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Abstract
Let p be a prime number and let Gp be the variety of all languages recognised by a finite p-group.
We give a construction process of all Gp-preserving functions from a free monoid to a free group.
Our result follows from a new noncommutative generalization of Mahler’s theorem on interpolation
series, a celebrated result of p-adic analysis.
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1 Introduction

Throughout this paper, p denotes a prime number. A finite p-group is a group whose order
is a power of p. Let Gp denote the variety of all languages recognised by a finite p-group.
This variety, first studied over fourty years ago [2, p. 238] is generated by the p-binomial
languages, as explained in Section 4.

A function f from A∗ to B∗ is regularity-preserving if, for each regular language L of
B∗, the language f−1(L) is also regular. In a series of papers [8, 9, 10], Silva and the first
author considered a more general situation: given a variety V of regular languages, a function
f from A∗ to B∗ is V-preserving if L ∈ V implies f−1(L) ∈ V. These functions admit a
simple topological characterization. Indeed, one can attach to each variety V a metric2 dV ,
called the pro-V metric, for which the following property holds: a function is V-preserving if
and only if it is uniformly continuous with respect to dV [10, Theorem 4.1]. However, this
characterization does not solve the following more difficult question:

Synthesis problem for V. Provide a construction process of all V-preserving functions.
For instance, although several families of regularity-preserving functions have been identified,
the synthesis problem for these functions is still a major open problem.

The aim of this paper is to solve the synthesis problem for the variety Gp. We actually
solve this problem for all functions from A∗ to the free group F (B), a slightly more general
setting, since the free monoid B∗ embeds in F (B). In a free group, the class Gp is defined in
the same way: a subset of F (B) is in Gp if it is recognized by a finite p-group.

1 Corresponding author.
2 Actually, it is only a pseudometric in the general case, but a metric in the case considered in this paper.
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125:2 A Mahler’s Theorem for Word Functions

One-letter case. If A and B are one-letter alphabets, then A∗ is isomorphic to N, F (B)
is isomorphic to Z and dp is the p-adic metric. The p-adic distance between two distinct
integers r and s is the real p−n, where n is the exponent of p in the prime factorization
of |r − s|. It turns out that Mahler’s theorem on interpolation series, a celebrated result
in p-adic analysis [4, 5] stated below, leads to a construction process of the Gp-preserving
functions from N to Z.

Mahler’s theorem is based on another result of independent interest. Newton’s forward
difference formula states that for each function f : N → Z, there is a unique sequence of
integers δkf such that, for all n ∈ N, f(n) =

∑∞
k=0

(
n
k

)
δkf . The value of these coefficients

δkf is given by the formula δkf = (∆kf)(0), where ∆k is the k-th iteration of the difference
operator ∆, defined by (∆f)(n) = f(n+ 1)− f(n). A remarkable consequence of Newton’s
forward difference formula is that the map f → (δkf)k>0 defines a bijection between functions
from N to Z and integer sequences. We call this bijection Newton’s bijection.

Mahler’s theorem states that the integer sequences that give rise to Gp-preserving functions
are precisely those converging to 0 in the p-adic metric. More precisely:

I Theorem 1.1 (Mahler). The following conditions are equivalent:
(1) f : N→ Z is a Gp-preserving function,
(2) f is uniformly continuous for the p-adic metric,
(3) the functions ∆nf tend uniformly to the constant function 0 when n tends to ∞,
(4) the p-adic norm of δnf tends to 0 when n tends to ∞,
(5) f is the uniform limit of the polynomial functions fr(n) =

∑r
k=0

(
n
k

)
δkf .

This leads to a simple construction process of all Gp-preserving functions from N to Z: take
a sequence (δk)k>0 of integers converging to 0 and set f(n) =

∑∞
k=0

(
n
k

)
δk.

Functions from A∗ to F (B). When B is a one-letter alphabet, a construction process of
all Gp-preserving functions was obtained by Silva and the first author in [10, 11]. We rely on
this result to treat the general case where B is any finite alphabet.

We first equip both A∗ and F (B) with the pro-p metric, a natural extension of the p-adic
metric, fully defined in Section 4.1. We follow [7] to extend the difference operators. Let f be
a function from A∗ to a group G. For each letter a, the difference operator ∆a associates to
f the function ∆af : A∗ → G defined by ∆af(u) = f(u)−1f(ua). Next we attach a difference
operator ∆w to each word w = a1 · · · an of A∗ by setting ∆wf = ∆a1(∆a2(· · ·∆anf) · · · )).
Finally, we set δwf = ∆wf(1), where 1 is the empty word.

A noncommutative version of Newton’s forward difference formula and of Newton’s
bijection was given by the first author in [7]. We give a simpler proof of these results
in Section 2.5. In this noncommutative setting, Newton’s bijection is now the map f →
(δwf)w∈A∗ . If we just keep the elements δwf such that |w| 6 n and replace every other δwf
by the identity of the free group, the inverse of Newton’s bijection gives back a function fn,
called the n-th Newton polynomial function associated to f .

Our main result now offers a noticeable analogy with Mahler’s theorem:

I Theorem 1.2. Let f : A∗ → F (B) be a function. The following conditions are equivalent:
(1) f is a Gp-preserving function,
(2) f is uniformly continuous for the pro-p metric,
(3) the functions ∆wf tend uniformly to the constant function 1 when |w| tends to ∞,
(4) the elements δwf , where w ∈ A∗, tend to 1 when |w| tends to ∞,
(5) f is the uniform limit of its Newton polynomial functions.
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Sequential products. A new operation on functions plays a key role in our proof of The-
orem 1.2. Given an element g of a group G and a family (fa)a∈A of functions from A∗ to G,
the sequential product of g and (fa)a∈A is the function f : A∗ → G, defined, for each word
a1 · · · an ∈ A∗, by f(a1 · · · an) = g

∏
16i6n fai(a1 · · · ai−1).

A function f from A∗ to a group G is a Newton polynomial function if δwf = 1 for
almost all words w. We prove that the set of Newton polynomial functions from A∗ to G is
the smallest set of functions containing the constant functions and closed under sequential
product. Moreover, if G is a finite p-group equipped with the discrete metric, then the
Newton polynomial functions are exactly the uniformly continuous functions from A∗ to G.

Two solutions of the synthesis problem. Theorem 1.2 now leads to two construction
processes to obtain all Gp-preserving functions from A∗ to F (B). The first one consists in
taking any family (δw)w∈A∗ of elements of the free group converging to 1 when |w| tends to
∞ and to use the inverse of Newton’s bijection to get in return a Gp-preserving function from
A∗ to F (B). The second method is to start with the constant functions, use the sequential
product to generate all Newton polynomial functions and finally take the uniform closure.

Related work. Another characterization of Gp-preserving functions using profinite equa-
tions was obtained in [1, Lemma 3.3], but it only holds for regular-preserving functions. In
the case of sequential and rational functions, V-preserving functions were first investigated
by Schützenberger and the second author [12]. For instance, they proved that a sequential
function is Gp-preserving if and only if the syntactic semigroup of its minimal sequential
transducer is a finite p-group. Our results are of a different nature, since they concern all
Gp-preserving functions.

Organization. Difference operators and Newton’s forward difference formula are introduced
in Section 2. Section 3 is devoted to Newton polynomial functions and Section 4 to topological
issues. The proof of our main result is presented in Section 5. Due to space constraints,
missing proofs are given in the Appendix.

2 Difference operators and Newton’s forward difference formula

Newton’s forward difference formula gives an expression of a function from N to Z in terms
of the initial value of the function and the powers of the forward difference operator. A
noncommutative extension of this formula for functions from A∗ to F (B) was given in [7]. In
this section, we give a new proof of these results. We first need to introduce a noncommutative
version of the Magnus transformation.

2.1 Noncommutative Magnus transformation

Let A∗∗ denote the free monoid freely generated by A∗. An element of A∗∗ is a finite sequence
(w1, . . . , wn) of elements of A∗. However, to avoid any confusion between the product in A∗
and the product in A∗∗, we adopt an additive notation for A∗∗. This means that we replace
the notation (w1, . . . , wn) by w1 + · · ·+ wn. The addition of two elements (u1 + · · ·+ um)
and (v1 + · · ·+ vn) of A∗∗ is also denoted additively, which is coherent, since

(u1 + · · ·+ um) + (v1 + · · ·+ vn) = u1 + · · ·+ um + v1 + · · ·+ vn.

ICALP 2019



125:4 A Mahler’s Theorem for Word Functions

Accordingly, the neutral element of the monoid A∗∗ is denoted 0. Note however that the
addition is in general noncommutative. For each w ∈ A∗ and x = x1 + · · ·+ xn ∈ A∗∗, let
x ·w = x1w+ · · ·+ xnw. This defines a monoid right action of A∗ on A∗∗, which means that
the following formulas hold for all w,w1, w2 ∈ A∗, and for all x, x1, x2 ∈ A∗∗,

0 ·w = 0 (x1 + x2) ·w = x1 ·w + x2 ·w x · (w1w2) = (x ·w1) ·w2.

The noncommutative Magnus transformation is the mapping µ from A∗ into A∗∗ defined
recursively by setting µ(1) = 1 and, for any w ∈ A∗ and a ∈ A,

µ(wa) = µ(w) + µ(w) · a. (2.1)

For instance, µ(a) = 1 + a, µ(ab) = 1 + a+ b+ ab, µ(abc) = 1 + a+ b+ ab+ c+ ac+ bc+ abc

and µ(abcd) = 1 + a+ b+ ab+ c+ ac+ bc+ abc+ d+ ad+ bd+ abd+ cd+ acd+ bcd+ abcd.

2.2 Difference operators
Let G be a group and let f : A∗ → G be a function. Following [7], we define the difference
operators as follows. For each letter a ∈ A, ∆af is the function A∗ → G defined by
∆af(w) = f(w)−1f(wa) for any word w in A∗. We obtain in this way a function a 7→ ∆a

from A into the setM of all mappings from GA
∗ into itself. We viewM as a monoid under

the composition of mappings. Since A∗ is the free monoid on A, this function from A toM
extends uniquely to a monoid morphism from A∗ intoM. Denoting w 7→ ∆w this extension,
we get ∆1f = f and, for all words u, v in A∗,

∆uvf = ∆u∆vf. (2.2)

For instance, one gets, for any a, b, c ∈ A and u ∈ A∗,

(∆1f)(u) = f(u) (∆af)(u) = f(u)−1f(ua) (∆abf)(u) = f(ub)−1f(u)f(ua)−1f(uab)

(∆abcf)(u) = f(ubc)−1f(ub)f(u)−1f(uc)f(uac)−1f(ua)f(uab)−1f(uabc)

Here are two examples of differential operators. First, let us take A∗ = N and G = Z.
Switching to additive notation, we find that ∆1f(n) = −f(n) + f(n+ 1), the usual difference
operator, and more generally ∆kf(n) = f(n+ k)−

(
n
1
)
f(n+ k− 1) +

(
n
2
)
f(n+ k− 2)− · · ·+

(−1)k
(
n
k

)
f(n).

The next example requires an auxiliary definition. The iterated commutator [x1, x2, . . . , xn]
of n elements x1, x2, . . . , xn of a group is defined by induction by setting [x1] = x1 and
for n > 2, [x1, x2, . . . , xn] = x1[x2, x3, . . . , xn]x−1

1 [x2, x3, . . . , xn]−1. In particular, since
[x1, x2] = x1x2x

−1
1 x−1

2 , one gets [x1, x2, . . . , xn] = [x1, [x2, x3, . . . , xn]].

I Proposition 2.1. Let f : A∗ → F (A) be the function defined by f(x) = x−1. Then for
every n > 0 and for all a1, . . . , an ∈ A, ∆a1a2···anf(x) = x[a1, a2, . . . , an]−1x−1.

Difference operators commute with group morphisms:

I Proposition 2.2. Let f : A∗ → G be a function, let ϕ : G→ H be a group morphism and
let w be a word. Then ∆w(ϕ ◦ f) = ϕ ◦ (∆wf).

2.3 The integration problem
Let G be a group and let f : A∗ → G be a function. Then f and the functions ∆af , for
a ∈ A, are related by a functional equation.
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I Proposition 2.3. Let a1 · · · an be a word of A∗. Then the following formula holds:

f(a1 · · · an) = f(1)
∏

16i6n
∆aif(a1 · · · ai−1). (2.3)

The functional equation (2.3) gives an expression of f in terms of f(1) and of the family
(∆af)a∈A. We now address the opposite question, which is somewhat similar to the problem
of integrating a function from its derivative.

Integration problem. Given an element g of G and a family (fa)a∈A of functions from A∗

to G, is there a function f such that f(1) = g and fa = ∆af for all a ∈ A?

To solve the integration problem, it is convenient to introduce a new definition. Given an
element g of G and a family (fa)a∈A of functions from A∗ to G, the sequential product
Seq(g, (fa)a∈A) is the function f : A∗ → G, defined, for each word a1 · · · an ∈ A∗, by

f(a1 · · · an) = g
∏

16i6n
fai(a1 · · · ai−1). (2.4)

By abuse of language, a function f : A∗ → G is called a sequential product of a family (fa)a∈A
of functions from A∗ to G if, for some g ∈ G, f = Seq(g, (fa)a∈A).

This terminology stems from the fact that f can be realized by a sequential transducer with
infinitely many states. Indeed, consider the sequential transducer A = (A∗, A,G, 1, · , ∗, g),
where A∗ is the set of states, A the input alphabet, G the output group, 1 the initial state,
g the initial prefix. The transition and the output functions are respectively defined by
u · a = ua and u ∗ a = fa(u).

g
1 u ua

a | fa(u)

A typical computation in A looks like this
g . . .

. . .

1 a1 a1a2 a1a2a3

a1a2 · · · an−1 a1a2 · · · an

a1 | fa1
(1) a2 | fa2

(a1) a3 | fa3
(a1a2)

an | fan
(a1 · · · an−1)

and hence A computes the sequential product f defined by (2.4).
We are now ready to solve the integration problem.

I Proposition 2.4. Let g ∈ G and let (fa)a∈A be a family of functions from A∗ to G. Then
the sequential product Seq(g, (fa)a∈A) is the unique function f such that f(1) = g and
∆af = fa for all a ∈ A.

Proof. Let f = Seq(g, (fa)a∈A). Then f(1) = g by definition. Let u = a1 . . . an be a word
and a be a letter. Since ∆af(u) = f(u)−1f(ua), one gets by (2.4)

∆af(u) =
(
g
∏

16i6n
fai(a1 · · · ai−1)

)−1
g
( ∏

16i6n
fai(a1 · · · ai−1)

)
fa(a1 · · · an) = fa(a1 · · · an)

whence ∆af = fa.
To prove uniqueness, consider a function f such that f(1) = g and ∆af = fa for all

a ∈ A. Then for each word a1 · · · an ∈ A∗, one gets by (2.3),

f(a1 · · · an) = f(1)
∏

16i6n
∆aif(a1 · · · ai−1) = g

∏
16i6n

fai(a1 · · · ai−1).

and thus f = Seq(g, (fa)a∈A). J
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125:6 A Mahler’s Theorem for Word Functions

2.4 Newton’s forward difference formula
For each w ∈ A∗ and f : A∗ → G, let us set δwf = ∆wf(1) and let δf : A∗ → G be the map
defined by δf (w) = δwf . This map extends to a monoid morphism δ∗f : A∗∗ → G. Thus
δ∗f (w) = δwf and if w1 + · · ·+wn is an element of A∗∗, then δ∗f (w1 + · · ·+wn) = δw1f · · · δwn

f .

I Theorem 2.5. The equality f = δ∗f ◦ µ holds for each function f : A∗ → G.

The equality f = δ∗f ◦ µ yields a noncommutative version of Newton’s forward difference
formula. Indeed, it extends the formula given in [11, Theorem 2.2] for functions from A∗ to
Z, which itself extends Newton’s forward difference formula for functions from N to Z. To
make this formula a little more concrete, let us compute a few values of f(w). Let a, b, c, d
be letters of A. Then, using the values of µ computed on page 4, one gets

f(1) = δ1f f(a) = (δ1f)(δaf) f(ab) = (δ1f)(δaf)(δbf)(δabf)
f(abc) = (δ1f)(δaf)(δbf)(δabf)(δcf)(δacf)(δbcf)(δabcf)
f(abcd) = (δ1f)(δaf)(δbf)(δabf)(δcf)(δacf)(δbcf)(δabcf)

(δdf)(δadf)(δbdf)(δabdf)(δcdf)(δacdf)(δbcdf)(δabcdf).

Here is a more complete example. Let f : {0, 1, 2}∗ → {0, 1, 2}∗ be the Euclidean division by
2 in base 3, that is, the function which associates to a word u ∈ {0, 1, 2}∗ representing an
integer u in base 3, the unique word v of the same length as u representing the quotient of
the division of u by 2. Since 1 is a letter of the alphabet, we let ε denote the empty word.
The function f can be realized by the sequential transducer represented below.

0 1

0 | 0

2 | 1

0 | 1

2 | 2

1 | 0

1 | 2

For instance, f(1212) = 0221 since 1212 = 50 and 0221 = 25 = 50/2. Let us compute the
functions ∆xf . First, we have

∆0f(w) =
{

0 if w is even
1 if w is odd

∆1f(w) =
{

0 if w is even
2 if w is odd

∆2f(w) =
{

1 if w is even
2 if w is odd

The other values of ∆xf(w) can be obtained through the following result:

I Proposition 2.6. Let u, v ∈ A∗ and let g : {0, 1, 2}∗ → A∗ be the function defined by

g(w) =
{
u if w is even
v if w is odd

Then ∆xg(w) = ε if x /∈ 1∗ and ∆1n

g(w) = (u−1v)(−1)n−1+w2n−1 for n > 1.

It is now easy to compute the elements δw = (∆wf)(ε). One gets δ0 = 0, δ1 = 0, δ2 = 1,
δ1n0 = (0−11)(−1)n−12n−1 , δ1n1 = (0−12)(−1)n−12n−1 , δ1n2 = (1−12)(−1)n−12n−1 and δw = ε in
all other cases. We get for instance

f(1212) = δεδ1δ2δ12δ1δ11δ21δ121δ2δ12δ22δ122δ12δ112δ212δ1212

= δ1δ2δ12δ1δ11δ2δ12δ12δ112 = 01(1−12)0(0−12)1(1−12)(1−12)(1−12)−2 = 0221.
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2.5 Newton’s bijection
For each n ∈ N, let Cn be the set of words of A∗ of length at most n. Let ρn be the monoid
endomorphism on A∗∗ which maps every element of Cn to itself, and maps any other element
of A∗ to 0. In other words, if x =

∑
16i6r ui is an element of A∗∗, where each ui ∈ A∗, then

ρn(x) =
∑

i∈En(x)

ui, where En(x) = {i ∈ {1, . . . r} | |ui| 6 n}.

For each n > 0, Cn is a finite subset of A∗∗ and C∗n is a free submonoid of A∗∗. The function
µn = ρn ◦ µ from A∗ to the free monoid C∗n is called the truncated noncommutative Magnus
transformation. For instance, µ2(abcd) = 1 + a+ b+ ab+ c+ ac+ bc+ d+ ad+ bd+ cd, a
result obtained by only keeping the words of length 6 2 in µ(abcd).

Recall that to each function f : A∗ → G is associated the map δf : A∗ → G defined by
δf (w) = δw(f). The Newton map is the map δ : f → δf . Let f∗ : A∗∗ → G denote the unique
monoid morphism extending f and let γ be the map defined by γ(f) = f∗ ◦ µ.

I Theorem 2.7. The Newton map δ is a permutation on the set of functions from A∗ to G
and its inverse permutation is γ.

Proof. Since f = δ∗f ◦ µ by Theorem 2.5, γ ◦ δ is the identity function. Therefore γ is
surjective, δ is injective and it suffices to prove that γ is injective. Let g, h : A∗ → G

be such that g∗ ◦ µ = h∗ ◦ µ. Let us show by induction on |w| that g(w) = h(w). If
|w| = 0, then w is the empty word 1 , µ(1) = 1, g∗(1) = g(1), h∗(1) = h(1) and thus
g(1) = h(1). Suppose now that |w| = n + 1. Then µ(w) = µn(w) + w and since g∗ and
h∗ are monoid morphisms, one gets g∗ ◦ µ(w) = g∗(µn(w) + w) = g∗(µn(w))g(w) and
similarly h∗ ◦ µ(w) = h∗(µn(w))h(w). Since µn(w) is a sum of words of length 6 n, the
induction hypothesis gives g∗(µn(w)) = h∗(µn(w)). Now since g∗ ◦ µ(w) = h∗ ◦ µ(w), one
gets g(w) = h(w), which concludes the induction step. J

Theorem 2.7 solves the following interpolation problem.

I Corollary 2.8. For each function g : A∗ → G, there exists a unique function f : A∗ → G

such that, for all u ∈ A∗, δuf = g(u).

3 Newton polynomial functions

Let G be a group. A function f : A∗ → G is called a Newton polynomial function if δwf = 1
for almost all words w ∈ A∗. Note that by Proposition 2.6, the Euclidean division by 2 in
base 3 is not a Newton polynomial function.

Let 1 denote the constant function from A∗ to G that maps every word to 1. The degree
of a Newton polynomial function is −1 if f = 1; otherwise, it is the smallest d such that
δwf = 1 for any word of length d+ 1.

Here is another convenient characterization of Newton polynomial functions.

I Proposition 3.1. A function f : A∗ → G is a Newton polynomial function of degree d if
and only if d is the smallest integer such that ∆wf = 1 for all words w of length d+ 1.

The following result gives a construction process of the set of Newton polynomial functions.

I Theorem 3.2. The set of Newton polynomial functions from A∗ to G is the smallest set of
functions from A∗ to G containing the constant functions and closed under sequential product.

ICALP 2019
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Theorem 3.2 is an immediate consequence of the following proposition.

I Proposition 3.3. Let G be a group and let f : A∗ → G be a function. The following
conditions are equivalent:
(1) f is a Newton polynomial function of degree 6 d,
(2) there exists a family (fa)a∈A of Newton polynomial functions of degree 6 d− 1 such that

f = Seq(f(1), (fa)a∈A).
In this case, one has fa = ∆af for every a ∈ A.

Proof. (1) implies (2). Suppose that f is a Newton polynomial function of degree 6 d. Then
for any letter a, ∆af is a Newton polynomial function of degree at most d− 1. Moreover,
Proposition 2.3 shows that f(a1 · · · an) = f(1)

∏
16i6n ∆aif(a1 · · · ai−1), which proves (2).

(2) implies (1). Suppose that (2) holds. Proposition 2.4 shows that, for each letter a,
∆af = fa and hence ∆af is a Newton polynomial function of degree 6 d− 1. It follows that
f is a Newton polynomial function of degree 6 d. J

A Newton polynomial function of degree 0 is a constant map different from 1. A Newton
polynomial function of degree 1 is an affine morphism, that is, a function f of the form
f(w) = f(1)g(w) for some monoid morphism g : A∗ → G. Equivalently, conjugating by f(1),
one gets f(w) = h(w)f(1) for some monoid morphism h : A∗ → G.

The function f : A∗ → F (A) defined by f(a1 · · · an) = a1(a1a2)(a1a2a3) · · · (a1 · · · an)
is a Newton polynomial function of degree 2. Indeed, it is equal to the sequential product
Seq(1, (fa)a∈A) where each fa is the affine morphism defined by fa(u) = ua.

Recall that δ∗f is a map from A∗∗ to G, but we keep the same notation for its restriction
to C∗n. Let f : A∗ → G be a function. For each n > 0, the n-th Newton polynomial function
associated to f is the function fn from A∗ to G defined by fn = δ∗f ◦ µn. This terminology is
justified by Proposition 3.4 below.

It is not difficult to see that f0 is the constant function equal to f(1). Indeed, since
∆1f = f , one gets f0(u) = δ∗f ◦ µ0(u) = δ∗f (1) = δ1f = ∆1f(1) = f(1).

I Proposition 3.4. For each n > 0, fn is a Newton polynomial function of degree at most n.

We need an auxiliary lemma.

I Lemma 3.5. The following formula holds for all n > 0 and a ∈ A.

∆a(fn) = δ∗∆af ◦ µn−1 = (∆af)n−1

Proof of Proposition 3.4. We prove the result by induction on n. For n = 0, we have
already seen that f0 is a constant function, and thus a Newton polynomial function of degree
6 0. Applying Proposition 2.3 to fn, one gets, for every word a1 · · · ak ∈ A∗, fn(a1 · · · ak) =
fn(1)

∏
16i6k ∆aifn(a1 . . . ai−1). Now, fn(1) = δ∗f ◦ µn(1) = δ∗f (1) = f(1) and ∆afn =

(∆af)n−1 by Lemma 3.5. It follows that fn(a1 . . . ak) = f(1)
∏

16i6k(∆aif)n−1(a1 . . . ai−1).
By the induction hypothesis applied to ∆af , (∆af)n−1 is a Newton polynomial function
of degree at most n− 1. Hence by Proposition 3.3, fn is a Newton polynomial function of
degree at most n. J

A function f : A∗ → G is called a G-polynomial if f(w) = 1 for almost all words w ∈ A∗.
The degree of a G-polynomial is −1 if f = 1; otherwise, it is the smallest d such that f(w) = 1
for any word of length d+ 1. One can now enrich Theorem 2.7 as follows.



J.-E. Pin and C. Reutenauer 125:9

I Theorem 3.6. For each degree d, the maps δ and γ define mutually inverse bijections
between the set of Newton polynomial functions of degree d and the set of G-polynomials of
degree d.

Proof. It suffices to prove that δ and γ define mutually inverse bijections between the set of
Newton polynomial functions of degree 6 d and the set of G-polynomials of degree 6 d. Let
f be a Newton polynomial function of degree 6 d. Then by definition, δ(f) is a G-polynomial
of degree 6 d. Let now f be a G-polynomial of degree 6 d. Theorem 2.7 shows that
f = δ ◦ γ(f) = δγ(f). It follows that for every word w of length > d, 1 = f(w) = δγ(f)(w).
Thus γ(f) is a Newton polynomial of degree 6 d. J

4 Topology

4.1 Pro-p metrics
If B̄ is a copy of B, the free group F (B) is the quotient of (B ∪ B̄)∗ under the congruence
generated by the relations bb̄ = 1 = b̄b for all b ∈ B.

Recall that a group G is called residually p-finite if for any g 6= 1 in G, there is some finite
p-group H and some morphism G→ H whose kernel does not contain g. It is a well-known
fact that free groups are residually p-finite.

Let G be a residually p-finite group and let g ∈ G. The pro-p valuation of g, denoted
vp(g), is the largest n such that g belongs to the kernel of any morphism from G to a p-group
of order pn. The pro-p valuation is always finite, except for g = 1, in which case it is infinite.
The pro-p norm of g is |g|p = p−vp(g), with the usual convention p−∞ = 0. Finally G becomes
a metric space for the pro-p metric dp : G×G→ R defined by dp(x, y) = |x−1y |p.

The condition dp(x, y) 6 p−k means that x−1y is in the kernel of each group morphism
from G into a p-group of cardinality at most pk. We leave to the reader to verify that if
G = Z, one recovers the usual p-adic valuation, norm and metric.

Another useful example occurs when G is a finite p-group. Recall that the discrete metric
on G is the metric d defined by d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y. In this case, the
double inequality dp(x, y) 6 d(x, y) 6 |G| dp(x, y) shows that the pro-p metric is uniformly
equivalent to the discrete metric.

There are two equivalent ways to define the pro-p metric on a free monoid A∗. The first
solution is to view A∗ as a subspace of the free group F (A) and to consider the restriction
to A∗ of the pro-p metric on F (A).

The second solution is to directly define the pro-p metric as follows. Let us say that
a finite p-group G separates two words u and v of A∗ if there exists a monoid morphism
ϕ : A∗ → G such that ϕ(u) 6= ϕ(v). Then dp(u, v) = 0 if u = v and dp(u, v) = p−n, where pn
is the minimal size of a p-group separating u and v, if u 6= v.

I Proposition 4.1. Every monoid morphism from A∗ to a p-group is uniformly continuous.

Proof. Let π be a monoid morphism from A∗ to a p-group G and let u, v ∈ A∗. If dp(u, v) 6
|G|−1, then π(u) = π(v) and thus dp(π(u), π(v)) = 0. Thus π is uniformly continuous. J

Let us now review the connections with combinatorics on words and regular languages.
A word u = a1a2 · · · an (where a1, . . . , an are letters) is a subword of a word v if v can be
written as v = v0a1v1 · · · anvn. For instance, ab is a subword of cacbc.

Following Eilenberg [2] and Lothaire [3, Chapter 6], let
(
v
u

)
denote the number of distinct

ways to write a word u as a subword of v. More formally, if u = a1a2 · · · an, then(
v

u

)
= Card{(v0, v1, . . . , vn) | v0a1v1 · · · anvn = v}
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A language of A∗ is p-binomial if for some word v and some integer r it is equal to

L(v, r) = {w ∈ A∗ |
(
w

v

)
≡ r mod p}.

It follows from [2, p. 238] that a language belongs to Gp if and only if it is a Boolean
combination of p-binomial languages. We will also use the following consequence of [11,
Proposition 1.3 and Theorem 1.4].

I Proposition 4.2. Let f : A∗ → B∗ be a function. The following conditions are equivalent:
(1) f is uniformly continuous for the pro-p metric,
(2) f is Gp-preserving,
(3) for each p-binomial language L of B∗, f−1(L) is a Boolean combination of p-binomial

languages in A∗.

4.2 Uniform continuity and Newton polynomial functions
The aim of this section is to describe the uniformly continuous functions from A∗ to a
finite p-group. We first give a purely algebraic characterization of these functions (Proposi-
tion 4.3). Then we show that these functions are closed under applying differential operators
(Proposition 4.4) and under taking sequential products (Proposition 4.5).

I Proposition 4.3. Let G be a finite p-group and let f : A∗ → G be a function. Then f

is uniformly continuous for the pro-p metric if and only if there exist a finite p-group K
and a monoid morphism ζ : A∗ → K such that f factors through ζ, that is, there is a map
λ : K → G such that f = λ ◦ ζ.

I Proposition 4.4. Let G be a finite p-group. If f : A∗ → G is uniformly continuous for the
pro-p metric, then so is ∆wf for any word w ∈ A∗.

Proof. By induction and by Equation (2.2), it is enough to prove the result for w = a for
any letter a ∈ A. In this case, ∆af : A∗ → G is the composition of the following functions:

A∗ → A∗ ×A∗ A∗ ×A∗ → A∗ ×A∗ A∗ ×A∗ → G×G
u 7→ (u, u) (u, v) 7→ (u, va) (u, v) 7→ (f(u), f(v))

G×G→ G×G G×G→ G

(g, h) 7→ (g−1, h) (g, h) 7→ gh

as shown by the sequence

u 7→ (u, u) 7→ (u, ua) 7→ (f(u), f(ua)) 7→ ((f(u))−1, f(ua)) 7→ (f(u))−1f(ua) = ∆af(u).

Since the pro-p metric is compatible with the monoid structure (see [6, Section 2] or [11,
Section 1.4]), each of these functions is uniformly continuous and so is their composition. J

I Proposition 4.5. Let G be a residually p-finite group. Any sequential product of uniformly
continuous functions from A∗ to G is uniformly continuous for the pro-p metric.

Here is an important consequence of these results.

I Proposition 4.6. Let G be a finite p-group. Every Newton polynomial function f : A∗ → G

is uniformly continuous.
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Proof. We prove the result by induction on the degree d of f . If d 6 0, then f is a constant
function and hence f is uniformly continuous. Otherwise, Proposition 3.3 shows that f is a
sequential product of a family (fa)a∈A of Newton polynomial functions of degree 6 d− 1.
By the induction hypothesis, each fa is uniformly continuous and hence f is uniformly
continuous by Proposition 4.5. J

We now establish the converse of Proposition 4.6.

I Proposition 4.7. Let G be a finite p-group. If a function f : A∗ → G is uniformly
continuous for the pro-p metric, then f is a Newton polynomial function.

Several auxiliary definitions are needed to prove this proposition.
Let Fp be the field with p elements and let Fp[G] be the group algebra of G over Fp. Each

group morphism G1 → G2 extends uniquely, by linearity, to an Fp-algebra morphism from
Fp[G1] to Fp[G2]. Similarly, each function from G to Fp extends uniquely, by linearity, to a
linear form on Fp[G].

The vector space of linear forms on a Fp-algebra R (that is, the dual of R) is a left
R-module: the action is defined, for any elements x, y in R and any linear form f on R by
(x · f)(y) = f(yx).

Sketch of the proof of Proposition 4.7. Let pr be the order of G. We prove the result by
induction on r.

For r = 1, G = Z/pZ and we switch to additive notation. Thus we have to show that
∆wf = 0 for almost all w. Since Z/pZ is the additive group of the field Fp, we may consider
f as a function A∗ → Fp. Since f is uniformly continuous, there exist by Proposition 4.3
a finite p-group H, a monoid morphism ζ : A∗ → H and a function λ : H → Fp such that
f = λ ◦ ζ, see the diagram on the left hand side of the figure below.

We extend by linearity all these functions, as explained previously, and denote these
extensions by the same letters. We obtain the diagram on the right hand side of the figure
below. Now ζ is a morphism of Fp-algebra and f , as well as λ, are Fp-linear forms.

A∗ Fp

H

f

ζ λ

Fp〈A〉 Fp

Fp[H]

f

ζ λ

With these notations, one can first show that

∆wf = ∆a1···anf =
(
(a1 − 1) · · · (an − 1)

)
· f |A∗ . (4.1)

Since f = λ ◦ ζ and ζ
(
(a1 − 1) · · · (an − 1)

)
=
(
ζ(a1)− 1

)
· · ·
(
ζ(an)− 1

)
, a little bit of work

shows that(
(a1 − 1) · · · (an − 1)

)
· f =

((
(ζ(a1)− 1) · · · (ζ(an)− 1)

)
·λ
)
◦ ζ (4.2)

Let IH =
{∑

g∈H agg |
∑
g∈H ag = 0

}
be the augmentation ideal of Fp[H]. It follows from [2,

Proposition VIII.10.4] that if n > |H|, then InH = 0. Since every element ζ(ai)− 1 belongs
to IH , one gets

(
ζ(a1)− 1

)
· · ·
(
ζ(an)− 1

)
∈ InH and hence

(
(ζ(a1)− 1) · · · (ζ(an)− 1)

)
= 0.

Formulas (4.1) and (4.2) now show that ∆wf = 0, which settles the case r = 1.
Suppose now that r > 1 and let f : A∗ → G be a uniformly continuous function for the

pro-p metric. By a standard result of group theory [13, Theorem 6.5, p. 116], G has a normal
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subgroup C of order p. Now the quotient map q : G→ G/C is uniformly continuous and so
is q ◦ f : A∗ → G/C. Since |G/C| = pr−1, the induction hypothesis can be applied: there
exists n such that for any word v in A∗ of length > n, one has ∆v(q ◦ f) = 1.

Since ∆v(q ◦ f) = q ◦ (∆vf) by Proposition 2.2, one has, for |v| > n, q ◦ (∆vf) = 1 and
hence ∆vf maps A∗ into C. Note that ∆vf is uniformly continuous by Proposition 4.4.
Applying the first part of the proof to C, we get the following conclusion: for each v of length
> n, there exists nv such that for each word u of length at least nv, one has ∆u∆vf = 1.
Let N be the maximum of all nv taken over the finitely many v of length n. Then for each
word w of length at least N + n, we may write w = uv, with |v| = n and |u| > N > nv.
Then ∆wf = ∆u∆vf = 1 and thus f is a Newton polynomial function. J

Putting Propositions 4.6 and 4.7 together, we get the main result of this section.

I Theorem 4.8. Let G be a finite p-group. A function f : A∗ → G is uniformly continuous
for the pro-p metric if and only if it is a Newton polynomial function.

5 Proof of the main result

We need two results on families of functions uniformly converging for the pro-p metric.

I Proposition 5.1. Let f : A∗ → F (B) be a function. If the elements δuf , u ∈ A∗, tend to
1 when |u| tends to ∞, then the sequence fn tends uniformly to f .

I Proposition 5.2. A family of functions (gu : A∗ → F (B))u∈A∗ converges uniformly to the
function g : A∗ → F (B) when |u| tends to infinity if and only if, for any finite p-group H
and any morphism ϕ : G→ H, there exists N such that, for all u ∈ A∗ such that |u| > N ,
one has ϕ ◦ gu = ϕ ◦ g.

Proof of Theorem 1.2. The equivalence of (1) and (2) follows from Proposition 4.2. Let us
prove that (2) implies (3). Let f : A∗ → F (B) be uniformly continuous. Let H be any finite
p-group and ϕ be any group morphism F (B)→ H. Since ϕ is uniformly continuous, so is
ϕ ◦ f . By Proposition 4.7, ϕ ◦ f is a Newton polynomial function and hence, for almost all
w ∈ A∗, ∆w(ϕ ◦ f) = 1. Thus, by Proposition 2.2, ϕ ◦ (∆wf) = 1. Thus by Proposition 5.2,
(3) holds.

The implication (4)⇒ (5) follows from Propositions 3.4 and 5.1. Note that (3)⇒ (4) is
clear, and (5) ⇒ (2) follows from general theorems of topology, since, by Proposition 4.6,
Newton polynomial functions are uniformly continuous. J

6 Conclusion and perspectives

By combining topology, algebra, automata and combinatorics on words, we solved the
synthesis problem for Gp in two different ways. Our results are based on a noncommutative
extension of Mahler’s theorem, a difficult mathematical result. In addition, we introduced two
new concepts that would merit further study: the sequential product and Newton polynomial
functions. We used the sequential product to solve the integration problem for a function f
from A∗ to a group G, knowing its initial value f(1) and the functions ∆af for every letter
a. We also proved that Newton’s bijection induces a degree-preserving bijection between
Newton polynomial functions and functions from A∗ to G mapping almost every word to 1,
a surprising combinatorial result.

Although these results offer exciting new perspectives, there is still a long way to go
before one can solve the synthesis problem for regularity preserving functions. Solving the
synthesis problem for other varieties of group languages is the next challenge.
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