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Guido Pinkernell 

University of Education Heidelberg, Germany; pinkernell@ph-heidelberg.de   

At the 10
th

 CERME in Dublin, Pinkernell, Düsi and Vogel (2017) introduced a model of proficiency 

in elementary algebra that serves as a frame of reference for analysing and constructing material 

for diagnostic and supporting measures for students at the entry level of university. One basis of 

this model was a systematic analysis of the mathematical concepts and procedures of elementary 

algebra with regard to five aspects of understanding mathematics. This paper introduces this 

framework in detail, thus contributing to a genuine mathematics educational conceptualisation of 

content oriented knowledge for STEM subjects at university entry. 
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Conceptualisations of knowledge at university level 

The recent years have shown a growing interest of mathematics educators for the transition from 

secondary to tertiary phase, which is mainly being characterised as a gap between mathematical 

levels and institutional cultures. In her analysis Gueudet (2008) describes differences with regard to 

modes of conceptualising mathematical objects, also different levels of rigour in communication or 

reasoning, and institutional differences, e.g. concerning the didactics of teaching and learning 

mathematics. Thomas, de Freitas Druck, Huillet, Ju, Nardi, Rasmussen and Xie (2015) come to 

similar findings when they analyse the transition from four different theoretical perspectives. One 

aspect that adds to these cognitive, didactical and institutional differences, however, is the content 

orientation that appears to dominate discussions about the demands and deficits of students in 

STEM subjects at university entry. This becomes manifest, for example, in catalogues of minimum 

mathematical requirements (e.g. cosh, 2014) or in a large-scale delphi study with mathematics 

teachers in the tertiary sector (Neumann, Pigge, & Heinze, 2017). Yet when it comes to devising 

diagnostic and supporting measures, what students need to know can only be made clear when there 

is a notion of what knowing means.  

Among the frameworks for conceptualising knowledge that are familiar at university level is the so-

called Bloom taxonomy, which in a revised version by Anderson and Krathwohl (2001) differs 

between various categories of knowledge about subject matter content as well as various forms of 

cognitive activities on that subject matter content. According to Krathwohl (2002) the reasons for 

revision were to update to new psychological models of knowledge as well as to meet with 

terminology use among teachers or educators. This resulted, e. g., in formulating four categories of 

knowledge, which are factual, procedural, conceptual and metacognitive knowledge. This 

framework had been designed for trans-disciplinary purposes (Krathwohl, 2002), which is seen as 

an advantage since it seems suitable for interdisciplinary use (Maier, Kleinknecht, Metz, & Bohl, 

2010). While the procedural-conceptual dichotomy is not only part of many models of general 

knowledge but of mathematical knowledge as well (e.g. Hiebert & LeFevre, 1986; de Jong & 

Ferguson-Hessler, 1996; Rittle-Johnson & Alibali, 1999), it appears that for analysing mathematical 



 

 

content knowledge, the four categories do not quite fit to how the knowledge of mathematical 

concepts or procedures is seen from within mathematics education. Firstly, Star and Stylianides 

(2013) have shown that while psychologists see procedural and conceptual knowledge as merely 

two different types of knowledge, in mathematics education these two are regarded as of different 

quality. For many school teachers, conceptual knowledge is preferable over procedural knowledge 

which is seen as simply recalling facts or applying algorithms “without significant thought.” (Star & 

Stylianides, 2013, p. 178) Secondly, this again seems to be in contrast to how many university 

teachers view procedural knowledge. They see procedural proficiency as a necessary basis for 

following or performing symbolic mathematical reasoning. In fact, since the process of learning 

abstract mathematical concepts can be described as a progression from procedures to concepts (Tall, 

1991; Sfard, 1994), the procedural-conceptual dichotomy does not quite grasp the nature of 

knowledge in mathematics where concepts and processes are seen as part of the very same 

knowledge entities (see also Kieran, 2013). In fact, Star and Stylianides (2013) suggest 

“abandon[ing] the conceptual/procedural framework entirely and select new words or phrases to 

describe knowledge outcomes of interest.” (p. 179) 

This paper proposes a genuine mathematics educational approach to conceptualising mathematical 

knowledge at the transition from the secondary to the tertiary level. While procedural and 

conceptual knowledge is still implicitly present, it addresses specific forms of accessing or 

understanding a mathematical object, thus acknowledging the content orientation and other 

characteristics of mathematical knowledge as it is seen at university level. 

Content orientation from perspective of mathematics education 

The following ideas are rooted in the German Stoffdidaktik (subject-matter didactics) tradition. It 

shares the conviction that student oriented approaches to abstract mathematical objects are possible 

without compromising on the mathematical validity. At the centre of didactical efforts of 

Stoffdidaktik is a thorough analysis of the mathematical concept. In the past this took on the form of 

mathematical rigour that seemed unsuitable for the use in learning situations (Hußmann, Rezat & 

Sträßer, 2016). While subject of an ongoing dispute, the ideas of Stoffdidaktik are still present in 

German mathematics education. Prediger and Hußmann (2016) for example plead for a 

combination of a thorough content analysis and empirical evaluation, for which they describe four 

phases: 1. a formal analysis of mathematical conceptualisations of the teaching object, 2. a semantic 

analysis of meaningful interpretations of the teaching object, 3. a structural orchestration of the 

findings in the form of a teaching unit, and 4. constant empirical evaluation and subsequent 

modifications of steps 2 and 3 to adapt to students' needs. Especially the first two phases indicate 

that formal conceptualisations and meaningful interpretations of mathematical objects can be part of 

one didactical framework, which seems suitable for purposes at the transition from school to 

university where formal and educational perspectives meet. 

The WiGORA frame of reference 

Before going into details, this section starts with an outline of necessary a priori settings that reflect 

the area where the framework is being used, which is the transition from secondary to tertiary 

maths: First, it is a concise and summative view on what facets of knowledge of a given 



 

 

mathematical object a student needs to have at his or her disposal once it has been taught, not a 

formative view on how knowledge should be developed during school-time. Further, the facets of 

knowledge are considered normative, that is they are meant to cover mathematically sound ways of 

accessing a mathematical object which include, e.g. explanatory models or visualizations that are 

structurally equivalent to the object. Moreover, considering the formal level at which mathematics 

is being taught at university (Gueudet, 2008; Thomas et al., 2015), a correct use of terminology and 

definition based access to mathematical objects will be addressed explicitly. Simultaneously, since 

formal and abstract nature of mathematical objects requires a flexible use of representations (Duval, 

1999), this aspect will be addressed explicitly, too. And last, this framework is for conceptualising 

an “intelligent content knowledge base” (Klieme et al., 2007) for developing higher level 

competencies, it is not a framework for higher level competencies itself. 

The acronym WiGORA derives from the German labels for the five facets of knowledge that make 

up the frame of reference. In the following each facet will be introduced and illustrated by tasks that 

address the concept of integral. 

 Declarative knowledge (“Wissen”) refers to the ability to recall or identify correct 

definitions, rules or characteristic properties of a mathematical concept or procedure as well 

as the necessary terminology associated with it. Declarative knowledge basically is 

knowledge about facts and information (Anderson, 1976). It seems rather less present in 

conceptualisations of mathematical knowledge as compared to procedural or conceptual 

knowledge. While in its strictest sense it does not allow for weighting knowledge regarding 

significance, declarative knowledge here also comprises prototypical knowledge that 

characterises, but not necessarily defines, the object (Rosch, 1983; Tall & Bakar, 1992; 

Weigand, 2004). The following task asks for prototypical knowledge that differs between 

definite and indefinite integrals. 

Which of the four statements are correct? 

  
 

 
      is a number.   

 

 
      is a function. 

        is a number.         is a function. 

 Explanatory models (“Grundvorstellungen” or GV for short) refers to the ability to recall or 

identify conceptualisations of a mathematical object that "make sense" (vom Hofe & Blum, 

2016; Greefrath et al., 2016; Weber, 2017). The concept of GV is one of the key concepts of 

German Stoffdidaktik, which “should be able to, on the one hand, accurately fit to the 

cognitive qualifications of students and, on the other hand, also capture the substance of the 

mathematical content at hand” (vom Hofe & Blum, 2016, p. 227). In international context, 

GV are also being referred to as “basic ideas”, “basic notions” or “conceptual metaphors” 

(Soto-Andrade & Reyes-Santander, 2011). In its broadest sense, GV comprise normative, 

descriptive and constructive aspects. Here, at the transition from school to university, the 

notion of GV is restricted to its normative aspect. As such, a GV could result from a 

semantic analysis of a mathematical object (Hußmann & Prediger, 2016). For example, 

“reconstruction” of rates or speed is one of the GV for the concept of the definite integral 



 

 

(Greefrath et al., 2016) and is subject of the following task.  

The graph shows for any point of time the current 

fuel consumption for each of  two vehicles A and B. 

Which of the vehicles has a higher consumption overall 

over the period shown? 

 

 Operational flexibility (“Operationale Flexibilität”) refers to the ability to apply, adapt and 

modify mathematical procedures for situational needs. Going beyond simply reproducing 

step-by-step instructions this facet refers to the cognitive construct of operations in the sense 

of  Piaget and Aebli. Characterised for example by reversibility or transitivity of the mental 

operations involved (Fricke, 1970), corresponding tasks would require reversing procedures 

or selecting efficient over routine procedures (“strategic flexibility”: Rittle-Johnson & Star, 

2007). Here, procedures are not restricted to algorithms for calculating numbers or trans-

forming algebraic expressions. A procedure can be any method for solving a mathematical 

task, which e.g. could also involve switching representation forms. The following example 

shows a reverse task which can be answered by mentally visualising a graph and/or recalling 

prototypical information about the periodicity of trigonometric functions. 

Specify as many a ≠ b as you can find 

such that     
 

 
       . 

 Representational flexibility (“Repräsentationale Flexibilität”) refers to the ability to switch 

within and between representational forms or registers of a mathematical object. Following 

Duval (1999), this ability is specific to understanding higher level mathematics since a 

mathematical concept, being essentially abstract, can not be addressed otherwise: “From a 

didactical point of view, only students who can perform register change do not confuse a 

mathematical object with its representation.” (Duval, 1999, p. 318). As to the many possible 

forms in which a mathematical object can be represented, this framework is restricted to 

those that are conventionally used in mathematics such as numerical, algebraical, 

geometrical representations, or verbal paraphrasing. 

Order by value: 

  
 

 
     ,    

 

 
     ,    

 

 
     ,  0,  

  
 

 
      

 

by H. Körner (in Pinkernell et al. 2015) 

 Knowledge application (“Anwendung”) refers to the ability to identify a mathematical 



 

 

concept or procedure as suitable for solving a problem. Here, the given concept or procedure 

is considered as a potential model for mathematising situations within or outside 

mathematics (“Mathematisierungsmuster”: Tietze, Förster, Klika & Wolpers, 2000). This 

facet, as all five facets do, focusses on meaning and use of a given mathematical object. It 

does not refer to the modelling process or parts of it, but it addresses the content knowledge 

base of modelling. The following example asks for the average of values of a continuous 

function over an interval  
 

   
  

 

 
      which here is determined by graphical estimation.  

The graph shows the temperatures 

during a day in July. 

What is the average temperature 

of that day? Give a best possible estimate. 

 

 

Discussion 

With WiGORA, this paper proposes a frameworkonfsk for conceptualising mathematical 

knowledge at the university entry level. With focussing on single concepts or procedures WiGORA 

follows a similar approach as the familiar taxonomies of Bloom or Anderson and Krautwohl, yet 

with a genuine theoretical base from mathematics education. When compared with Anderson and 

Krathwohl (2001), the most significant difference is that the well-known dichotomy of procedural 

and conceptual knowledge has been abandoned. It has been replaced by facets of knowledge that 

take specific aspects of objects from formal mathematics into account, which roughly can be 

characterised as being abstract “by definition”. The facet “Grundvorstellungen” (GV) asks for the 

activation of explanatory models for the abstract mathematical object at hand. Such models can be 

hands-on activities on real or virtual material or situational interpretations within or outside 

mathematics. Equally, the facet “Repräsentationale Flexibilität” reflects the abstract nature of 

mathematical objects by asking for a flexible use of representations of this object. Also, the facet 

“Operationale Flexibilität” derives from the cognitive nature of mental operations as being 

abstractions from step-by-step procedures when it asks for heuristic flexibility in adapting 

mathematical procedures to situational needs. Among these facets, procedural and conceptual 

aspects of knowledge are still present though not explicitely. From the two other facets, “Wissen” 

corresponds to the category “factual knowledge” from Anderson and Krauthwohl (2001). 

The five facets of the WiGORA framework all stand for viewing the same mathematical concept or 

procedure from different perspectives. Although the perspectives are different, the tasks that result 

from operationalisations following the framework are not necessarily disjunct. In fact, the very 

same task could address several facets. E.g., among the five examples above, three require 



 

 

representation change. And since GV are often associated with actions and concepts from everyday 

life, they identify obvious applications for the mathematical objects. For example, the GV “average 

value” (Greefrath et al., 2016) points to applying the integral for measuring the average of a 

continuous function, as shown in the fifth task. Hence, WiGORA has its main use for analysing or 

devising test material that is based on a list of given concepts or procedures. It is meant to serve as a 

model of reference for checking whether the five facets are being covered in a diagnostic tool. 

With focussing on single objects, WiGORA does not allow for analysing a whole network of 

knowledge of a mathematical field, which from an educational perspective is characterised by a 

meaningful use of the specific language or the mastery of key concepts from that field. In the field 

of elementary algebra, these would be various aspects of knowledge specific to the structuring, 

transforming and interpreting of algebraic expressions (Pinkernell et al., 2017), as e.g. aspects of 

giving meaning to expressions (structure sense: Hoch & Dreyfus, 2006; systemic vs. surface 

structure: Kieran, 1989), or aspects of interpreting the equation sign (operational vs. relational 

meaning: Baroody & Ginsburg, 1983). Hence, the object related facets of knowledge from 

WiGORA would need to be integrated into a larger educational conceptualisation of the knowledge 

of that area. Presently, as part of the German optes+ project (Mechelke-Schwede, Wörler, Hübl, 

Küstermann, & Weigand, 2018), this is being done for the areas secondary arithmetic, functions and 

geometry. 
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