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VEMINT (Virtual Entrance Tutorial for the STEM subjects), a joint project by researchers from the 

universities of Darmstadt, Kassel, Paderborn and Hannover, has worked on material and course-

designs for bridging courses for more than 15 years. In recent years, VEMINT has focused on the 

development of a psychometrically validated test to provide students with appropriate hints for the 

use of material and to evaluate the impact of teaching and learning activities. In this paper, we 

present elements of the test, which are based on ideas from Feldt-Caesar (2017), who combined 

cognitive activity and action control theoretical approaches in the development of a three-

dimensional competence structure model, and on Anthropological Theory of Didactics, to explain 

content-related differences between dimensions of the model. Validating Rasch-analyses show that, 

in accordance with the design ideas, a three-dimensional Rasch-model fits with empirical data. 
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Introduction 

The average dropout rates of mathematics and engineering programs in universities in Germany are 

47% and 36%, respectively (Bildungsberichterstattung, 2014). These rates are higher than the 

overall average drop-out rate which is 33% for all study programs at German universities. In 

addition to the lack of acquisition of key competences such as the ability and willingness for self-

reflection and self-motivation (Hilgert, 2016), the literature (e.g., Cramer & Walcher, 2010) 

highlights that the lack of prior mathematical school knowledge is one of the major reasons for the 

high proportion of dropouts.  

As a measure to reduce the number of dropouts, most universities and higher education institutes 

have offered mathematical remedial activities in the form of bridging courses to support students’ 

learning of university mathematics in recent years. The idea is to reduce the gap between school and 

university mathematics while maintaining the standards of the programs. One of the major 

challenges is to design remedial bridging courses that are sensitive to individual needs. For 

example, while some of the students need more support in simplifications of algebraic expressions, 

other students may need support in elementary calculus. It is also important for the students to know 

what prior knowledge is needed to take the courses at the university. To support students in 

deciding which of the modules of the bridging course to take, it is desirable to have an appropriate 

diagnostic tool available. Such tool should also measure the impact of bridging courses. A 

substantial content analysis is essential in order to provide detailed feedback to individual learners 

and advice to lecturers in choosing topics and in deciding how intensely topics should be taught in 

transition courses (Biehler & Hochmuth, 2017; Hochmuth, 2018). For more than 15 years, the 

universities of Darmstadt, and recently also Hannover, Kassel, and Paderborn, have been offering 

bridging courses in the cooperative project Virtual Entrance Tutorial for STEM subjects (VEMINT, 
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STEM in German is MINT) for students who wish to pursue mathematics-related programs (Bausch 

et al., 2014; Fischer, 2014). In recent years, the authors have also worked on developing a 

diagnostic test, the VEMINT-test, which is the focus of this paper.  

The structure of the paper is as follows. After sketching the main goals of the VEMINT-test, we 

outline basic ideas of the competence structure model that underlies our test design and provide a  

briefpraxeological content analysis of tasks assigned to the dimensions of the model. Finally, we 

present results from a Rasch-Analysis empirically validating the three dimensions of the 

competence structure model.  

The Development of the VEMINT-Test  

The development of the VEMINT-test follows two partly opposing, goals: While working as a 

diagnostic test to understand better students’ prior knowledge and gaps, it should also help to 

evaluate the impact of bridging courses. In addition, the pre-test needs to give information in a short 

time so students can decide what modules they need to take in the bridging course. In recent years, 

the diagnostic test has been refined several times based on both empirical and theoretical findings. 

Thereby, our main aim was to develop a standardized diagnostic instrument in two essentially 

equivalent versions (Form A and Form B), which can be used every year at the beginning and at the 

end of a bridging course. An expert rating determined the particular content of the test, which 

focused on analysis and elementary algebra and took into account the German minimum standard 

requirements (see, Cooperation Schule Hochschule, 2014). The items were adjusted according to 

quality criteria for tests and technical possibilities (e.g., the use of the Moodle STACK plug-in, 

Sangwin, 2007).  

The final test in two forms (A and B) was designed for 60 minutes and comprised 22 tasks from 

secondary levels I and II in German schools. The examined topics are algebraic terms, equations, 

functions and calculus (differentiation and integration). The test was developed using a three-

dimensional competence structure model that will be described next. Afterwards we present results 

from a Rasch-Analysis, considering data that has been collected in the winter semester of 

2017/2018. These results empirically reproduce the three-dimensional structure, thus validating our 

test-design in this respect. 

A Competence Structure Model and its Dimensions 

The competence structure model is based on the idea of “Basic Mathematical Knowledge” (BMK), 

which has been introduced by Feldt-Caesar (2017) as follows:  

Basic mathematical knowledge and skills refer to the mathematical knowledge, skills and 

abilities which are to be retrievable to all pupils at the end of the two secondary levels in the 

form of mathematical terms, theorems and procedures in the long term and independently of the 

situation, i.e. in particular without the use of aids. (Our translation, p. 182) 

BMK serves “as a prerequisite for successful further learning, especially in a course of study" (our 

translation, p. 180), which requires that knowledge be sustainable and connected in the sense of 

“intelligent knowledge” (Feldt-Caesar, 2017; Weinert, 2000) and, furthermore, transferable and 

connectable with new content (Feldt-Caesar, 2017; Nitsch Bruder & Kelava, 2016). For related 



 

 

diagnostic and feedback goals these ideas imply that items of a test should cover not only calculus-

oriented tasks but should also aim at “intelligent knowledge” and “understanding oriented 

knowledge” where the latter is not the same as "understanding." We agree with Skemp (1976) that 

no “understanding,” neither instrumental nor relational understanding, is validly testable without 

additional intersubjective interactions. On the other hand, “understanding oriented knowledge” 

including knowledge necessary for “relational understanding” beyond knowledge necessary for 

“instrumental knowledge” is an important basis for further learning (Bruder, Feldt-Caesar, Pallack, 

Pinkernell & Wynands, 2015; Skemp, 1976). These general underlying goals call for a sample of 

tasks which cover various qualitative facets of knowledge and associated mental activities. 

Moreover the sample should be helpful both in regards to diagnostic and evaluation goals as well as 

for providing appropriate feedback. To cover and operationalize the idea of such different 

qualitative facets we have developed a three-dimensional competence structure model on the basis 

of ideas from Feldt-Caesar (2017) and applied Anthropological Theory of Didactics (ATD, 

Chevallard, 1992)) for the content analysis of tasks.  

In Feldt-Caesar (2017), cognitive, activity and action control theoretical approaches are combined 

to describe and analyze mental activities with respect to five conceptual levels. Within our context, 

the levels “elementary actions,” including identification and realization, and “basic actions,” 

including recognizing, describing, linking, applying and justifying, are important. In Feldt-Caesar 

(2017), both types of actions have been related to the so-called “content elements” that are 

conceptualized in terms, theorems, and procedures. In view of our focus on analyzing test tasks 

within the institutional context of the transition from school to university mathematics, it turned out 

that a praxeological view on “content elements” was probably more appropriate for the current 

project.  

Accordingly, in the following we apply a few basic praxeological notions from ATD: The 

simplified [P, L]-model with P representing the praxeological block (i.e., the technical aspect(s) 

connected to a type of task and) with L representing the technological-theoretical block. The latter 

covers in particular: describing a technique, validating (e.g., proving or justifying how and that a 

technique works), knowledge about the efficiency and motives of a technique as well as knowledge 

about variants and simplifications, and finally, knowledge required or useful for controlling the 

application of a technique, which is particularly relevant for connecting practices and praxeologies. 

Our starting point for the identification of P and L lies in the single tasks of the test, curricula school 

books and in the VEMINT group consented experiences concerning the actual implementation and 

institutionalization of praxeologies and corresponding technical and technological aspects of school 

mathematics. There are, of course, further relations between above mentioned cognitive notions like 

“instrumental” and “relational understanding”: From the viewpoint of knowledge and meaning 

structures, they can be referred to qualitative differences in relationships between practical and 

technological-theoretical blocks of one or several praxeologies. A more detailed analysis of such 

issues, however, lies beyond the scope of this paper. Here, the praxeological notions mainly serve 

as a tool for describing and analyzing qualitative aspects of “content elements” with regard to the 

three dimensions of the competence structure model.  

Dimension I (which is associated to instrumental understanding) is characterized by elementary 



 

 

actions and cognitive operations such as identification and realization, and usually refer to a content 

element that does not have to be transferred to other content elements. The actions to be taken 

consist of a single step and are related to a “first elementary level” of mental activities in Feldt-

Caesar (2017). Content-wise and in praxeological terms, Dimension I covers tasks from school that 

can be solved by techniques without especially taking into account technological aspects like 

supporting argumentations, proofs, or contextual embedding, etc. The techniques in Dimension I 

tasks are more or less extensively institutionalized in school mathematics, represent typical tasks of 

school examinations, and, at least partly, also appear in final exams (e.g., baccalaureates). A 

characteristic task in the test is the calculation of the derivative of . It can be calculated by 

algebraic operations that can be executed without referring to basic rules and notions. This kind of 

tasks, focusing on techniques without links to technologies and supporting mathematical 

organizations, seems to be dominant in school internationally (e.g., Barbé, Bosch, Espinoza & 

Gascón, 2005).  

In Dimension II, the one-step approach is maintained but a linking to content elements of the same 

topic is necessary to solve the associated tasks. 

Such tasks are characterized by the main reference 

to one content element and possibly to other 

content elements, directly related to the main 

content element. Besides elementary actions, 

cognitive operations such as describing, linking, 

applying, and justifying are necessary in most 

cases. These tasks cannot be solved by simple 

calculations and are often unfamiliar to students 

(so that they need probably relational 

understanding). Content-wise, Dimension II covers 

tasks that relate to technological-theoretical blocks 

of praxeologies implying validation and 

justification. Students are not sufficiently trained in 

techniques of Dimension II tasks such that such 

technological aspects are superfluous for solving 

the tasks. Moreover, in the school context, this type of tasks typically demands verbal descriptions 

or even verbal justifications. A further common aspect of Dimension II tasks is that the 

technological aspects need no additional validation, for example by linking to technological aspects 

of praxeologies living in other domains; hence they are of a local nature. Figure 1 presents an 

example for a Dimension II task. It is expected that to solve this task students use relationships 

between verbal, graphical, and symbolic representations and switch across those representations. In 

order to solve the task, the second derivative is to be interpreted as the curvature of the function f. 

What is unusual about this task is that the values of the second derivative are given and, conversely, 

a function f must be reconstructed based on the given information.  

Dimension III tasks are multi-step tasks, and characterized by several elementary actions and 

cognitive operations (associated to “intelligent knowledge”). The tasks refer to content elements 

A polynomial function fulfils the following 

properties:  is negative for  and positive for 

 Which of the graphs belongs to ? 

Figure 1: Example for a task of dimension II 



 

 

Figure 2: Scatterplot of the rank of difficulty 

parameters 

from at least two different content areas. Thus, solving of Dimension III tasks combines techniques 

from different praxeologies; the techniques involved are often more complex, or the technological 

aspects relevant for the combination of the techniques are either weakly established or combine 

aspects of different praxeologies. A task of this type, that combines techniques and is well-

established in school, looks as follows (Feldt-Caesar, 2017): “The function  is given by 

 Determine the equation of the tangent , which touches the graph of the function  

at the point .” In this task, content elements of differential calculus must be linked and the 

results of the differential calculus must be used to establish a linear function (equation of a tangent). 

Thus, both content from secondary level I and secondary level II must be applied. Another task 

(item 13) of Dimension III is the following: “Simplify the following expression and collect the 

variables .” In this task, the required combination of techniques from 

division of fractions and power calculations is nested; in addition, related technological aspects 

have to be combined in an appropriate way. This means that it is not enough to apply simple and 

local techniques from different domains. Content-wise, the main characteristic of Dimension III 

tasks is the link of different techniques and technologies, which is as such not well-institutionalized 

in school mathematics.
1
  

Rasch-Analysis 

Roughly one half of 362 students from three German universities who participated in bridging-

courses (29% female) filled out test-form A before and test-form B after the courses. The other half 

took the opposite order. No sequence effects were found. Each participant received each test-form 

only once, and, although pre- and posttest samples were related (both samples consisted of the same 

participants), the occurrence of test-effects is not plausible. Using pre- and posttest samples in one 

analysis reduces the probability of the occurrence (respectively the effect) of a possible limitation of 

variance, which can lead to a possible underestimation of all correlational measures and possibly 

limiting the information value of assertions 

regarding validity. Participants were tested before 

and after a bridging course and therefore were not 

on the same performance level at both times of 

measurement.  

To scale the data, we first estimated two one-

dimensional Rasch-models, one for each 

measurement point. A Rasch-model is a 

probabilistic psychometrical model for generating 

measurements from categorical data (e.g., right/wrong-answers in a performance test) as a function 

                                                 

1
 It should be noted that assigning tasks to a single of the dimensions is not always possible due to different possible 

solutions of a task. For the classification, several possible solutions were anticipated and the most probable one was 

used to determine the dimension. Analyses of some of our test tasks can be found in Feldt-Caesar (2017), which 

investigates validation issues.  

 



 

 

Table 1: Results of the Rasch-Analysis 

of the relation between the ability of the respondents and the item difficulty (Rasch, 1980). 

EAP/PV-reliabilities were suitable, R = .868 (resp. .865 for Model 2), as well as the variances, 

V = 2.256 (resp. 1.967 for Model 2). Figure 2 shows the 

scatterplot of the rank of the difficulty parameters. Most importantly, the correlation of the 

difficulty parameters is high, R
2
 = .95. For this reason, measurement invariance can be assumed.  

Because of the high correlation between both measurement points, the approach of virtual cases 

could be applied (see Hartig & Kühnbach, 2005; Rost, 1996). If a participant took part at both 

measurement points, he or she represents two cases in the data. This approach has two advantages: 

Firstly, resulting scores are in a consistent metric and secondly, the appearance of the problem of 

constrained variance is less likely (see above). With this approach, a data set of 724 cases resulted. 

Again, a one-dimensional model was calculated but also a three-dimensional model consisting of 

the three performance levels described before. Results are shown in Table 1. Both models show 

good variances and EAP/PV-reliabilities as well as discrimination indices.. The three-dimensional 

model shows significantly less deviance than the one-dimensional model (p < .001), so it fits the 

data better.
2
 Figure 3 shows the wright-map of the three-dimensional model. Thus, the Rasch-

analysis empirically confirmed the three-dimensional structure of the test.  

 

 

 

 

 

 

 

 

 

The order of tasks within the dimensions could be understood as 

a consequence of how intensively and how often (regarding 

different classes, schools etc.) the tasks are practiced; the order 

could hardly be deduced by theoretical considerations alone. In 

accordance with our content analysis, Dimension II in fact 

includes tasks which need conversions between different 

representations of a function, even if these tasks are not unfamiliar. The task in Figure 1 is even 

rated as a rather difficult one within Dimension II in the Rasch model. Within Dimension III, 

besides the degree of institutionalization and the time of treatment of indicated techniques in school, 

                                                 

2
 One item (Item 3) shows a weighted MNSQ larger than 1.2 (values should lie in the range of 0.8 < MNSQ < 1.2). This 

is not too problematic for all other indices perform very well. 

Dimensionality One-
dimensional 

Three-dimensional 

Performance Level  I II III 

Number of tasks 22 8 10 4 

Variance 2.216 2.346 1.963 3.661 

EAP-PV-Relilability .872 .868 .856 .842 

Weighted MNSQ .86-1.32 .92-1.12 .83-1.24 .93-1.06 

Discrimination Indices .36-.69 .52-.68 .39-.71 .69-.73 

Deviance 16293.17612 16258.04687 

Estimated Parameters 44 31 

Difference Deviance 35.12925 

Difference Parameters 5 

Sig. (χ2-Difference-Test) < .001 

Note: EAP/PV-Reliability – Expected-A-Priori / Plausible-Values-Reliability (see Rost, 
1996) 

Figure 3: Wright-map of the 3D 

Rasch-model 



 

 

the praxeological interconnectedness seems to be reflected in the order of tasks (items 3, 7, 10, 11, 

12, 13, 15, 18, 20, 22). It is perhaps a little bit surprising that the complex term transformation task 

(item 13) turned out to be the most challenging task of Dimension III.  

Discussion 

The main aim of bridging courses is to support students by providing learning materials and 

samples of tasks for their self-evaluation. From the design of material and courses as well as the 

point of view of teaching, specific test instruments are required for a possibly objective evaluation 

of the impact of support measures. The test instruments should be most sensitive for specific 

mathematical knowledge domains and should allow relating pre-post-comparisons to specifics of 

bridging courses in order to adopt courses in view of actual pre-test results. Our results show that 

our test takes into account qualitatively different knowledge dimensions and might be a valuable 

tool for reaching these goals, which, of course, needs further investigations. 
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