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Abstract
• Key message The mean temperature from March to September affects the height-diameter relationship of many
tree species in France. For most of these species, the temperature effect is nonlinear, which makes the identification
of an optimal temperature possible. Increases in mean temperature could impact the volume supply of commercial
species by the end of the twenty-first century.
• Context Height-diameter (HD) relationships are central in forestry since they are essential to estimate tree volume and
biomass. Since the late 1960s, efforts have been made to generalize models of HD relationships through the inclusion of
plot- and tree-level explanatory variables. In some recent studies, climate variables such as mean annual temperature and
precipitation have been found to have a significant effect on HD allometry. However, in these studies, the effects were all
considered to be linear or almost linear, which supposes that there is no optimal temperature and no optimal precipitation.
• Aims In this study, we tested the hypothesis that an optimum effect of temperature and precipitation exists on tree heights.
• Methods We fitted generalized models of HD relationships to 44 tree species distributed across France. To make sure that
the climate variables would not hide some differences in terms of the local environment, the models included explanatory
variables accounting for competition, tree social status and other plot-level factors such as slope inclination and the
occurrence of harvesting in the last five years.
• Results It turned out that the temperature effect was significant for 33 out of 44 species and an optimum was found in 26
cases. The precipitation effect was linear and was found to be significant for only seven species. Although the two climate
variables did not contribute as much as the competition and the social status indices to the model fit, they were still important
contributors. Under the representative concentration pathway (RCP) 2.6 and the assumptions of constant form factors and
forest conditions in terms of competition and social statuses, it is expected that approximately two thirds of the species with
climate-sensitive HD relationships will generally be shorter. This would induce a decrease in volume ranging from 1 to 5%
for most of these species.
• Conclusion Forest practitioners should be aware that the volume supply of some commercial species could decrease by the
end of the twenty-first century. However, these losses could be partly compensated for by changes in the form factors and
the species distributions.
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model · Climate change

Handling Editor: Céline Meredieu and François de Coligny

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s13595-018-0784-9) contains
supplementary material, which is available to authorized users.

This article is part of the Topical Collection on Mensuration and
modelling for forestry in a changing environment

� Mathieu Fortin
mathieu.fortin.re@gmail.com

Extended author information available on the last page of the article.

1 Introduction

Tree height is a critical variable in forestry because it is
required for tree volume and biomass estimation, but its
measurement is time-consuming. In most forest inventories,
tree height is actually measured on a subsample of trees
and not on all the trees in the sample plots. Traditionally,
foresters have relied on height-diameter (HD) relationships
in order to estimate missing heights. The idea consists of
using the subsample of heights to fit a statistical model
that relates tree height to its diameter, which is easier to
measure. Using the HD relationship, unobserved heights
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can be predicted and tree volume and biomass can then be
estimated. The use of such HD relationships has proved to
be convenient as it makes the estimation of volume and
biomass possible, while limiting the investment in terms of
resources and time.

Basic models of HD relationships can be fitted at the
local scale, typically the forest stand. However, this means
that a model fitted to a particular stand is subject to
biases when used in another stand. Refitting models of HD
relationships for each stand is tedious. Consequently, some
authors have attempted to generalize these models since the
late 1960s. The idea is to include additional tree- and plot-
level explanatory variables in models of HD relationships so
that they can adapt to different stand conditions.

Curtis (1967) was among the first who managed to
fit such generalized HD relationships by including stand
age in his model. Over the years, a large array of
explanatory variables expressing the local conditions in
terms of competition and fertility have been found to
have a significant effect on HD relationships. Bégin and
Raulier (1995) fitted HD relationships based on mean stand
diameter and mean stand height. López Sánchez et al.
(2003) used stand metrics such as site index, basal area,
dominant diameter and dominant height. Using a mixed-
model approach, Calama and Montero (2004) included
stand density and dominant height in their model of HD
relationships for stone pine (Pinus pinea L.).

Due to concerns related to climate change, the impact
of climate variables on HD relationships has recently
been studied. Changes in temperature and precipitation
are likely to impact tree growth (Oliver and Larson
1996, p. 21). Because the impact on diameter growth might
be different from that on height growth, this could affect HD
relationships. Fortin et al. (2009) and Auger (2016) found a
positive linear effect of the mean annual temperature on HD
relationships in the province of Quebec, Canada. Hulshof
et al. (2015) found a negative effect of temperature on the
HD relationships of broadleaved species in the USA. In
Spain, Lines et al. (2012) found a linear effect that was
positive for some species but negative for others. In tropical
forests, Feldpausch et al. (2011) fitted a general model of
HD relationships that included mean annual temperature.
Although the temperature effect was expressed through an
exponential function in the model, its coefficient was so
small that its actual representation was almost linear. In
a few studies, mean annual precipitation was also found
to affect HD relationships either positively or negatively
depending on the species (e.g., Lines et al. 2012; Chave et al.
2015; Hulshof et al. 2015).

In all of the aforementioned studies, the effect of the
climate variables was considered to be linear or nearly

linear. However, it can be reasonably assumed that these
effects are nonlinear (Lines et al. 2012). The HD allometry
is actually linked to carbon allocation. The physiological
processes underlying this allocation are dependent on
temperature and growth is known to reach a maximum at
temperature between 20◦ and 35◦C (Ericsson et al. 1996).
Depending on the species, leaf net photosynthesis also show
a maximum within the same range of temperature (Lin et al.
2012).

Likewise, optimal temperature and precipitation condi-
tions that maximize tree heights for a given diameter must
exist. Finding this optimum is not straightforward because
the effect of climate variables can actually hide that of dif-
ferent forest structures if other explanatory variables are not
accounted for in the model of HD relationships. To clearly
assess the effect of the climate variables, it is good prac-
tice to also take other factors into account in these models,
including competition, tree social status and other plot vari-
ables. This was precisely the objective of this study. Using
the height observations of the French National Forest Inven-
tory (NFI), we fitted models of HD relationships to 44
species. In addition to tree- and plot-level explanatory vari-
ables that accounted for the local environment, we tested
the temperature and precipitation effects in these 44 mod-
els under the assumption that an optimum existed. Given the
anticipated climate change, we also simulated what would
be the impact on tree volume at the end of the twenty-first
century if forest conditions remained the same.

2Material andmethods

2.1 Dataset

The data we used in this study were taken from the French
NFI, which is under the responsibility of the National
Geographical Institute (Institut national de l’information
géographique et forestière (IGN)). The methodology behind
the NFI is extensively described in IGN (2016). Since
2005, it follows a double-sampling scheme (Gregoire and
Valentine 2008). A systematic grid covers the whole
metropolitan territory with an annual sampling intensity of
one point every 10 km2. The grid is moved every year
in order to maintain a systematic grid design after 5 and
10 years. For each point, the land use is first determined
using aerial photographs. Each year, a subsample of the
points that are located in forested areas is randomly
selected for ground measurements. The field plots consist of
three concentric fixed-area subplots in which the trees are
measured according to their diameter at breast height (DBH,
1.3 m in height). Trees with DBH smaller than 22.5 cm but
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Table 1 Mean diameter at
breast height (DBH) and height
for the 44 species to which the
models of height-diameter
relationships were fitted, where
n is the number of trees

Species n DBH (cm) Height (m)

Abies alba Mill. 31 807 33.1 (7.6, 134.3) 19.9 (2.4, 45.3)

Acer campestre L. 7473 17.2 (7.6, 75.8) 13.1 (2.2, 32.2)

Acer monspessulanum L. 1116 13.3 (7.6, 56.7) 8.5 (2.5, 20.8)

Acer opalus Mill. 1370 16.8 (7.6, 61.1) 11.1 (3.2, 25.4)

Acer pseudoplatanus L. 7416 22.4 (7.6, 106.3) 16.9 (2.2, 42.9)

Alnus glutinosa Gaertn. 5875 23.4 (7.6, 136.9) 17.2 (1.8, 38.4)

Arbutus unedo L. 1144 10.0 (7.6, 31.2) 6.1 (2.6, 12.5)

Betula pendula Roth. 16 139 18.5 (7.6, 69.4) 15.6 (1.9, 34.3)

Carpinus betulus L. 36 494 17.3 (7.6, 82.1) 15.1 (1.4, 36.8)

Castanea sativa Mill. 29 875 25.4 (7.6, 262.9) 15.1 (2.2, 38.3)

Corylus avellana L. 5935 9.2 (7.6, 30.2) 8.9 (1.4, 20.6)

Crataegus monogyna Jacq. 3416 10.3 (7.6, 39.5) 7.5 (2.0, 18.8)

Fagus sylvatica L. 57 733 30.3 (7.6, 174.1) 19.1 (1.6, 47.1)

Fraxinus excelsior L. 24 388 24.5 (7.6, 122.2) 18.6 (1.4, 44.5)

Ilex aquifolium L. 1311 11.0 (7.6, 60.5) 7.5 (2.2, 16.0)

Larix decidua Mill. 4154 33.9 (7.6, 179.2) 18.6 (3.1, 42.0)

Picea abies H. Karst 30 117 31.4 (7.6, 110.5) 20.7 (1.6, 46.5)

Picea sitchensis Carrière 2052 32.3 (7.6, 85.0) 20.3 (3.2, 39.1)

Pinus halepensis Mill. 4833 29.8 (7.6, 99.6) 12.5 (3.0, 29.6)

Pinus nigra R. Legay 5597 26.8 (7.6, 85.6) 14.1 (1.8, 35.2)

Pinus nigra var. corsicana Hyl. 5835 28.3 (7.6, 175.7) 15.9 (2.7, 44.1)

Pinus pinaster Aiton 22 511 32.5 (7.6, 123.2) 17.4 (2.5, 39.1)

Pinus sylvestris L. 35 343 28.6 (7.6, 93.6) 14.9 (1.4, 43.9)

Pinus uncinata Ramond ex DC. 2690 25.4 (7.6, 85.6) 10.5 (2.3, 24.9)

Populus tremula L. 7417 21.4 (7.6, 87.2) 18.1 (2.9, 40.0)

Populus spp. 1448 38.3 (7.6, 122.5) 24.9 (2.1, 48.0)

Prunus avium L. 7360 20.4 (7.6, 96.8) 14.9 (2.4, 37.9)

Pseudotsuga menziesii Franco 15 373 30.9 (7.6, 140.7) 22.1 (4.0, 48.0)

Quercus ilex L. 7657 16.4 (7.6, 198.9) 7.6 (1.7, 24.5)

Quercus petraea Liebl. 56 481 34.2 (7.6, 149.6) 20.1 (1.5, 43.1)

Quercus pubescens Willd. 29 460 20.6 (7.6, 192.3) 11.5 (1.8, 33.9)

Quercus pyrenaica Willd. 1769 24.8 (7.6, 96.4) 14.1 (2.5, 34.5)

Quercus robur L. 61 379 34.9 (7.6, 143.9) 18.8 (1.4, 43.0)

Quercus rubra L. 1477 24.5 (7.6, 119.4) 17.8 (4.5, 40.6)

Quercus suber L. 1674 30.7 (7.6, 117.8) 8.1 (2.2, 20.8)

Robinia pseudoacacia L. 8004 19.6 (7.6, 181.8) 16.1 (2.6, 37.6)

Salix caprea L. 4458 16.2 (7.6, 96.1) 11.0 (1.5, 32.0)

Salix cinerea L. 1085 16.8 (7.6, 96.8) 9.8 (2.0, 25.9)

Sorbus aria Crantz 3775 12.6 (7.6, 63.0) 10.0 (3.6, 26.0)

Sorbus aucuparia L. 1391 12.6 (7.6, 70.7) 10.1 (3.5, 29.6)

Sorbus torminalis Crantz 3281 13.0 (7.6, 53.5) 11.1 (3.5, 27.5)

Tilia cordata Mill. 2802 21.6 (7.6, 95.5) 16.0 (1.9, 35.5)

Tilia platyphyllos Scop. 2393 22.6 (7.6, 101.2) 15.9 (3.2, 37.1)

Ulmus minor Mill. 2862 13.4 (7.6, 79.6) 11.2 (2.7, 34.8)

The minimum and maximum of the variables appear in parentheses. Populus spp. includes all poplar species
except Populus tremula
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Table 2 Summary of the plot-level variables that were used to fit the models of height-diameter relationships, where n is the number of plots

Species n Stem density Basal area Mean quadratic Slope Temperature Precipitation

(stems ha−1) (m2ha−1) diameter (cm) (%) (◦C) (mm)

Abies alba 5638 789 (14, 3910) 34.6 (0.5, 110.6) 26.5 (8.2, 85.3) 33 (0, 200) 10.9 (4.8, 15.9) 708 (330, 1494)

Acer campestre 4168 1006 (14, 5740) 25.5 (0.5, 117.6) 19.7 (8.2, 60.8) 18 (0, 184) 13.2 (8.5, 16.6) 511 (315, 1133)

Acer monspessulanum 613 1117 (14, 4244) 17.7 (0.4, 53.4) 14.8 (7.6, 51.8) 27 (0, 120) 14.3 (8.8, 17.0) 490 (295, 843)

Acer opalus 713 1222 (33, 4067) 26.4 (0.4, 76.1) 17.4 (7.6, 58.1) 54 (0, 120) 12.0 (7.4, 15.6) 664 (364, 1153)

Acer pseudoplatanus 3076 813 (14, 5586) 27.6 (0.4, 110.6) 23.2 (7.6, 83.6) 24 (0, 200) 11.9 (3.4, 16.9) 601 (272, 1714)

Alnus glutinosa 1601 879 (14, 4322) 26.7 (0.4, 131.9) 21.6 (7.6, 70.7) 9 (0, 90) 13.4 (8.8, 17.8) 521 (293, 1196)

Arbutus unedo 582 1339 (88, 4391) 21.3 (0.4, 102.7) 14.8 (7.6, 44.7) 37 (0, 100) 15.6 (10.2, 18.5) 399 (186, 726)

Betula pendula 6161 905 (14, 5586) 24.6 (0.4, 99.2) 20.3 (7.6, 72.3) 13 (0, 196) 12.7 (4.5, 15.9) 505 (322, 1282)

Carpinus betulus 11 998 863 (14, 5586) 25.8 (0.4, 117.6) 22.1 (7.6, 86.0) 10 (0, 200) 13.2 (8.3, 16.1) 492 (324, 1145)

Castanea sativa 7857 933 (14, 5901) 28.7 (0.4, 129.3) 22.5 (7.6, 139.0) 21 (0, 185) 13.8 (9.0, 17.6) 506 (273, 1009)

Corylus avellana 3343 928 (88, 6254) 24.4 (0.4, 93.3) 19.3 (7.6, 50.9) 21 (0, 184) 12.9 (4.9, 17.0) 542 (288, 1302)

Crataegus monogyna 2107 906 (39, 4360) 23.6 (0.4, 129.3) 18.7 (7.6, 116.7) 17 (0, 190) 13.5 (9.0, 18.2) 497 (232, 1121)

Fagus sylvatica 14 152 737 (14, 5694) 28.8 (0.4, 112.7) 26.3 (7.6, 156.9) 26 (0, 200) 12.0 (4.7, 16.2) 600 (325, 1714)

Fraxinus excelsior 8175 859 (14, 4322) 25.7 (0.4, 117.6) 21.6 (7.6, 82.6) 21 (0, 200) 12.9 (6.7, 17.9) 545 (319, 1494)

Ilex aquifolium 797 936 (62, 3573) 31.8 (0.6, 88.9) 22.4 (8.5, 57.0) 26 (0, 174) 13.2 (7.9, 16.2) 547 (303, 1221)

Larix decidua 842 656 (14, 3331) 28.0 (0.4, 116.8) 26.5 (7.6, 76.7) 46 (0, 110) 9.1 (3.0, 15.1) 574 (355, 1142)

Picea abies 5627 819 (14, 4155) 34.4 (0.4, 121.0) 25.8 (7.6, 84.0) 28 (0, 111) 10.9 (3.4, 15.6) 728 (324, 1619)

Picea sitchensis 339 723 (14, 2741) 35.0 (1.7, 88.3) 27.8 (9.0, 57.2) 11 (0, 72) 12.4 (7.8, 14.7) 516 (326, 1002)

Pinus halepensis 1134 680 (14, 3565) 16.9 (0.4, 58.4) 20.5 (7.6, 69.0) 26 (0, 175) 16.1 (12.5, 18.5) 383 (186, 619)

Pinus nigra 1271 803 (14, 3890) 23.1 (0.4, 108.3) 20.5 (7.6, 68.8) 30 (0, 184) 12.9 (7.5, 17.0) 512 (342, 881)

Pinus nigra var. corsicana 1081 776 (14, 3173) 27.1 (0.4, 97.9) 23.6 (7.6, 130.5) 18 (0, 90) 13.2 (7.2, 16.3) 466 (303, 989)

Pinus pinaster 4379 653 (14, 4106) 23.4 (0.4, 130.8) 24.7 (7.6, 103.6) 9 (0, 130) 14.9 (9.8, 18.2) 456 (223, 784)

Pinus sylvestris 7891 798 (14, 3890) 25.9 (0.4, 108.3) 22.2 (7.6, 72.8) 25 (0, 200) 12.4 (4.5, 16.8) 512 (324, 1218)

Pinus uncinata 511 721 (14, 4002) 25.3 (0.5, 72.7) 23.1 (8.6, 59.5) 44 (0, 110) 7.7 (2.8, 13.0) 592 (399, 1279)

Populus tremula 2938 975 (14, 5586) 25.0 (0.4, 99.2) 19.7 (7.6, 66.2) 10 (0, 115) 13.2 (6.5, 17.1) 488 (319, 1714)

Populus spp. 526 833 (14, 3282) 25.4 (0.5, 100.4) 22.4 (8.6, 121.0) 3 (0, 50) 13.7 (10.8, 16.3) 430 (319, 740)

Prunus avium 4058 896 (14, 5586) 26.3 (0.5, 101.9) 21.3 (7.8, 74.4) 19 (0, 184) 13.2 (7.7, 16.9) 516 (332, 1714)

Pseudotsuga menziesii 2619 738 (14, 3590) 30.2 (0.5, 130.8) 25.2 (7.9, 66.3) 19 (0, 154) 12.6 (8.5, 16.1) 553 (324, 1179)

Quercus ilex 2979 1177 (14, 5040) 18.4 (0.4, 104.2) 14.8 (7.6, 70.7) 33 (0, 175) 15.3 (7.6, 18.4) 438 (189, 817)

Quercus petraea 13 779 759 (14, 5740) 25.7 (0.4, 104.2) 24.7 (7.6, 91.2) 14 (0, 200) 13.1 (7.5, 16.3) 489 (321, 1045)

Quercus pubescens 7765 960 (14, 4360) 19.9 (0.4, 104.2) 17.5 (7.6, 85.8) 28 (0, 175) 14.3 (7.4, 18.2) 480 (263, 1003)

Quercus pyrenaica 713 693 (14, 4106) 22.7 (0.5, 70.6) 23.6 (8.6, 81.8) 12 (0, 92) 14.8 (12.4, 16.2) 484 (324, 869)

Quercus robur 17 579 745 (14, 4322) 25.1 (0.4, 111.7) 24.2 (7.6, 110.3) 11 (0, 190) 13.6 (7.6, 17.8) 482 (298, 1139)

Quercus rubra 421 820 (14, 3119) 23.5 (0.6, 88.9) 21.0 (8.2, 56.5) 7 (0, 68) 13.7 (10.4, 16.1) 483 (326, 989)

Quercus suber 436 667 (14, 3820) 19.0 (0.5, 102.7) 22.3 (8.0, 69.8) 30 (0, 80) 16.7 (14.1, 18.5) 373 (202, 611)

Robinia pseudoacacia 2082 931 (28, 3814) 24.5 (0.4, 90.9) 19.6 (7.8, 59.0) 16 (0, 141) 14.1 (9.7, 18.1) 490 (323, 983)

Salix caprea 2293 998 (14, 5737) 21.3 (0.4, 117.6) 17.5 (7.6, 55.6) 15 (0, 177) 12.5 (5.6, 17.3) 524 (321, 1340)

Salix cinerea 502 839 (53, 4123) 19.7 (0.4, 73.3) 18.4 (7.6, 55.9) 10 (0, 84) 13.9 (5.5, 16.7) 557 (317, 949)

Sorbus aria 1969 1109 (39, 4597) 26.1 (0.4, 95.3) 18.2 (8.0, 52.2) 38 (0, 132) 11.8 (4.9, 16.3) 616 (369, 1397)

Sorbus aucuparia 705 953 (79, 3716) 29.2 (0.4, 116.8) 20.8 (8.0, 47.4) 36 (0, 106) 9.9 (3.4, 16.4) 733 (339, 1376)

Sorbus torminalis 1968 945 (39, 3291) 25.7 (0.4, 101.9) 20.2 (8.0, 54.8) 12 (0, 185) 13.9 (10.3, 16.1) 457 (324, 915)

Tilia cordata 1006 843 (26, 3910) 27.0 (1.0, 81.5) 23.3 (8.6, 86.9) 18 (0, 141) 13.1 (9.2, 17.1) 501 (297, 986)

Tilia platyphyllos 908 947 (14, 4597) 29.4 (1.7, 90.5) 22.4 (8.5, 72.6) 35 (0, 185) 12.6 (7.6, 16.5) 648 (325, 1161)

Ulmus minor 1387 938 (14, 3993) 23.6 (0.4, 89.9) 19.0 (7.6, 62.5) 12 (0, 85) 14.0 (9.6, 17.9) 443 (239, 885)

The range of the variables appears in parentheses. Stem densities, mean quadratic diameters, and basal areas include all species in the plots.
Temperatures and precipitations are the 1961–1990 averages between the months of March and September. Populus spp. includes all poplar species
except Populus tremula
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greater than or equal to 7.5 cm are measured on a radius
of 6 m from the plot center. Trees with DBH greater than
or equal to 22.5 cm but smaller than 37.5 cm are measured
on a 9-m-radius subplot. Finally, trees with DBH greater
than or equal to 37.5 cm are measured on a radius of 15 m
from the plot center. For each tree, the circumference at
breast height was measured to the nearest centimeter. The
DBH was calculated by dividing the circumference by the
constant π under the assumption that the cross section at
1.3 m in height is perfectly circular.

Until 2008, the heights of all the trees located in the
field plots were measured. In 2009, a simplification of
the sampling procedure was undertaken and about 75%
of the heights were measured. We gathered all the height
measurements that were available from 2005 to 2015 in
order to create the dataset we used in this study for a total of
592 400 observed heights.

The dataset included more than 150 different tree species
with many of them being marginal. We discarded all
the species that had less than 1000 observations in the
dataset, which left 44 species. This screening left a total of
566 170 height observations distributed in 65 420 plots. It is
worth mentioning that poplar species were not distinguished
during the inventory, except for Populus tremula L. All other
species of poplar were grouped under the label Populus spp.
A summary of the dataset can be found in Tables 1 and 2.

In addition to tree metrics, the inventory protocol
included the measurement of many plot-level variables
such as slope inclination, soil texture, composition and
depth, as well as a vegetation survey. The occurrence of
natural and anthropogenic disturbances in the past five years
was also recorded. Natural disturbances included fires,
windstorms and droughts. The occurrence of anthropogenic
disturbance, namely harvesting, was recorded when stumps
could be observed within a 0.2-ha area around the plot
center. For both natural and anthropogenic disturbances,
the inventory protocol specified a class variable based on
the severity of the disturbance. However, the number of
observations in each class was largely unbalanced in both
cases, which could be a statistical issue. In order to facilitate
the statistical analysis, we grouped the different classes into
two categories: occurrence and non-occurrence.

As a complement to these tree- and plot-level variables,
we retrieved climate variables from existing national climate
maps that were generated in the context of another study
(Piedallu et al. 2013). These maps provide monthly mean
temperatures and precipitations as well as soil water balance
and evapotranspiration at a 1-km2 resolution for the 1961-
1990 period. The climate variables were modeled using
uninterrupted series provided by a set of 237 and 432
meteorological stations for temperatures and precipitations,
respectively. The explanatory variables in these models

were variables describing topography, solar radiation, land
use, and distances to the seas. The evaluation of these maps
against independent datasets proved to be satisfactory. The
reader is referred to Piedallu et al. (2013) for further details
about the methodology.

2.2 Statistical model

The model we used in this study was inspired by Fortin et al.
(2009). It relies on the following basic linear model:

hij = 1.3+Aij ln(DBHij +1)+Bij ln2(DBHij +1)+εij (1)

where hij is the height (m) of tree j in plot i, DBHij is
the diameter at breast height (1.3 m in height), Aij and
Bij are the parameters of the model and εij is the residual
error term, which is assumed to be normally distributed with
mean 0 and variance σ 2

res, i.e., εij ∼ N(0, σ 2
res). Although it

is linear, this model exhibits a nearly asymptotic pattern like
most common nonlinear models of HD relationships. The
reader can find many of these common nonlinear models in
López Sánchez et al. (2003).

A generalized model is obtained by substituting linear
functions of plot- and tree-level explanatory variables for
Aij and Bij in Eq. 1 (Mehtätalo et al. 2015). The term
“generalized model” refers to the inclusion of additional
explanatory variables in the model, which makes the HD
relationships generalizable over large areas rather than
having to fit individual relationships to different stands
(Temesgen and von Gadow 2004). This term is not to be
confused with generalized linear models used in statistics to
model non-Gaussian responses (see McCullagh and Nelder
1989).

Even if a model accounts for many plot-level variables,
the possibility still exists that some of them have been
omitted (Gregoire 1987). The combined effect of these
omitted variables can be represented as a plot random effect,
which leads to a mixed-effects (both random and fixed)
model. Gregoire (1987) and Lappi and Bailey (1988) are
among the first who used this approach in forestry. It is
widely used today and, consequently, it will only be briefly
described here within the aforementioned context. For
further details and a broader perspective of this approach,
the reader is referred to Pinheiro and Bates (2000).

The model shown in Eq. 1 can be converted into a mixed
model by adding a plot random effect as follows:

hij = 1.3 + (Aij + bi) ln(DBHij + 1)

+Bij ln2(DBHij + 1) + εij (2)

where bi is a random effect associated with plot i, which
is assumed to be normally distributed with mean 0 and
variance σ 2

plot, i.e. bi ∼ N(0, σ 2
plot).
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The model in Eq. 2 has two error terms, one at plot level
and one at tree level. Consequently, the variance of hij has
two components:

V(hij | xij ) = σ 2
res + σ 2

plot ln2(DBHij + 1) (3)

where xij is a row vector containing the explanatory
variables of the model. An interesting feature of such
a mixed-model approach is that it makes it possible to
distinguish the variance that stems from the unobserved plot
factors, i.e. σ 2

plot ln2(DBHij + 1), from that of the tree-level

Table 3 Explanatory variables included in the functions that replaced parameters Aij and Bij in the mixed model

Species Basal area of Social Slope Harvest Temperature Precipitation

other trees status inclination occurrence

Abies alba ◦ • ◦ ◦ • ◦
Acer campestre ◦ ◦ ◦ •
Acer monspessulanum ◦ ◦ •
Acer opalus ◦ ◦ ◦ ◦ ◦
Acer pseudoplatanus ◦ ◦ ◦ •
Alnus glutinosa ◦ • ◦ ◦ •
Arbutus unedo ◦
Betula pendula ◦ • ◦ ◦ •
Carpinus betulus ◦ • ◦ ◦ •
Castanea sativa ◦ ◦ ◦ •
Corylus avellana ◦ ◦ •
Crataegus monogyna ◦ • ◦
Fagus sylvatica ◦ • ◦ ◦ • ◦
Fraxinus excelsior ◦ ◦ ◦ ◦ •
Ilex aquifolium

Larix decidua ◦ ◦ ◦ ◦
Picea abies ◦ • ◦ ◦ •
Picea sitchensis ◦ ◦ ◦
Pinus halepensis ◦ •
Pinus nigra ◦ • ◦ ◦ •
Pinus nigra var. corsicana ◦ ◦ ◦ ◦ ◦
Pinus pinaster ◦ • ◦ ◦ • ◦
Pinus sylvestris ◦ ◦ ◦ ◦ •
Pinus uncinata ◦ • ◦ ◦
Populus tremula ◦ ◦ ◦ ◦ •
Populus spp. ◦ ◦
Prunus avium ◦ ◦ ◦ ◦ •
Pseudotsuga menziesii ◦ • ◦ •
Quercus ilex ◦ ◦ ◦
Quercus patraea ◦ • ◦ ◦ •
Quercus pubescens ◦ ◦ ◦ ◦ •
Quercus pyrenaica ◦ • •
Quercus robur ◦ ◦ ◦ ◦ •
Quercus rubra ◦ ◦
Quercus suber ◦ ◦ ◦ ◦ ◦
Robinia pseudoacacia ◦ ◦ ◦ •
Salix caprea ◦ ◦ •
Salix cinerea ◦
Sorbus aria ◦ ◦ ◦ ◦ •
Sorbus aucuparia ◦ ◦ ◦ ◦
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Table 3 (continued)

Species Basal area of Social Slope Harvest Temperature Precipitation

other trees status inclination occurrence

Sorbus torminalis ◦ ◦ ◦ ◦
Tilia cordata ◦ • ◦
Tilia platyphyllos ◦ ◦ ◦
Ulmus minor ◦ • ◦ ◦
Total 43 / 0 19 / 15 31 / 0 25 / 0 7 / 26 7 / 0

Circles (◦) and dots (•) indicate that the effect was entered into the model into a linear or quadratic fashion, respectively. The totals indicate the
number of linear effects over the number of quadratic effects. Populus spp. includes all poplar species except Populus tremula

residual errors, i.e. σ 2
res. On the basis of Eq. 3, it is clear

that term σ 2
plot ln2(DBHij + 1) increases along with tree

DBH, indicating that the contribution of the plot random
effect to the total variance of the prediction error increases
as well. Consequently, a DBH exists for which the plot
random effect and the residual error contribute equally to
the variance of the prediction error, i.e.

∃!DBH : σ 2
plot ln2(DBH + 1) = σ 2

res (4)

Beyond this threshold, the plot random effect contributes
more than the residual error and vice versa. This DBH,
hereafter referred to as the DBH for variance parity
(DBHparity), can be estimated from Eq. 4 as:

D̂BHparity = e

√
σ̂2res
σ̂2

plot − 1 (5)

where the hat denotes estimated parameters.

2.3 Model specifications and goodness of fit

The models included tree- and plot-level explanatory
variables in order to account for the local environment of
the trees. At the tree level, competition is known to impact
HD relationships (López Sánchez et al. 2003; Calama and
Montero 2004) since trees tend to be slender when they
grow in dense stands. We retained plot basal area as a
competition index, but we then modified this variable by
subtracting the basal area of the subject tree. The reason
behind this was that a given tree would not exert any
competition on itself. For the sake of simplicity, we will
refer to this variable as the basal area of other trees.

In addition to competition, it could be assumed that the
social status had an influence over the HD relationships. For
the same basal area, dominated trees tend to be more slender
in general than dominant trees (Pretzsch 2009, p. 189). We
tested a social status index, which was calculated as the
ratio between the DBH of the subject tree and the plot mean
quadratic diameter.

Regarding the plot-level explanatory variables, slope
inclination was considered to be a proxy for drainage since
water runs off faster when the slope is steep. The occurrence
of harvesting was also included in the model since it clearly
modified the effect of competition. For two plots with the
same basal area, trees should be mode slender in the one that
was just harvested because the competition level was higher
before harvesting.

After testing these tree- and plot-level explanatory
variables, we integrated the climate variables in the models.
More precisely, we tested the mean temperature and mean
precipitation between March and September over the 1961–
1990 period.

All the aforementioned explanatory variables were tested
in the mixed-effects model shown in Eq. 2 in the following
order: basal area of other trees, social status index, slope in-
clination, occurrence of harvesting, mean temperature, and
mean precipitation. The model was fitted for each species
independently, resulting in 44 fits. A particular explanatory
variable was kept in the model only if its effect was signifi-
cant and if it improved the model likelihood, as indicated
by the Akaike and Bayesian information criteria (AIC and
BIC, see Pinheiro and Bates 2000, p. 84). As suggested
by Burnham and Anderson (2002, p. 70) we considered
a decrease of 2 units in AIC and BIC as the minimal
improvement to keep the explanatory variable in the model.

When testing a particular explanatory variable, it was
first included in a linear fashion in the function that replaced
parameter Aij . In the case of lack of fit, two options
were successively tested. The first consisted of adding the
explanatory variable in a linear fashion in the function that
replaced parameter Bij . The second was the specification
of the square of the explanatory variable in addition to the
linear term in the function that replaced parameter Aij .

After testing each variable, we checked whether the
normalized residuals (Pinheiro and Bates 2000, p. 239)
were normally distributed with homogeneous variances. As
suggested in Fortin et al. (2008), an empirical Pearson
correlation coefficient was calculated to check if the plot
random effect associated with parameter Aij properly
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accounted for the covariance between the within-plot
residual error terms. Normalized residuals were also plotted
against the explanatory variable that was just tested to make
sure there was no unaccounted for trend left in the models.

All the fits and analyses were carried out using the
MIXED procedure available in SAS (Littell et al. 2006).
A cross-validation was also carried out in order to test the
performance of the 44 models. We performed an 11-fold

Table 4 Ranking of the explanatory variables in terms of AIC change and anticipated volume change (�̂v) if temperatures increased by 1.5◦C
compared to the 1961–1990 period

Species Basal area of Social Slope Harvest Temp. Prec. �̂v

other trees status inclination occurrence

Abies alba 3 1 5 4 2 6 + 4.5%

Acer campestre 4 1 2 3 − 5.5%

Acer monspessulanum 1 2 3 − 3.8%

Acer opalus 2 4 5 3 1 + 5.9%

Acer pseudoplatanus 2 1 4 3 + 0.4%

Alnus glutinosa 2 1 4 5 3 − 2.9%

Arbutus unedo 1

Betula pendula 1 2 3 5 4 − 0.3%

Carpinus betulus 3 1 2 5 4 − 1.3%

Castanea sativa 2 1 3 4 − 6.9%

Corylus avellana 3 2 1 + 2.1%

Crataegus monogyna 3 1 2

Fagus sylvatica 3 1 4 6 2 5 + 4.3%

Fraxinus excelsior 2 1 3 5 4 − 2.2%

Ilex aquifolium

Larix decidua 2 1 4 3 + 5.2%

Picea abies 3 1 5 4 2 + 4.0%

Picea sitchensis 1 2 3

Pinus halepensis 1 2 − 0.7%

Pinus nigra 1 2 5 4 3 − 0.8%

Pinus nigra var. corsicana 1 2 5 4 3 + 3.3%

Pinus pinaster 2 1 3 6 4 5 − 4.9%

Pinus sylvestris 1 2 3 5 4 + 2.6%

Pinus uncinata 1 2 4 3 + 7.5%

Populus tremula 2 1 3 5 4 − 2.9%

Populus spp. 1 2

Prunus avium 2 1 3 5 4 − 3.8%

Pseudotsuga menziesii 2 1 4 3 − 0.5%

Quercus ilex 1 2 3 0.0%

Quercus patraea 2 1 3 5 4 − 1.2%

Quercus pubescens 1 2 3 5 4 −4.0%

Quercus pyrenaica 1 3 2 − 22.2%

Quercus robur 2 1 3 5 4 − 3.1%

Quercus rubra 1 2

Quercus suber 1 2 3 4 5 − 4.4%

Robinia pseudoacacia 2 1 3 4 − 3.7%

Salix caprea 1 3 2 − 4.8%

Salix cinerea 1

Sorbus aria 2 3 1 5 4 − 0.1%

Sorbus aucuparia 1 4 3 2 + 3.7%

Sorbus torminalis 1 2 4 3 0.0%
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Table 4 (continued)

Species Basal area of Social Slope Harvest Temp. Prec. �̂v

other trees status inclination occurrence

Tilia cordata 2 1 3

Tilia platyphyllos 2 1 3

Ulmus minor 3 1 4 2 − 4.3%

Total 35 31 8 0 9 1

Temp.: mean temperature
Prec.: mean precipitation. A ranking of 1 indicates the greatest contribution in terms of AIC decrease. The totals indicate the number of times the
explanatory variable ranked first or second. Populus spp. includes all poplar species except Populus tremula

cross-validation in which the data for a particular year were
successively omitted in the model and then used as an
independent dataset for testing model predictions in terms
of biases and root mean square errors.

When the final models were obtained, we refitted them
and successively omitted the effects one by one in order to
assess their contribution to the model fit. Larger differences
in AIC between the simplified model and the final model
were interpreted as greater contributions to the model fit. We
therefore ranked the different effects and checked if there
were emerging patterns across species.

2.4 Impact of climate variables on tree volume

Once the models were fitted, they could be used to anticipate
the effect climate change would have on tree volume. Tree
volume (vij ) can be estimated as:

v̂ij = c · π · DBH2
ij ĥij (6)

where c is the form factor (Pretzsch 2009, p. 199) and ĥij is
the height prediction for tree j in plot i based on the fixed
effects only. If we assume that the forest conditions remain
the same and the form factor remains constant, then the
average relative change in volume (�v) can be estimated as:

�̂v =
∑

i

∑
j wij · DBH2

ij ĥ
∗
ij∑

i

∑
j wij · DBH2

ij ĥij

− 1 (7)

where wij is the sampling weight of tree j in plot i and ĥ∗
ij is

the height prediction under the anticipated climate change.
Note that form factor c and constant π have been factored
out and sampling weight wij needs to be included in Eq. 7
because the plot area changes depending on tree DBH.

In terms of anticipated climate change, we used the
representative concentration pathway (RCP) 2.6 of the
IPCC, which is in line with the Paris climate agreement
(Sanderson et al. 2016). RCP 2.6 is based on the forecasts of
32 models (IPCC 2013a, p. 1315). Compared to the 1986–
2005 reference period, it predicts that summer temperatures

will be 1.0 to 1.5◦C higher in 2081–2100 in France, while
summer precipitation is expected to remain stable (IPCC
2013b, p. 75). For the sake of simplicity, we assumed that
the temperature from March to September would increase
by 1.5◦C compared to the 1961–1990 period and that all
other explanatory variables would keep their current values.

3 Results

The summary of the explanatory variables that had a
significant effect on tree height is given in Table 3. The
basal area of other trees was entered into all of the models,
except that of Ilex aquifolium, in a linear manner. The social
status index was entered into the model for 34 out of 44
species, half of these being in a quadratic fashion. The mean
temperature was part of 33 models, with the quadratic form
being more frequent than the linear form. The slope came
next, being part of 31 out of 44 models, all in the linear
form. The harvest occurrence also had a significant effect
in 25 models. Finally, the mean precipitation was kept in
seven models. The parameter estimates are listed in the
Supplementary Material (Tables SM1 and SM2).

The cross-validation showed estimated biases that were
generally within the range of ± 4% and root mean square
errors below 30% (see Tables SM3 and SM4 in the
Supplementary Material). There was no evidence of lack of
fit as those biases that exceeded the range ± 4% could not
be associated with any species in particular. However, year
2005 was the one that counted more estimated biases out of
the ± 4% range.

The ranking of the different variables in terms of their
contribution to the model fit is shown in Table 4. The basal
area of the other trees and the social status index accounted
for the most or the second most important effect in 35 and 31
models, respectively. The slope inclination came next with
eight out of 44 models, followed by the temperature with
nine models. The precipitation counted among the two most
important effects in only one model.
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Fig. 1 Mean predicted heights
as a function of tree diameter at
breast height (DBH). Gray areas
delineate the 95% confidence
intervals. The dots indicate the
average DBH in the dataset. The
average, as observed in the
dataset, was used for the other
model variables, except for the
mean quadratic diameter that
was set to the DBH in order to
maintain a constant social status

For most species, the DBH for variance parity was
smaller than 20 cm (see SM5 in the Supplementary
Material). In other words, beyond this threshold the plot
random effect contributed more than the residual error to
the variance of the predictions. Abies alba, Larix decidua
and Picea abies were the only species that exceeded
this threshold, with DBH for variance parity estimated at
26.6 cm, 20.4 cm, and 21.0 cm, respectively.

In order to better determine the magnitude of the different
effects, model predictions were generated. Mean predicted
heights as a function of tree DBH are shown in Fig. 1
for the most abundant species in terms of volume (IGN
2017). Predictions were generated by varying tree DBH
while maintaining the other model variables at their average
values in the dataset. The mean quadratic diameter was
the only exception to this rule. It was set to the DBH to
ensure that the social status of the tree would not change.
For the same DBH, mediterranean and sub-Mediterranean

species generally tended to be shorter than the other species.
This was the case of Quercus pubescens, Castanea sativa,
Quercus pyrenaica, and Pinus halepensis (Fig. 1a, d, and
f). Coniferous species such as Abies alba, Picea abies, and
Pseudotsuga menziesii generally tended to be taller than
broadleaved species for a given DBH (Fig. 1e, f).

The effect of the basal area of other trees, which
represents the competition at the plot level, is shown in
Fig. 2 for the average trees of the most common species. All
other things considered, an increase in the basal area of other
trees induced an increase in tree height for all species. Some
species were less sensitive than others, such as Carpinus
betulus and Robinia pseudoacacia (Fig. 2b, d). In contrast,
Pinus sylvestris appeared to be one of the most sensitive
species to the basal area of other trees.

The effect of the social status on tree height is shown
in Fig. 3. All other things considered, dominant trees, i.e.,
trees with social status indices greater than 1, were more
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Fig. 2 Mean predicted heights
as a function of the basal area of
other trees. Gray areas delineate
the 95% confidence intervals.
The dots indicate the average
basal area of other trees in the
dataset. The average, as
observed in the dataset, was used
for the other model variables

tapered while dominated trees, as indicated by social status
indices smaller than 1, tended to be more slender. Some
species were less sensitive to social status than others. For
example, Castanea sativa and Quercus pyrenaica showed
small, but still significant, differences between dominant
and dominated trees (Fig. 3d).

The slope inclination had a negative effect on the height
of most species (Fig. 4). Abies alba and Picea abies were the
only notable exceptions with a slight increase in tree height
along the slope inclination. The effect of harvest occurrence
was positive in all the models where it was entered and
generally corrected for the decrease in basal area following
thinning (result not shown).

The effect of mean temperature from March to Septem-
ber over the 1961–1990 period is shown in Fig. 5 for the
major species with a quadratic effect. All other things con-
sidered, a change in the temperature could induce changes
of several meters in the mean predicted heights. For most
species, the observed average temperatures in the dataset
were close to the temperature that maximized tree heights.

The exceptions to this pattern were Fagus sylvatica, Abies
alba and Picea abies for which the current average temper-
ature was below the optimal temperature (Fig. 5b,e), and
Castanea sativa for which the current average temperature
was beyond the optimal temperature (Fig. 5d).

The precipitation effect was positive (Fig. 6). Some
species were less sensitive than others to changes in
precipitation. For example, Abies alba seemed less affected
than Pinus pinaster, Quercus suber, and Fagus sylvatica.

As shown in Table 4, the anticipated volume change
at the end of the twenty-first century under the RCP 2.6
climate change scenario and the assumptions of constant
forest conditions and constant form factors varied across
species. A total of 22 species showed a decrease in volume,
most of them being considered either as Mediterranean
species or as species typical of plains and hills (Rameau
et al. 1989). The species with the greatest decrease in
volume was Quercus pyrenaica, followed by Castanea
sativa and Acer campestre, with estimated changes of
−22.2%, −6.9%, and −5.5%, respectively. An increase in
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Fig. 3 Mean predicted heights
as a function of social status
index calculated as the ratio
between tree DBH and plot
mean quadratic diameter.
Positive and negative indices
indicate dominant and
dominated trees, respectively.
Gray areas delineate the 95%
confidence intervals. The dots
indicate that the social status
index is equal to 1, i.e., tree
DBH is equal to mean quadratic
diameter. The average, as
observed in the dataset, was used
for the other model variables

tree volume was predicted for 11 species that were mainly
considered as typical of mountain areas. Pinus uncinata,
Larix decidua, Abies alba, and Fagus sylvatica counted
among the species with the greatest increases, estimated at
+ 7.5%, + 5.2%, + 4.5% and + 4.3%, respectively. When
pooling the 44 species together, the models predicted a
decrease of 0.3%.

4 Discussion

The existing literature provides a large array of plot metrics
that have been tested in HD relationship models, including
stem density, basal area, dominant height, or diameter,
arithmetic or quadratic mean diameter, relative spacing
indices, and age (Castedo Dorado et al. 2006; Garber et al.
2009; Crecente Campo et al. 2014; Mehtätalo et al. 2015;
Sharma and Breidenbach 2015; Adamec and Drápela 2016;
Saud et al. 2016). However, climate variables have been

overlooked in most studies. With the concerns related to
climate change, evaluating the climate effects in generalized
HD relationships has become essential, especially if those
relationships are to be used in growth forecasts. Given
that climate variables are now available through maps
or software (e.g., Régnière et al. 2014)), we hardly see
any reason for not testing them in these HD relationship
models. Compared with previous studies, the originality of
our work lies in the fact that our HD relationship models
accounted for temperature and precipitation in addition to
tree competition, tree social status, and plot-level factors.

4.1 Temperature and precipitation effects

Our results show that the mean temperature from March
to September had a significant effect on the height of
most species, with this effect being quadratic in most cases
(Table 3). This effect could hardly be explained by different
forest conditions since the models already accounted for tree
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Fig. 4 Mean predicted heights
as a function of the slope
inclination. Gray areas delineate
the 95% confidence intervals.
The dots indicate the average
slope inclination in the dataset.
The average, as observed in the
dataset, was used for the other
model variables

size and social status, competition, slope inclination, and the
occurrence of harvesting. Moreover, the magnitude of the
effect was considerable, showing that the mean predicted
height can change by several meters depending on the mean
temperature (Fig. 5). We found either no significant effect
or only a linear effect of the temperature for many species
with less than 1000 plots, which suggests that the sample
size and the geographical scope are two critical factors to
capture this effect.

The results we obtained about temperature are in
accordance with those of previous studies. First, an optimal
temperature exists for photosynthesis and growth (Ericsson
et al. 1996; Lin et al. 2012). Secondly, temperature affects
height growth more than diameter growth (Way and Oren
2010). The predicted heights shown in Fig. 5 reflect these
two aforementioned trends: at the optimal temperature, trees
grow faster and they allocate the additional carbon to height
growth in priority.

A quadratic effect of temperature like the one we found
for 26 out of 44 species also supports the idea of a thermal

optimum for height growth (Way and Oren 2010). From
an ecological perspective, the temperature of the growing
season clearly contributes to the definition of the thermal
niche of a particular species. It was surprising to find that
the average temperatures observed in the dataset were close
to the optimal temperatures for most species, as shown in
Fig. 5. In other words, the trees of a particular species are
more likely to be found in areas where the temperature
effect on their heights is optimal. The optimal occurrence of
plant species has already been found to coincide with other
optimal features such as abundance (Van Couwenberghe
et al. 2013). This assertion seems logical, but considering
that nearly half the French forest is intensively managed
(Anonymous 2000), it can be further concluded that either
forest management has not greatly impacted the distribution
of most tree species or that it has favored the establishment
of these species under optimal conditions.

Site indices have traditionally been used as a proxy for
site fertility in models of HD relationships (e.g., López
Sánchez et al. 2003). However, some authors recently
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Fig. 5 Mean predicted heights
as a function of the 1961–1990
mean temperature from March
to September. Gray areas
delineate the 95% confidence
intervals. The dots indicate the
average temperature in the
dataset. The average, as
observed in the dataset, was used
for the other model variables

demonstrated that site index was not as stable over time
as was expected (Bontemps et al. 2009). As a response,
climate-sensitive site indices were developed (e.g., Seynave
et al. 2005). Whether they are climate sensitive or not, site
indices are never truly observed, but are predicted instead.
From a statistical point of view, integrating them in a
model of HD relationships makes uncertainty assessment
of predictions more complex. For this reason, it seemed
preferable to include these climate variables directly in the
models of HD relationships and not through a climate-
sensitive site index.

The identification of these optimal temperatures and the
fact that the average observed temperatures were close to
them can be a concern in the context of climate change.
Under the representative concentration pathway (RCP) 2.6
of the IPCC, summer temperatures are expected to increase
by 1.5◦C by the end of the twenty-first century in France
(IPCC 2013b, p. 75). This increase complies with the target
of the Paris climate agreement (UNFCCC 2015). As shown
in Table 4, this change in temperature is likely to affect

tree height, which in turn impacts tree volume. Under the
assumption that forest conditions, in terms of competition
and social status, remain the same and that the form factor
is constant, approximately two thirds of the species with
climate-sensitive HD relationships showed decreases in
volume. For some of these species, the decrease was close
to or even greater than 5% (Table 4). It must be stressed
that the assumptions behind these anticipated changes are
strong. First, forest conditions will probably be different at
the end of the twenty-first century. Actually, the decrease in
volume could be compensated for if the distribution of the
species shifted towards sites that are currently colder than
the optimum. It has been suggested that migration-assisted
strategies could be an effective means of mitigation against
climate change (Hof et al. 2017).

Secondly, the taper of some species was recently found
to be climate sensitive (Schneider et al. 2018), which means
that the form factor will probably change in the future.
Species with greater tolerance to shade and waterlogging
tend to decrease their taper and, consequently, to increase
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Fig. 6 Mean predicted heights as a function of the 1961-1990 mean
precipitation from March to September. Gray areas delineate the 95%
confidence intervals. The dots indicate the average precipitation in the
dataset. The average, as observed in the dataset, was used for the other
model variables

their volume for the same DBH and height (Schneider
et al. 2018). Depending on the species ecology, this
taper adaptation could either exacerbate or compensate the
change in volume that we found in this study. Because
they rely on these two strong assumptions, the anticipated
volume changes shown in Table 4 should be considered with
precaution. The true change should lie somewhere between
these predicted changes and no change at all, which means
perfect adaptation. This remains to be investigated.

In order to identify this optimal temperature, the territory
under study must show a diversity of temperatures and these
temperatures must include the optimal temperature of the
thermal niche. France has a wide variability in terms of
climate influences and topography. Oceanic and degraded
oceanic influences meet in Northern France, the south
is mainly under a Mediterranean climate and mountain
climatic influences are present in the Alps, Pyrenees, and
Massif Central (Joly et al. 2010).

A reason that would explain why the quadratic effect
of temperature was not revealed in previous studies (Fortin
et al. 2009; Feldpausch et al. 2011; Lines et al. 2012;
Hulshof et al. 2015; Auger 2016) could be due to the
fact that the geographical scope of the data did not cover
a sufficient gradient of temperature or that the optimal
temperature was not located within this geographical scope.
This could be especially true for the study of Fortin
et al. (2009) and Auger (2016). Most species in these
studies have native ranges that extend further south so that
the optimal temperatures may lie somewhere beyond the
southern border of Quebec. This might also be the case for
some of the seven species that showed a linear temperature
effect in this study.

In our data, mean temperature and precipitation from
March to September were correlated at − 0.52. Although

this was a moderate level of correlation, it could be argued
that the effect is not one of temperature but rather one of
precipitation. In all our models, we alternatively tested the
temperature and the precipitation when it came to including
the climate variables. The idea was to identify which climate
variable resulted in the greatest improvement of the model
fit before testing the other variable. In the vast majority
of cases, including temperature resulted in a greater
improvement than including precipitation, with Quercus ilex
and Sorbus torminalis being the two exceptions (Table 3).
This result pleads for a greater effect of temperature on
tree height when compared to the effect of precipitation.
In Spain, the magnitude of the precipitation effect was
also found to be smaller than that of the temperature for
most species (Lines et al. 2012). On the contrary, Hulshof
et al. (2015) found that the height of conifers was more
impacted by precipitation than temperature in the USA.
However, their models did not account for tree social status
or competition from other trees and it can be argued that
the significant climate effect they found was partly due
to different competition levels and social status along the
climate gradient. In our study, we disentangled these effects
by including a competition index and a social status index
before testing the climate variables.

4.2 Competition effect

The competition has an obvious effect on tree allometry,
as shown in Fig. 2. The greater this competition level is,
the mode slender the trees will be. This effect is a direct
consequence of the carbon allocation strategy, which favors
height growth before diameter growth (Oliver and Larson
1996, p. 75). Many authors identified this competition
effect and took it into account in their models, either
through plot basal area or the basal area of larger trees
(BAL) (e.g., Temesgen and von Gadow 2004; Garber et al.
2009; Feldpausch et al. 2011; Crecente Campo et al. 2014;
Forrester et al. 2017).

In our study, we considered the basal area of other trees
since it could hardly be assumed that a particular tree would
be competing with itself. More precisely, we wanted to
make sure that trees growing alone in their plot would have
a competition index of 0, something that is impossible when
using plot basal area. During some preliminary trials, we
compared the basal area of other trees with plot basal area
in terms of model fit. Excluding the target tree from the
basal area did not make a big difference in the model fits.
However, we decided to keep this competition index since it
made more sense from a biological point of view.

The other option would have been to use the BAL com-
petition index. Temesgen and von Gadow (2004) presented
the BAL as a convenient index that simultaneously accounts
for social status and competition. We rejected this option
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because neighbor trees, even if they are smaller in diameter
than the target tree, affect crown development through side
shading (Oliver and Larson 1996, p. 71). Since the volume
increment usually increases from the top of the tree to the
base of the live crown (Smith et al. 1997, p. 49), these com-
petitors necessarily affect stem taper and, consequently, the
HD relationship. Moreover, there was no reason to assume
that social status and competition had a joint effect, so we
decided to model them independently.

During preliminary trials, we also tested stem density
alone or in interaction with basal area. In either case, this
variable did not improve the model fit and, consequently, it
was not retained in the model. Some relative density indices
also exist (Jack and Long 1996) and could have been used
to characterize the competition effect. However, there are
two constraints related to the use of those indices: they are
usually designed for pure stands and they are not available
for all the species we had in this study.

4.3 Social status effect

The social status index was calculated as the ratio between
the DBH of the target tree and the mean quadratic diameter
(MQD) of its plot. The inclusion of plot MQD in HD
relationship models was already found to substantially
improve their fit (Saud et al. 2016). In all the models that
included this effect, our results showed that the dominant
trees tended to be more tapered than trees with a diameter
close to the MQD while dominated trees were more slender,
a pattern that is typically observed in even-aged stands
(Pretzsch 2009, p. 189). For a few species, however, the
effect of the social status on tree height was relatively small.
This was the case of Castanea sativa and Quercus pyrenaica
(Fig. 3).

Fortin et al. (2009) also found an effect of the social
status in their general model of HD relationships in Quebec,
Canada. However, their social status index was calculated
as the difference between tree DBH and plot MQD and not
the ratio between these two variables. Moreover, they did
not manage to find an interaction between the social status
and the species. In her revision of the model, Auger (2016)
found that the social status index based on the DBH:MQD
ratio outperformed the difference-based index and had a
negative effect on tree height for many species.

During preliminary trials, we compared the two indices
and we found out that the ratio was better for some species
but worse for others. Globally, the ratio was slightly better
than the difference and for this reason, we finally chose
to use it. However, there are some issues related to this
ratio. First, it is asymmetrical in the sense that dominant
trees can exhibit values that are much greater than 1
while dominated trees are by definition bounded between
0 and 1. From a statistical point of view, those dominant

trees growing over a large number of small trees can turn
out to be influential observations because of their high
leverage. In practice, dominated trees are those that can
lose their epinastic control and may expand horizontally
instead (Larson 1992). This decrease in apical dominance
combined with the development of lateral branches leads to
a plagiotropic architecture (Kunstler et al. 2005) that could
be overlooked with the ratio-based social index.

Secondly, the ratio-based index assumes that the effect of
the social status has nothing to do with tree size. In other
words, a tree of 20 cm in DBH growing in a plot with a
MQD of 10 cm has the same social status index than a
80-cm tree growing in a plot with a MQD of 40 cm. This
assumption is subject to debate and the objective of our
study was not to provide a clear answer as to which social
index is the best. A thorough comparison between these two
social status indices would clearly bring new insights into
the morphology of the difference species.

4.4 Slope effect

In their studies, Fortin et al. (2009) and Auger (2016) found
a significant effect of the drainage class over tree height,
where trees growing in xeric conditions were generally
shorter. In this study, we did not have access to the drainage
class. However, we found a negative effect of the slope
inclination for 31 out of 44 species. The slope and the
drainage are dependent. Although the location along the
slope plays an important role, the greater the inclination
is, the faster the drainage will generally be. Moreover,
trees growing on steep slopes have been found to be less
sensitive to wind damage (Klaus et al. 2011; Hanewinkel
et al. 2014), which could be explained by an acclimation
to greater wind stress. Meng et al. (2008) highlighted the
negative effect of mean wind speed in the height-diameter
relationship of lodgepole pine (Pinus contorta Engelm.). In
response to the mechanical stress induced by wind bursts,
trees usually allocate more resources to diameter growth in
order to prevent stem breakage (Bonnesoeur et al. 2016).
Unfortunately, we did not have access to wind speeds in
our data and, consequently, it was impossible to distinguish
this effect from that of the drainage. Information about the
topographic location of the plot, such as upper slope, lower
slope or flat land, could also be variables of interest for
expressing both the wind and the drainage effects. This
remains to be investigated.

It could also be argued that the slope inclination is
correlated with the temperature since steeper slopes are
observed in mountain areas where the temperature is
lower. We further investigated the relationship between
slope inclination and temperature and obtained a Pearson
correlation coefficient of −0.307, which can be considered
as a weak negative correlation.
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4.5 Modeling approach

Even though our models included a large array of
explanatory variables, a large prediction error remained. As
a matter of fact, the root mean square error was larger than
2.0 m for most species (see SM4 in the Supplementary
Material). The mixed-model approach we used made it
possible to assess the relative contribution of the plot
random effect to the total variance of the prediction error.
It turned out that this contribution was greater than that
of the residual error for trees larger than 20 cm in most
cases (see SM5 in the Supplementary Material). The mixed-
model approach has been widely used in the context of HD
relationships (e.g., Castedo Dorado et al. 2006; Feldpausch
et al. 2011; Lu and Zhang 2013; Adamec and Drápela 2016;
Kearsley et al. 2017), and the importance of the plot random
effects that we found in this study is in accordance with
the results of previous studies. For example, Hulshof et al.
(2015) showed that R2 conditional on the random effects
predictors were much higher than marginal R2. Feldpausch
et al. (2011) also outlined the strong influence of the plot
random effect on HD allometry.

Plot random effects can be interpreted as one or many
unobserved plot-level variables that have a significant effect
on the response (Gregoire 1987). Even though our mod-
els included plot-level variables such as slope inclination
and harvest occurrence, it appeared that they were still far
from explaining all of the between-plot variability. Dur-
ing preliminary trials, we tested additional plot-level vari-
ables such as soil type and texture but none of them was
found to have a significant effect on tree height. Kroon
et al. (2008) found a significant effect of the genetic ori-
gin on the HD relationships, which could partly explain the
between-plot variability we observed. The history of distur-
bances, whether they be natural or anthropogenic, probably
impacts tree allometry as well. However, the availability of
the data to account for this history is a major issue.

In this study, we only had access to recent disturbances.
When it occurs in the last five years, harvesting can have a
significant effect on tree height. However, this effect must be
interpreted as a correction for the basal area effect. In spite
of our efforts, we did not manage to quantify the impact
of natural disturbances on tree height in our models. Fortin
et al. (2009) showed that the effect of recent natural distur-
bances is significant, but smaller than that of recent harves-
ting in terms of magnitude. Our data covered the 2005–2015
period and only a few large-scale disturbances occurred
within this interval. This could explain why our attempts
were unsuccessful. We expect that future inventory cam-
paigns will provide additional observations and make the
quantification of the effect of natural disturbances possible.

The plot random effect specification in our models
is subject to debate. Theoretically, each parameter could

be associated with a plot random effect as suggested by
Hall and Bailey (2001). In our study, this means that an
additional plot random effect could have been associated
with parameter Bij in Eq. 2. However, in practice, this often
leads to convergence problems when maximizing the model
likelihood (Hall and Bailey 2001). This is precisely what
happened for many species in this study and, consequently,
we kept the simpler random effect specification shown in
Eq. 2. Another option would have been to set the random
effect on the model intercept. However, such a random
effect specification assumes that the average difference in
tree height between two plots is the same regardless of the
tree diameters. Actually, it can reasonably be assumed that
smaller trees are more alike across the plots than larger trees,
which is precisely the reason why we set the plot random
effect on parameter Aij . To make sure that this assumption
hold, we refitted all the models, but this time with the plot
random effect on the intercept. This resulted in a worst fit
for all 44 models.

Compared to previous studies on the topic, our study is
based on a different model. Many studies relied on the gen-
eral model y = A · DBHB + ε. This model is nonlinear and
convergence is usually harder to achieve when the model
includes random effects. An appealing alternative that was
used by some authors consists of linearizing the model as
follows: ln(y) = ln(A)+B · ln(DBH)+ ε (e.g., Feldpausch
et al. 2011; Chave et al. 2015; Hulshof et al. 2015). The
model can then be fitted using a regular linear mixed-effects
model. Although this linearized form has some advantages
in terms of fitting, it implies a back transformation in order
to obtain height predictions on the original scale. A naı̈ve
back transformation of log-transformed responses implies
a bias and some correction factors are required to obtain
unbiased predictions (Duan 1983; Végiard and Ung 1993).
Since our model is purely linear, it does not suffer from this
back-transformation bias. Moreover, the link between the
response variable and the explanatory variables is easier to
interpret: the parameters actually represent the change in
the response variable caused by a one-unit increase in the
explanatory variables.

Our model also makes it possible to test quadratic effects
such as those shown in Fig. 5. With the original nonlinear
model y = A · DBHB + ε, this is still possible: parameter
A can be replaced by a linear function involving the
temperature and the square of the temperature. However,
with the log-transformed version ln(y) = ln(A) + B ·
ln(DBH) + ε, the effects are assumed to be multiplicative
(Draper and Smith 1998, p. 278). Quadratic effects such as
those shown in Fig. 5 could only be achieved by specifying
the temperature and the logarithm of the temperature in the
model, which makes the model formulation more complex.

This being said, this linear model of ours is not perfect,
and during preliminary trials, we observed that inconsistent
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predictions could be obtained when the models of some
species were used to generate predictions for trees with
diameters below the minimum diameter, i.e., DBH <

7.5 cm. Some predictions were actually smaller than 1.3 m.
This model misspecification could be corrected by linearly
interpolating between the intercept of 1.3 m and the
predicted height when DBH = 7.5 cm. This remains to be
tested and implemented. In the meantime, we recommend
not using the models with trees smaller than 7.5 cm in DBH.

We chose to use the temperature and precipitation
from March to September because it provided a better
fit during preliminary trials. The climate influence could
be further refined through a thorough comparison of the
available climate variables such as monthly temperatures
and precipitations, as well as degree-days. Variables
representing the water availability for trees such as soil
water balance (Piedallu et al. 2013) could perform better
than precipitation. During the preliminary trials, this was
not the case, but this might be due to the fact that the spatial
distribution of soil water balance remains imprecise.

We did not test stand metrics such as stand age,
dominant height, or dominant diameter in our models
for several reasons. Age measurements were taken on a
very small subsample. Consequently, there was a great
deal of uncertainty in the stand age estimates. Dominant
heights were also tricky to calculate with the data we
had because some heights were unobserved in the 2009
inventory campaign and after. Moreover, testing dominant
height in a model of HD relationships when it is calculated
with the same height observations that are used to fit the
model is a concern from a statistical point of view. In
such a context, tree height is both the response variable
and an explanatory variable in the model, which leads to
overestimate the precision of the predictions (Perron et al.
2009, p. 614). Dominant diameter could have been tested in
the model. However, many plots had a mixed composition
and some species were only represented by one or a few
trees in each plot. The meaning of dominant diameter is
questionable in such a context.

5 Conclusions

On the basis of the results of this study, we reached the
following conclusions:

• The mean temperature from March to September
affected the height-diameter relationship of most
species. Although the competition as represented by the
basal area of other trees and social status contributed
more to the model fit, temperature was not a marginal
effect that can be overlooked. It ranked first or second
in terms of contribution to the model fit for almost a
quarter of the species (Table 4) and the mean predicted

height could change by several meters depending on its
values (Fig. 5).

• From a statistical perspective, the temperature effect
had a stronger signal than that of precipitation for most
species. It was also quadratic, which made it possible
to estimate an optimal temperature, i.e., the temperature
that maximized tree height, all other things being equal.
In most cases of quadratic effects, the average observed
temperature from March to September was close to the
optimal temperature.

• Under the climate scenario RCP 2.6 and the strong
assumptions of stable species distribution, constant
form factors and constant forest conditions in terms
of competition and social status, two thirds of the
species with a climate-sensitive HD relationship would
have a reduced height and volume by the end of the
twenty-first century.

While the decreases in volume remain relatively small at
the local scale, it could have greater impacts at the regional
level. Unless these changes are compensated for by the form
factors, forest managers should be aware that the volume
supply for some valuable species such as Quercus robur and
Pinus pinaster could drop by 3 to 5%, while that of Fagus
sylvatica, Picea abies, and Abies alba could increase by 4%
by the end of the twenty-first century.

Acknowledgements The authors wish to thank the Institut national
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