to keep physically realist values allowing the calculation to proceed to its end. The two criteria JP8a and AHD4 (fig. 15, 16) agree very well for positive and zero pressure gradient. The difference is larger in case of a negative gradient, and in this case a stability calculation was required. N-factor curves for the three cases are plotted in fig. 17. With a negative pressure gradient, N-factors reaches a maximum of about 3, then decreases slowly in the downstream direction. According to that, transition should not be predicted in this case. Both criteria predict a transition point but should not in this case. With positive and zero pressure gradient, N-factor curves reaches 7.15 at x= 2 and 4.05, in good agreement with 3C3D.

An additional condition was added to JP8a, blocking the growth of the N-factor where 𝑅𝑅𝑅𝑅 𝜃𝜃 becomes locally smaller than 𝑅𝑅𝑅𝑅 𝜃𝜃 𝑐𝑐𝑟𝑟𝑖𝑖𝑐𝑐 , if that happens. With this condition, transition is no longer predicted in this case, resulting in the 'modified JP8a' results in fig. 16. Comparison between stability and the criteria is given in Table 1. Agreement in transition location is quite correct. The correction added to JP8a eliminates the incorrect response for the negative pressure gradient case. A similar correction for AHD4 is not possible Stability JP8a AHD4 dpdx > 0 2 2.2 2.15 dpdx = 0 4.05 3.7 4 dpdx < 0 No transition 8/no transition 9.5

Table 1: transition location predicted for N T =7.15

PERSPECTIVES

The proposed JP8a model should be easily introduced into the elsA platform, as it relies on very similar data structures as the previous AHD4. The use of 𝐶𝐶 𝑓𝑓 𝑅𝑅𝑒𝑒 𝜃𝜃 2 instead of the Pohlhausen parameter combined with the incompressible shape factor should improve the quality of the predictions, as this parameter should be easier to obtain from a RANS simulation. The interpolation process within the database does not introduce complex or time consuming calculations. Extension to higher temperatures would require to depart from ideal gas, introducing temperature dependent transport properties with variable Prandtl number.

Taking into account wall temperatures constitute the next phase in the model development. Stability calculations have already been done, but more time is required to create a model, which will also require adapted corrections to take into account a large range of total enthalpy.
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  of the Prandtl number up to Mach 8 in ideal gas flow. Solving the equations generates boundary layer profiles and a number of similarity parameters , as well as the ratio 𝜙𝜙 𝑤𝑤 𝑅𝑅𝑒𝑒 ℎ ℎ 𝑖𝑖𝑒𝑒 𝜇𝜇 𝑒𝑒 relating to thermal conditions, with 𝜙𝜙 𝑤𝑤 the wall heat flux and 𝑅𝑅𝑅𝑅 ℎ the enthalpy integral thickness.
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 1 Figure 1 : Range of variations of Hi For this reason, and also because Λ 2 represents a boundary condition and not a characteristic of the local
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 2 Figure 2 : Relation between the shape factor and 𝐶𝐶 𝑟𝑟 𝑅𝑅𝑒𝑒 𝜃𝜃 2 for Mach numbers 0.2 to 84. STABILITY CALCULATIONS AND RESULTSSolving the similarity equations generates a single boundary layer profile for each set of (𝑀𝑀 𝑒𝑒 , 𝛽𝛽, 𝑇𝑇 𝑤𝑤 𝑇𝑇 𝑎𝑎𝑤𝑤 , 𝑇𝑇 𝑖𝑖 ) parameters. A Reynolds number variation is added for the stability calculation using the ONERA CASTET local stability code, which solves the 3D compressible boundary layer stability equation using a shooting method. Solutions are put in a form 𝑢𝑢 � = 𝑢𝑢 �(𝜌𝜌) exp[𝜕𝜕(𝛼𝛼𝑑𝑑 + 𝛽𝛽𝛽𝛽 -𝜔𝜔𝜔𝜔)] with complex wavenumbers (𝛼𝛼, 𝛽𝛽) and real frequency. Solutions are amplified when 𝛼𝛼 𝑖𝑖 < 0. In the present case, we consider a 2D mean flow, but the instability solutions must be treated as 3D. In fact, the first mode of instability in a range 2 < M e < 6 has a non-zero transverse wavenumber β r such that the wave propagation direction 𝜑𝜑 = atan ( 𝛽𝛽 𝑟𝑟 𝛼𝛼 𝑟𝑟
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 3 Figure 3: Stability results at Mach 3.5 with positive pressure gradient
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 45 Figure 4: : Mach 6 stability diagrams, computed with the constant 𝜑𝜑 strategy. Maps of im(α) in the (ω,Re δ1 ) plane
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 6 Figure 6 : N-factor curves obtained at Mach 2.2
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 92 Figure 9 : Parametric representation of the N-factor curves
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 12 Figure 12 : First validation for adiabatic flat plate flow When considering Mach numbers above 6, it becomes important to take into account the effects of total temperature, with departs from classical values. Vehicles in flight would experience a static temperature close to 215K (typical at an altitude of 10 000m). A range of static temperature was set from 50 to 215K, resulting in a range of total temperature from 700 to 3000K at Mach 8. Two temperature corrections must then be defined. The first accounts for the shift of the control parameter 𝐶𝐶 𝑓𝑓 𝑅𝑅𝑒𝑒 𝜃𝜃 2 with total temperature. Without pressure gradient, the parameter is divided by more than 2 between 700 and 3000K. The correction was determined in a form 𝐶𝐶 𝑟𝑟 𝑅𝑅𝑅𝑅 𝜃𝜃 2 � 𝑇𝑇 𝑖𝑖 𝑇𝑇 𝑖𝑖 𝑟𝑟𝑒𝑒𝑟𝑟 � ∝(𝑀𝑀 𝑒𝑒 )

Figure 13 :

 13 Figure 13 : Effect of total temperature correction Considering configurations with pressure gradients, a test case with a velocity ramp is imposed in 3C3D. Three cases are considered, with positive, negative and zero gradient. Fig. 14 shows the Mach number variations for each case, as well as those of 𝐶𝐶 𝑓𝑓 𝑅𝑅𝑒𝑒 𝜃𝜃 2
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 14215 Figure 14 : Mach number distributions and computed 𝐶𝐶 𝑟𝑟 𝑅𝑅𝑒𝑒 𝜃𝜃 2
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 16 Figure 16 : JP8a results obtained for several pressure gradients
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 17 Figure 17 : N-factor curves from stability calculation
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