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On tasks that lead to praxeologies’ formation: a case in vector calculus  

Margo Kondratieva  

Memorial University, Canada; mkondra@mun.ca 

A praxeology comprises a type of task, a technique to accomplish it, a discourse (technology) 

explaining this technique and a theory supporting this discourse. We consider a situation where a 

praxeology was presented to students in a lecture, but they discovered an alternative one while 

working on a routine exercise. This exercise was then followed by a more challenging question 

related to immediate results obtained by the students. We analyzed this student experience in view 

of Chevallard’s six steps of constructing a praxeology. We suggest that observing students’ work on 

standard exercises may give some productive and innovative ideas for the design of tasks that help 

students deepen their understanding and encourage theoretical justifications of their solutions. We 

also comment about possible effects of the explicit requirement to search for the most efficient 

solution on the formation of praxeologies by students. 
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Introduction  

It has been observed that the majority of university mathematics classes are given in the format of 

lecture and largely employ the pedagogy of “massive scaffolding and direct telling” (Sfard, 2014, p. 

202). This teaching approach has been criticized for its limited capacity to empower students in 

both critical reflection on given information and applying their knowledge in unfamiliar situations. 

In contrast, within the inquiry-based approach learners start with considering a problem, and then 

planning, developing and validating their own solutions (Polya, 1945). In this adidactic phase 

(Brousseau, 1997) learners construct their knowledge by working on a problem via thinking about it 

autonomously, studying related literature and talking to peers. In the didactic phase the teacher 

discusses the ideas produced by students, corrects them, validates and develops the subject further. 

However prolific it may sound, this approach is not fully applicable in teaching university 

mathematics due to the large amount of advanced material to be studied in a relatively short 

timeframe. Nevertheless, one can ask: to what extent is it possible to embed elements of inquiry in 

the lecture format courses? Where do we find questions that promote students’ “intellectual needs” 

(Harel, 2012) for critically processing the information given in the lecture? What principles should 

guide the design of educational tasks that help students to progress from the direct application of 

given methods to the analysis and justification of them (Gravesen, Grønbæk & Winsløw, 2017)? 

Perhaps the central requirement to these tasks is that they should help students to think about and 

reflect on their actions – what am I doing and why? – so that students can extract new knowledge 

directly from solving tasks. It is desirable that tasks have adidactic potential letting students to “find 

at least initial and partial answers” (Gravesen et al, 2017, p. 15). The same material can be taught 

with a different degree of initiative required from students. Typical examples illustrating general 

concepts and methods may be shown in class and then students can be assigned questions that are 

just a slight variation of already considered tasks. Such questions, known as exercises, contain little 

challenge but permit verifying students’ initial grasp of the material, as students basically mimic 



 

 

instructor’s actions and adjust them according to his or her expectations. In contrast, problems 

require an adaptation or alternation of a given method or a combination of several previously 

discussed ideas and serve as a form of inquiry. A task that stimulates students to “construct new 

inferences between results or definitions, reformulate, generalize and instantiate them” is said to 

have a deepening potential (Gravesen et al, 2017, p. 13). Similarly, research potential of a task 

measures the possible degree of engagement with activities similar to ones of research 

mathematicians. However, even if a task is specifically designed, its potential may not be realized in 

a particular didactic situation. Thus, it is important to consider cases when students gain rich 

mathematical experience and to notice the circumstances that have a positive effect. This paper 

presents such a case confirming that even when a lecturer “tends to tell the learner what to do” and 

“rushes to present their own solutions” (Sfard, 2014, p. 200) it is possible and desirable to delegate 

to students some work that aims at the development of theoretical knowledge “while working on 

her own in the quiet of her room” (Sfard, 2014, p. 201). 

Theoretical framework and research question 

We work under the assumption that “mathematics is a human activity of study of types of 

problems” (Barbé, Bosch, Espinoza, & Gascon, 2005, p. 236) and mathematical learning (even in a 

lecture based course) results from solving educational tasks (e.g. problems). Each task is a system 

of “given-required”, where “given” includes objects and relations between them, while “required” 

challenges the solver to derive new facts based on the “given” and their existing knowledge. A 

solution to a mathematical problem can be considered from two angles: “What is done?” and “Why 

does it work?”. In terms of the Anthropological Theory of Didactics (ADT) proposed by Chevallard 

(1999), the first question belongs to the domain of praxis, which includes techniques such as 

formulas, algorithms and methods, while the second - to the domain of logos, which provides 

corresponding theory, conditions of applicability, derivations and relations to general settings. The 

praxis consists of the types of tasks and corresponding techniques to solve them. The logos includes 

technology (explanations of the techniques, proofs of related theorems) and a broader theory within 

which the theorems are stated. Together praxis and logos components form a praxeology, described 

by Chevallard (2006, p. 23) as a “basic unit in which one can analyze human activity at large”. 

Praxeologies can occur at different levels of generality: punctual, local, regional or global. Punctual 

praxeologies address a unique type of task. Several punctual praxeologies can be integrated in 

different local mathematical organizations each of which provides a common technological 

discourse (e.g. algebraic). Local technologies can be further integrated into regional ones.  

In the teaching of primary and secondary mathematics there is a tendency to focus on the praxis 

component with very minimal exposition of the students to the related logos. Even at the university 

level, there exists an artificial division of courses into e.g. Calculus and Analysis, assuming 

significant dis-balance towards the praxis in the former and leaving the theory until the latter (see 

Kondratieva & Winsløw, 2018). The lack of an explanation of why and when a technique works 

(i.e. lack of technology) leads to incomplete praxeologies; this is a disservice to learners at all levels 

as it kills natural learners’ curiosity and reduces the flexibility of the technique. Even if technology 

is given by the teacher it may not necessarily lead to formation of a praxeology by students – to the 

practice when the use of a technique is informed by related technology. In this paper we look at a 



 

 

case when students were engaged in the formation of a praxeology; the research question being: 

what are the instructional conditions making this possible at the undergraduate university level? 

Our discussion will refer to the following six moments of creating a praxeology (Chevallard, 1999).  

1) The moment of first encounter of a certain type of problem related to a praxeology; 

2) The exploratory moment of finding and elaborating techniques suitable for the problem; 

3) The technical moment of using and improving the technique; 

4) The technological-theoretical moment in which alternative techniques are assessed; 

5) The institutionalization moment, when one is aiming to identify the elaborated praxeology; 

6) The evaluation moment, when one examines the value of the constructed praxeology. 

Here the adidactic situation leads students to propose some techniques that need to be assessed and 

theorized. Students react on the situation in accordance with an existing didactic contract 

(Brousseau, 1997), that is, a set of responsibilities, rules and norms of schooling behavior. In our 

instructional setting we encountered a slightly modified sequence of events presented below.  

Instructional settings and observations 

This section describes several episodes that occurred in a vector calculus course taught by the 

author of this paper in the Spring 2018 term at Memorial University (MUN) in Canada. The 

episodes had been selected in order to present the story of success. They describe a didactic 

contract, an error and its correction, made by students, leading to formation of a new praxeology.  

The settings 

The vector calculus course is the last course in the sequence of calculus courses offered by the 

department of Mathematics and Statistics at MUN. One-hour lectures are given three times a week 

for a twelve-week period (with regular homework assignments and a midterm exam) followed by a 

3-hour written final exam. The course discusses such topics as parametric curves and surfaces, 

multiple integrals, Green’s, Stokes’ and the Divergence theorems with some motivations from 

physics. The course is usually taken by students majoring in either mathematics, physics, computer 

science or engineering. Similarly to preceding calculus courses it focuses mostly on computational 

techniques and obtaining numerical answers. Some sketches of proofs are discussed in lectures but 

they are not tested in exams. While the syllabus of the course is prescribed, the instructor has some 

freedom in composing questions for assignments and tests. In the considered case the homework 

assignments were marked by the instructor and consisted of the following types of questions: (1) 

short summary describing definitions, formulas, and conditions of their applicability as discussed in 

lectures; (2) exercises in direct application of formulas listed in (1); (3) problems that require minor 

alternations of formulas listed in (1); (4) bonus problems that may require additional reading and 

creative thought. Note that questions of types (1) and (4) were not typical in students’ previous 

experience. Twenty students completed the course in Spring 2018.  

The observations and interventions 

Episode 1: Efficiency of solutions as a part of didactic contract. This observation took place in the 

very beginning of the course. The students just learned how to find the curve length given a 

parametric description of a curve                                  Using the integration 



 

 

formula                     

 
   they were able to find the length of some exotic curves such 

as a part of a helix. However the assignment also included examples of parts of a straight line and a 

circle. Many students still used the general method to find the length of these curves even when 

they had recognized them correctly. It was then pointed out to students that they should aim at the 

most efficient way of finding their answers or at least mention that their calculations were 

consistent with the obvious answer. For example, the length of a straight line 

                         
 

 
 ]} connecting points (-1,2,1) and (1,2,1) (Figure 1, left) is 

obviously 2, which makes the calculation in (Figure 1, right) unnecessary. Similar situations 

appeared in other assignments. Some hints referred to efficiency in numerical calculations, such as  

      

Figure 1: Student’s work on curve                          
 

 
 ]}. Description and length  

a suggestion to use the property                       (   ), or warned that the 

simplification            is not valid unless AB=0. All in all, such systematic 

instructional feedback shaped the didactic contract for this group of students. 

Episode 2: Accidental efficiency. Another assignment included a problem of finding an osculating 

plane for the curve                       at        The instructor explained a method, which 

consisted of the following steps: 

1. Find the unit tangent vector   
  

      
 to the curve at a given point. 

2. Find the unit normal vector   
  

      
 to the curve at a given point. 

3. Find the unit binormal vector       to the curve at a given point. 

4. An osculating plane by definition includes vectors T and N and therefore is orthogonal to 

vector B. Thus the equation of the plane is           , where           and    is the 

point on the curve where the plane is required.  

An example considered in class in order to illustrate this method was helix of radius  :      

                . Note that in this case                          and so              is 

t-independent. Consequently, the normal unit vector   
   

       
. However, if        is a function of t, 

this must be taken into consideration when calculating N. When working on the assignment 

described above, some students ignored this circumstance and used the formula 
   

       
 for N in step 2. 



 

 

Nevertheless, they still got a correct answer for the proposed problem, the plane      The mistake 

was pointed out by the instructor during a lecture, but the fact of accidental efficiency was 

surprising for students and caught their attention leading to an in-class discussion. Their first 

thought was that maybe the value of the parameter       was special, but the “wrong method” 

still gave a correct equation of the osculating plane for       and some other variations they 

tried. So, a bonus problem naturally emerged: to explain why and when the “wrong method” works.  

Episode 3: A praxeology given in the lecture. The method of finding the osculating plane was not 

completely unexplained in the lecture. Prior to Episode 2 the students were presented with the 

statement that if a vector-function      has a t-independent norm                  then the 

vector function       is orthogonal to      for every t. Indeed, if we differentiate both sides of the 

equation           we obtain       . Now, the unit tangent vector has norm        , 

therefore       is orthogonal to      by the above statement. After normalization it gives the unit 

normal vector       The cross product of two unit vectors gives a unit vector orthogonal to both 

initial vectors. This way the binormal unit vector      is obtained. These explanations presented a 

technology related to the praxis of finding an osculating plane. However, as it could be inferred 

from the error made by the students who were somehow misled by the example of helix in Episode 

2, this praxeology, given by the instructor, remained external to them and the application of the 

method was not guided by the related theory. This revelation prompted the instructor to encourage 

students to develop their own explanations of the method that they had accidently discovered.  

Episode 4: Towards a new praxeology construction by students. Proving was not a well developed 

skill for many students, so their initial attempts naturally were flawed. We will follow the progress 

of a student called Sam (a pseudonym). Firstly, Sam arrived at the correct statement, but it was not 

very useful in the situation he needed: if              for         then   
   

       
. Indeed, the 

conclusion was desirable but the condition was not met in the problem they had. After some time 

Sam managed to prove algebraically that if                then       
   

       
 (Figure 2, left). 

When this result was shared with others in class, it was noted by students that the statement is 

obvious from the geometrical point of view: if both vectors   and     are orthogonal to   , they must 

be proportional. In this way the case       was successfully explained. However, it was still 

unclear why the “wrong method” gave the correct equations of the osculating plane even in the case 

when   was not proportional to     (see e.g. calculations for case       in Figure 2, right). 

  

 Figure 2: Student’s work on a proof for the alternative technique: cases   
 

 
 (left) and   

 

 
 (right) 



 

 

Episode 5: The new method explained. After looking at several examples that produced a correct 

osculating plane by the “wrong method”, Sam started to realize that he should not try to prove that 

  is proportional to     (which in general is not so) but instead he should try to prove that the span 

on vectors    and     forms exactly the same plane that the span of vectors   and   does. This shift 

of attention made Sam perceive a new property, which according to Mason (2008, p. 38) is feasible 

“when you are aware of a possible relationship and you are looking for elements to fit in”. Once he 

knew what he was looking for, a simple line sufficed: since           , by differentiation we 

obtain            , where          and    are scalars. Thus, vector     is a linear combination 

of vectors   and   , or equivalently of vectors   and  . Therefore, whenever    , vectors    and 

    can be used for finding the osculating plane initially defined by vectors   and  .  

Concluding discussion 

In this paper we explored the possibility of imbedding an inquiry task, allowing students to 

construct technique-technological links and eventually to develop praxeologies by themselves, 

within a praxis-dominated lecture-based calculus course. Here we refer to the six moments of 

constructing a praxeology (listed in the Theoretical Framework section) in order to comment on two 

conditions that in our view had a positive effect on the successful outcome reported in Episode 5.  

The first condition is the systematic attention paid by the instructor to the issue of the efficiency of 

students’ work. This requirement for a solution of a problem is entwined with the inquiry-based 

methodology. In a situation when more than one approach is applicable to a problem in hand, one 

would naturally ask for the simplest answer, which is based on the insight about the nature of the 

situation and avoids unnecessary lengthy calculations. Indeed, “as mathematical thinking develops, 

it should become not only more powerful, but more simple” (Tall, 2013, p. 19) because “not only 

mathematics, but science as a whole progresses only if we understand things … and explain [ideas] 

in simple terms” (interview with Sir M. Atiyah, as quoted in Tall, 2013). Episode 1 confirmed the 

observation that students in North America spend little time on planning their solution and jump 

into calculations right away (Schoenfeld, 1985). While the cognitive mechanisms for finding simple 

solutions in general are not clearly understood (see discussion in Koichu, 2010), it is important to 

establish the work habit of looking for legitimate simplifications whenever possible. Viewed as a 

part of didactic contract, the higher efficiency of the alternative method of finding the osculating 

plane prompted the students to keep trying to justify it. This efficiency gave the value to the 

praxeology being constructed (moment 6: evaluation). 

The second condition is the fact that an additional new task emerged from the instructor’s feedback 

on a mistake made by students while solving an exercise. Let us look at it a bit closer. The initial 

task in Episode 2 was to find an osculating plane for a curve at a point, which was defined in terms 

of the unit tangent and normal vectors -- the objects that were introduced to the students at the same 

time as was the osculating plane. The definitions prescribed the way of constructing all listed above 

objects. Thus, in the scenario of Episode 2 the first two moments (first encounter, exploration) were 

missing as such, and in this sense the task was an exercise in which a given technique was supposed 

to be used (a modified moment 3). On the other hand, the curve was chosen in such a way that it 

allowed a more intuitive approach in line with examples discussed in Episode 1. A “simple”, 



 

 

intuitive solution was to notice that the curve belonged to the intersection of the cylinder       

  and the plane    . Therefore the entire curve lied in the plane    , which thus was the 

osculating plane for any value of the parameter t. Finding this solution relied on explorations and 

noticing specific relations between components of the vector-function      describing the curve. 

Indeed, several students had commented on this but only after they found the answer by a different 

method. Erroneously, they altered the method given to them attempting to (illegitimately) reduce 

the amount of calculations. The fact that the altered method provided an answer consistent with the 

“simple” intuitive approach led to a new task: to explain why it happened. It was the instructor’s 

role to formulate this task, but because the method appeared from the students’ own omission they 

claimed ownership of this task. Here the adidactic phase occurred later in the process and the 

development of praxeology by students basically started from moment 4, that is, from the 

assessment of the alternative technique. The successful outcome in Episode 5 was warranted by 

students’ reflection on the ideas related to the original praxeology with technology presented by the 

instructor in Episode 3, and modifying them accordingly. The institutionalization moment (5) was 

completed after Episode 5, when related physical motivation was also discussed in the lecture. 

Indeed, the observation that played the key role in the justification of the alternative method could 

be interpreted as follows: no matter how the object moves through the space the acceleration vector 

      always belongs to the osculating plane:           , where            is the 

curvature of the trajectory and          is the speed of motion. Vector   gives the direction of the 

motion and vector   points in the direction the object is turning. So   and   describe the 

(osculating) plane to which the trajectory of motion locally belongs. The expressions for the 

tangential and normal components of the acceleration vector make sense if we think of a passenger 

in a car making a turn (Stewart, 2003, p. 875). 

Note that the praxeology developed by students in Episodes 2, 4 and 5 is punctual as it addresses 

just one particular problem of constructing an osculating plane. It is a refinement of the initial 

praxeology given in Episodes 2 and 3, and we conjecture that due to students’ involvement in its 

justification it will be more readily integrated in the future in local and regional types.  

In sum, our case involved a routine exercise and a lot of “direct telling” as in a typical calculus 

course. This setup presumes that the two steps (first encounter, exploration) in the construction of a 

praxeology could be missing. Instead, through working on exercises using given information and 

techniques, the groundwork for developing alternative techniques and raising new questions is 

established. This situation gives us a clue about possible sources of questions that appeal to students 

and are perceived as important or meaningful, questions that help them to critically process given 

information and eventually develop praxeologies. We conclude that innovative ideas for task design 

can come from observing and analyzing students’ mistaken work with practice exercises. 

Sometimes the instructor can predict or even provoke those mistakes. Reshaping standard exercises 

so that they have multiple ways to solve them, like in our case above, may enrich the possibilities 

for the tasks that follow. If these tasks “aim directly to develop and refine knowledge in progress” 

(Gravesen et al., 2017, p. 28), or explain certain puzzling phenomena, they will have the deepening 

potential and perhaps the research potential, helping students to work with new material in a 

meaningful way and gain richer experience of mathematical work. Because of their origin such 



 

 

tasks (compare to a priori designed ones) may have a stronger and more personalized effect on 

learners when used in a didactic setting.  
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