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The purpose of this study is to identify student difficulties concerning the linkage of various concepts of differentiability in . For that reason, we designed a task where students are encouraged to explore the logical relations between these concepts and analyse how university students work with this task. Based on a detailed a priori analysis of the task building on TDS, we present results of an analysis of students' written work on the task, produced in tutorial group meetings. We identify different types of reasoning and compare difficulty levels of the different relations.

Introduction and literature review

Differentiability and derivatives are essential topics in school and university mathematics and have been studied for many years (e.g., [START_REF] Orton | Students' understanding of differentiation[END_REF][START_REF] Zandieh | The evolution of student understanding of the concept of derivative[END_REF]. However, as [START_REF] Rasmussen | Research on calculus: what do we know and where do we need to go?[END_REF] point out, studies looking beyond first topics of calculus, for instance in multivariable calculus, are rare. From informal discussions with students and lecturers, and from our own teaching experience, we know that multivariable differentiation, an exciting and essential topic covered at the university level, is not an easy topic for many students. The transition from the one-dimensional into the multidimensional case is far from trivial, especially since there are inequivalent concepts of differentiability in . Nevertheless, the literature on the difficulties of students working with these different concepts and relating them to differentiability in the onedimensional case is scarce. [START_REF] Martínez-Planell | On students' understanding of the differential calculus of functions of two variables[END_REF] studied students' understanding of the differential calculus of functions of two variables using APOS theory and found out that the geometric interpretation of functions in two variables and especially of their partial derivatives and total differential are problematic for students. However, they focused on the geometric understanding and did not define the total differential as a linear function and especially did not look at the students' understanding of the relationships of the different concepts. Since we could not find any literature concerning students' understanding of the relationship between the different concepts of differentiability in as such, we had to refer back to the one-dimensional case. Of course, there exists only one concept of differentiability (with different interpretations), and the concept of left-or right-hand differentiability usually plays no important role, whereas directional differentiability becomes an important notion in the multidimensional case. Students' knowledge and difficulties in linking differentiability, continuity and integrability in the onedimensional case could provide helpful insights. [START_REF] Juter | The validity of students' conceptions of differentiability and continuity[END_REF] and [START_REF] Duru | Pre-service mathematics teachers' conceptions about the relationship between continuity and differentiability of a function[END_REF] found that many students believed continuity implied differentiability in the onedimensional case. Additionally, students who found the correct relations between these concepts were often not able to give sufficient justifications. When looking at the relations between differentiability, continuity and integrability, success rates are even lower [START_REF] Sevimli | Understanding students' hierarchical thinking: a view from continuity, differentiability and integrability[END_REF]. In some cases, students used the teaching sequence as an argument for the stated relations. Generalising from this, we expect even more difficulties in the multidimensional case, which may exacerbate, if the knowledge on the one-dimensional case is still fragile. A further challenge for the students is the linkage of the one-dimensional to the multidimensional case. This linkage requires that the students have acquired the interpretation of the derivative as the best linear approximation and not just the interpretation of it as a tangent line, as a local rate of change or as the limit of the difference quotient (for these different interpretations, see [START_REF] Greefrath | Aspects and "Grundvorstellungen" of the Concepts of Derivative and Integral[END_REF].

In this article, we are especially interested in the way students work with different concepts of differentiability in . We designed a task asking to explore the logical relations between these. The task was given to students in their weekly tutorial group meetings in an Analysis II class (which is, from an international perspective, more on the level of upper-division proof-oriented Real Analysis courses in the US than typical lower-division Calculus courses). We will present the task and selected results from our study examining how students in their second or higher semester worked on the designed task, showing success rates for rating and justifying the validity of different relationships and selected ways of argumentation. Thereby we want to improve understanding of students' knowledge and learning of differentiability concepts and hopefully contribute to designing suitable learning environments regarding this subject area in the future.

Theoretical framework

We base our task design and analysis on Brousseau's Theory of Didactical Situations (TDS) [START_REF] Brousseau | Theory of Didactical Situations in Mathematics[END_REF]. A situation describes the circumstances in which students find themselves concerning their milieu (the set of objects on hand, available knowledge and interaction with others). The distinction between didactical and adidactical situations is essential. A situation is of adidactic nature if the teacher does not instruct, but students work autonomously and learn by adapting to the milieu whereas, in a didactical situation, acculturation happens through institutionalisation and devolution. For a more detailed description and a well-presented introduction of TDS, see for example [START_REF] Artigue | Introduction to the Theory of Didactical Situations (TDS)[END_REF].

According to Gravesen, Grønbaek, and Winsløw (2016, p. 10), "exercises are the cores of situations of learning". They developed a framework for task design and analysis, based on TDS and focusing on four specific "potentials" of tasks. The adidactic potential of a task describes the possibilities of a task to be used in an adidactical situation: Which possibilities does a student have to engage with the task and develop new knowledge independently without additional interactions with the teacher? A task's research potential is measured by the possibilities to engage with one or more research like activities formulated by [START_REF] Gravesen | Task Design for Students' Work with Basic Theory in Analysis: the Cases of Multidimensional Differentiability and Curve Integrals[END_REF]. Linkage potential represents the possibilities for students to connect "old" and "new" knowledge. At last, deepening potential means the task's potential to intensify and elaborate the students' knowledge regarding results, notations and methods.

Research questions

We designed a task with adidactical, research, linkage and deepening potential and put the students into an adidactical situation of working on that task. We investigate how the students link the different concepts of differentiability in and want to identify students' difficulties in this subject area. In this paper, we want to answer the following research questions: RQ 1: Which of the logical relations seem to be more difficult for the students? Is the order of difficulty levels the same for the decision of validity and the associated argumentation? RQ 2: What kind of reasoning do the students use when explaining the relationships? RQ 3: How is this reasoning related to the reasoning and identified problems that we anticipated in the a priori analysis? In this paper we focus on students' work on the two questions "Does partial differentiability imply differentiability?" and "Does continuity imply the existence of all directional derivatives?".

Methodology and study design

The method of didactical engineering [START_REF] Artigue | Didactical engineering as a framework for the conception of teaching products[END_REF], evolved from TDS, provides the link between the theoretical framework of TDS and the practical implementation in this study to answer our research questions. It is composed of a preliminary analysis of epistemological, cognitive and didactical dimensions of the mathematical knowledge that is to be learned in the situation. It includes the design of the situation including an a priori analysis with the students' expected behaviour based on the choice of the didactic variables, the experimentation (usually a classroom implementation of the situation) and an a posteriori analysis with evaluation and comparison of a priori and a posteriori analyses. Guided by these steps, we will now provide a short description of our approach.

Step 1: Designing a task that supports our research interests. We used the described method of didactical engineering and conducted a preliminary analysis at first (not shown here). For this, we analysed some broadly established Analysis II books used in German universities (e.g., [START_REF] Heuser | Lehrbuch der Analysis[END_REF] concerning the essence of the concept of multidimensional differentiability. When designing the task, we oriented ourselves by the four "potentials" according to Gravesen et al.'s framework. The task analysed in this article aims at supporting the students in gaining an overview of how the different concepts of differentiability are connected. After working on this task, students should be able to explain how the concepts are connected and to give counterexamples of functions having only some of the properties. The task discussed in this paper was preceded by a prompt to recapitulate which of the connections the lecture had already covered. The discussed task was given to the students after they completed this. In the task, students are asked to examine whether different implications (called "T1" to "T15") are valid or not. The diagram used in the task can be seen in Figure 1 together with the success rates. We created the visual representation of the logical relations (similar to a concept map) in order to support students' reasoning. In particular, the diagram is to support an abstract knowledge network, which students can use as an abstract reasoning tool that some implications are true / cannot be true because other logical relations have already been proven. We were interested in how the students would use this network vs try to proof or refute a particular implication by specific arguments.

Step 2: Conducting an a priori analysis of the task. The a priori analysis of two implications (T10 and T15) can be found in the next section. It was conducted before the implementation of the task.

Step 3: Task milieu and data collection. The situation of working on the task is characterized by the task itself and the milieu in which the students found themselves. The task, which was coordinated with the teacher and teaching assistant, was given to the students of an Analysis II course in their weekly tutorial group meeting. Most of the students worked in pairs or small groups and discussed the task. They also used their lecture notes and could ask the tutor if they needed help. For this particular meeting, particular instructions for the tutors were developed: They were asked to only give strategic hints and mostly just let the students work on their own. The written work the students (n=31) produced during the tutorial group meetings was collected anonymously, scanned and then handed back to the students (without comment or marking).

Step 4: Analysis of data. We analysed the students' written solutions concerning two aspects: the correctness of students' solutions and their ways of argumentation. At first, we used a normative approach by rating the solutions: For every implication arrow, there are two separate tasks: A. deciding whether the implication is true or false, and B. stating a correct justification which could be a counterexample or a proof. Two types of missing values are coded: If there are none of the boxes checked (A) or nothing was written down (B), but subsequent subtasks were worked on, we coded it as a "missing, but attempted", i. e. we believe the lack of written work was not due to time.

If nothing is written down but none of the subsequent tasks was worked on, we coded it as "missing". For the last subtask, we decided to count as attempts every work where one of the boxes for T5 or T15 was checked, or anything was written down for B. The correct decision of A is rated one point if correct and 0 if wrong. B is rated as follows: a (nearly) right justification (i.e. correct with a minor formal error) is rated two points. We give one point for a meaningful attempt for a justification, including argumentations containing consequential errors or correct counterexamples without arguments why these are counterexamples. Wrong or incomprehensible justifications, including wrong counterexamples, are rated zero points. Two total solution rates for A and B were calculated. Here, we defined the success rate per task as the sum of the scores divided by the number of students who attempted the subtask multiplied by the maximum score (1 for A and 2 for B). For analysing the students' ways of argumentation, we used qualitative content analysis [START_REF] Schreier | Qualitative Content Analysis in Practice[END_REF] with categories deducted from ned the a priori analysis complemented with inductively found categories.

A priori analyses

The a priori analysis is the first result and serves as a research tool in the data analysis as well since the results will be compared to our expectations.

A priori analysis of "Does partial differentiability imply differentiability?" (T10)

Most students will probably state correctly that this implication is not true. A hint for this could be that if it were true, it would have probably been covered in the lecture when the other direction was discussed. Moreover, why should the lecturer introduce two different concepts if they turn out to be equivalent? We call these reasons "didactical-contract reasons". They are not mathematical reasons but based on assumptions on what constitutes the didactical contract [START_REF] Brousseau | Theory of Didactical Situations in Mathematics[END_REF]) of the lecture. For proof, there are several options. Since the students are in their second semester or higher and are used to using counterexamples, we expected that they would look for an example of a partially differentiable function that is not differentiable. The function used in the lecture to show that partial differentiability did not imply continuity (Example VII.1.5, see Figure 1) and stated in part b) of this task, which is such an example, should come to mind quickly. Some students will probably only give the counterexample without explaining why it contradicts the implication. Others will explain why the function is not differentiable by calculating the error term φ and showing that does not converge to 0 as . Another possibility is that students will argue on the abstract level of logical relations and might take advantage of the argumentation that is not continuous and therefore cannot be differentiable due to the contraposition of T3. However, it may also occur that students think the implication is true in the first place or that they have difficulties to construct own counterexamples. Based on this analysis, we expected that most students would solve task T10 successfully.

A priori analysis of "Does continuity imply the existence of all directional derivatives?" (T15)

It is important to note that the lecturer defined directional derivatives as one-sided limits in this lecture. Students could have developed a general sense of what we may call "levels or degrees of smoothness" in . These students might quickly come to the conjecture that this implication is probably not true by making the courageous generalisation from that only continuity will not imply any differentiability whatsoever. A strategy may also be to check the meaning of this implication in Students may know that -continuity for n = 1 is the same as one-dimensional continuity. Moreover, the existence of directional derivatives for n = 1 means that the function has a left-and a right-hand derivative (which need not be the same). With this clear picture, they remember that is continuous and has both left-and right-hand derivatives, so the question is whether there is an -example that is continuous but has no left-and right-hand derivatives. Alternatively, students may initially think that is a counterexample but then discover with a closer look that this is not the case. Some students might take this as a hint that the implication is, in fact, true, mainly because the only examples for continuous but non-differentiable functions coming to their minds might be jagged functions. Another example for a non-differentiable but continuous function that the students could know is the square root function in 0, which will provide a valid counterexample for T15, having a "vertical tangent" in . If they do not know this example, it might be tough for them to construct a counterexample themselves. It could also happen that students look for counterexamples not in but in or higher dimensions, but we did not expect that they would be successful with that. Students might also try to use the logical network, but this will not be rewarding. 

Description of selected results

Our expectation that the implication T10 would be one of the most straightforward tasks was correct (see Figure 1). A success rate of 100% for A (decision what is correct) is notable and satisfying. We credited 72% of the attempts in T10B with 2 points, 10% got 1 point, 7% 0 points and 10% of the attempts did not contain any written work concerning this task. The success rates in A for the recognition of the correctness of the implication T15 are lower than we expected. We expected low success rates in B for the justification in T15, but the fact that the rates lower than the rate for T2 (where the counterexample is not intuitive at all) is somewhat surprising to us. None of the students received 2 points for their reasoning, 35% of the attempts got 1 point, whereas 26% of the attempts got 0 points and 39% was coded as missing but attempted.

Results of the qualitative analysis of the written reasoning (B) in subtasks T10 and T15

For T10, we found the following categories from the a priori analysis and the data. We assigned two points for stating the function from Example VII.1.5 in the lecture as a counterexample and showing "by hand" that it is not differentiable by calculating the error term (coded "B1") or the argumentation that it cannot be differentiable because it is not continuous ("B2"). Another argumentation assigned two points was working logically with the diagram saying that if T10 were true, together with T3, it would imply T6 which is wrong without stating a counterexample ("A").

A different correct counterexample with appropriate argumentation ("E1") would be assigned two points as well. We assigned one point for stating the function from Example VII.1.5 as a counterexample without an explanation ("B0"). Giving a wrong counterexample ("E0") resulted in 0 points. Typical examples for the two most common argumentations for T10, "A" and "B2", can be found in Figure 2. Concerning T15, we assigned two points for stating a correct counterexample with appropriate reasoning. We expected the square root function as a counterexample, with different possible explanations: stating that it is continuous but not all directional derivatives exist ("W1"), this explanation with specifying the point of interest ("W2") or a calculation that the directional derivatives in don't exist ("W3"). We gave one point for stating the square root function as a counterexample without an explanation ("W0"). The statement that the absolute value function is not a valid counterexample ("Bx") was also rated one point. Additionally, some students gave explanations using the logical structure and wrong implications they thought were true in preceding tasks to argue without a counterexample, namely T12 and the fact that T4 is not true ("Z1") or T13 and the fact that T5 is not true ("Z2"). Stating the absolute value function as a counterexample resulted in 0 points. For both implications, other argumentations were coded as "X". The number of students who used these different kinds of argumentation can be found in Table 1 (T10) andTable 2 (T15). It can be seen that we could not assign some of the categories to any student, e.g., "B1" for T10. 

Discussion of results

RQ 1: Most of the students were able to decide correctly for most of the implications whether they were true or not. The calculated success rates give hints concerning the level of difficulty of the implications. We can conclude that deciding whether an implication is true and stating the right reason are not the same, as illustrated by T15. It corroborates findings from studies reviewed in the introduction that students often cannot give correct justifications for relationships between different concepts in the one-dimensional case. However, students in our study were in general more successful than in some of the described studies. That could indicate that working with logical relations between new concepts becomes more accessible for students as they pursue their studies. RQ 2: When they could, nearly all students used the logical structure of the diagram for answering whether a new implication is true, instead of constructing a new proof or a counterexample. In some cases, properties of examples were established by reference to the logical structure instead of verifying the property with calculations with the example itself (for example in T10). When they could, students traced the question back to one-dimensional cases and tried to find counterexamples there (which was possible for many of the implications and was our purpose in the design, utilising the task's linkage potential). The teaching sequence was not given as an argument (as was the case in [START_REF] Sevimli | Understanding students' hierarchical thinking: a view from continuity, differentiability and integrability[END_REF], which could be either because students knew from experience that this is not true, or because these concepts (except continuity) were introduced in a short period after another. RQ 3: The a priori analysis was based mostly on our intuition because we could not find literature concerning didactics of multidimensional calculus, which is something we want to contribute to in the future. There were some lines of argument we did not anticipate, especially concerning incorrect reasoning. We found it surprising that a not negligible part of the students incorrectly considered the absolute value function as a counterexample in T15 although it was proven a week before that all directional derivatives of the absolute value function exist. There were some lines of argument we expected some of the students to use that were not used at all (like showing that the error term in T10 does not have the required property). This fact might, however, also be due to the rather small sample of only 31 students. Our estimates of the subtasks' difficulty were most often appropriate.

For further investigation, including what leads students to their decision, we additionally filmed eight pairs of students while working on the task. The analysis of these is expected to provide more insights concerning the questions where the students got stuck and why. This analysis will be especially interesting because often students who made the wrong decision did not explain why they thought that (e.g., in T15). Our data will be analysed more thoroughly in the next months.

Figure 1 :

 1 Figure 1: The two success rates for each implication. The first number per arrow depicts the success rate for A (correctness of decision); the second number is the B success rate (correctness and quality of argumentation). We marked correct implications white, wrong implications dark grey. The implications without success rates had been covered in the lecture before.

Figure 2 :

 2 Figure 2: Typical examples for "B2" (left) and "A" (right) (translated by the first author)

Table 1 : Student answers for T10

 1 

	Points	Code	Number of	Points	Code	Number of
	(10 B)		students	(15 B)		students
		2 B1	0		2 W1/W2/W3	0
		B2	13		1 W0	1
		A	8		Bx	1
		E1	0		Z1	2
		1 B0	1		Z2	1
		X	2		X	2
		0 E0	1		0 B	5
		X	1		X	1

Table 2 : Student answers for T15

 2