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Abstract. Let L be a distributive lattice and E(L) be the set of join endomor-
phisms of L. We consider the problem of finding f ⊓E(L) g given L and f, g ∈
E(L) as inputs. (1) We show that it can be solved in time O(n) where n = |L|.
The previous upper bound was O(n2). (2) We characterize the standard notion
of distributed knowledge of a group as the greatest lower bound of the join-
endomorphisms representing the knowledge of each member of the group. (3)
We show that deciding whether an agent has the distributed knowledge of two
other agents can be computed in time O(n2) where n is the size of the underly-
ing set of states. (4) For the special case of S5 knowledge, we show that it can be
decided in time O(nαn) where αn is the inverse of the Ackermann function.

Keywords: Distributive Knowledge · Join-endomorphims · Lattice Algorithms.

Introduction

Structures involving a lattice L and its set of join-endomorphisms E(L) are ubiqui-
tous in computer science. For example, in Mathematical Morphology (MM) [3], a well-
established theory for the analysis and processing of geometrical structures founded
upon lattice theory, join-endomorphisms correspond to one of its fundamental opera-
tions: dilations. In this and many other areas, lattices are used as rich abstract structures
that capture the fundamental principles of their domain of application.

We believe that devising efficient algorithms in the abstract realm of lattice theory
could be of great utility: We may benefit from many representation results and identify
general properties that can be exploited in the particular domain of application of the
corresponding lattices. In fact, we will use distributivity and join-irreducibility to reduce
significantly the time and space needed to solve particular lattice problems. In this paper
we focus on algorithms for the meet of join-endomorphisms.

We shall begin with a maximization problem: Given a lattice L of size n and f, g ∈
E(L), find the greatest lower bound h = f ⊓E(L) g. Notice that the input is L not E(L).
Simply taking h(a) = f(a)⊓L g(a) for all a ∈ L does not work because the resulting h
may not even be a join-endomorphism. Previous lower bounds for solving this problem
are O(n3) for arbitrary lattices and O(n2) for distributive lattices [22]. We will show
that that this problem can actually be solved in O(n) for distributive lattices.
⋆ This work has been partially supported by the ECOS-NORD project FACTS (C19M03).
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Distributed knowledge [15] corresponds to knowledge that is distributed among the
members of a group, without any of its members necessarily having it. This notion can
be used to analyse the implications of the knowledge of a community if its members
were to combine their knowledge, hence its importance. We will show that distributed
knowledge can be seen as the meet of the join-endomorphisms representing the knowl-
edge of each member of a group.

The standard structures in economics for multi-agent knowledge [23] involve a set
of states (or worlds) Ω and a knowledge operator Ki : P(Ω) → P(Ω) describing the
events, represented as subsets of Ω, that an agent i knows. The event of i knowing the
event E is Ki(E) = {ω ∈ Ω | Ri(ω) ⊆ E} where Ri ⊆ Ω2 is the accessibility relation
of i and Ri(ω) = {ω′ | (ω, ω′) ∈ Ri}. The event of having distributed knowledge of
E by i and j is D{i,j}(E) = {ω ∈ Ω | Ri(ω) ∩Rj(ω) ⊆ E} [7].

Knowledge operators are join-endomorphisms of L = (P(Ω),⊇). Intuitively, the
lower an agent i (its knowledge function) is placed in E(L), the “wiser” (or more knowl-
edgeable) the agent is. We will show that D{i,j} = Ki ⊓E(L) Kj , i.e., D{i,j} can be
viewed as the least knowledgeable agent that is wiser than both i and j.

We also consider the following decision problem: Given the knowledge of agents
i, j,m, decide whether m has the distributed knowledge of i and j, i.e., Km = D{i,j}.
The knowledge of an agent k can be represented by Kk : P(Ω) → P(Ω). If available
it can also be represented, exponentially more succinctly, by Rk ⊆ Ω2. In the first
case the problem reduces to checking whether Km = Ki ⊓E(L) Kj . In the second the
problem reduces to Rm = Ri ∩Rj and this can be done in O(n2) where n = |Ω|.

Nevertheless, we show that even without the accessibility relations, if inputs are the
knowledge operators, represented as arrays, the problem can be still be solved in O(n2).
We obtain this result using tools from lattice theory to exponentially reduce the number
of tests on the knowledge operators (arrays) needed to decide the problem.

Furthermore, if the inputs are the accessibility relations and they are equivalences
(hence they can be represented as partitions), we show that the problem can be solved
basically in linear time: More precisely, in O(nαn) where αn is an extremely slow
growing function; the inverse of the Ackermann function. It is worth noticing that if
accessibility relations can be represented as partitions, the structures are known as Au-
mann structures [2] and they characterize a standard notion of knowledge called S5 [7].

To prove the O(nαn) bound we show a new result of independent interest using
a Disjoint-Set data structure [8]: The intersection of two partitions of a set of size n
can be computed in O(nαn). This result may have applications beyond knowledge,
particularly in domains where Disjoint-Set is typically used; e.g., given two undirected
graphs G1 and G2 with the same nodes, find an undirected graph G3 such that two
nodes are connected in it iff they are connected in both G1 and G2.

Contributions and Organization. The main contributions are the following:

1. We prove that for distributive lattices of size n, the meet of join-endomorphisms
can be computed in time O(n). Previous upper bound was O(n2).

2. We show that distributed knowledge of a given group can be viewed as the meet of
the join-endomorphisms representing the knowledge of each member of the group.

3. We show that the problem of whether an agent has the distributed knowledge of
two other can be decided in time O(n2) where n = |Ω|.
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4. If the agents’ knowledge can be represented as partitions, the problem in (3) can be
decided in O(nαn). To obtain this we provide a procedure, interesting in its own
right, that computes the intersection of two partitions of a set of size n in O(nαn).

The above results are given in Sections 2 and 5. For conducting our study, in the in-
termediate sections (Sections 3 and 4) we will adapt some representation and duality
results (e.g., Jónsson-Tarski duality [17]) to our structures. Some of these results are part
of the folklore in lattice theory but for completeness we provide simple proofs of them.
We also provide experimental results for the above-mentioned effective procedures.

1 Notation, Definitions and Elementary Facts

We list facts and notation used throughout the paper. We index joins, meets, and orders
with their corresponding poset but often omit the index when it is clear from the context.

Partially Ordered Sets and Lattices. A poset L is a lattice iff each finite nonempty
subset of L has a supremum and infimum in L. It is a complete lattice iff each subset of
L has a supremum and infimum in L. A poset L is distributive iff for every a, b, c ∈ L,
a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c). We write a∥b to denote that a and b are incomparable
in the underlying poset. A lattice of sets is a set of sets ordered by inclusion and closed
under finite unions and intersections. A powerset lattice is a lattice of sets that includes
all the subsets of its top element.

Definition 1 (Downsets, Covers, Join-irreducibility [5]). Let L be a lattice and a, b ∈
L. We say b is covered by a, written b ≺ a, if b ⊏ a and there is no c ∈ L s.t., b ⊏ c ⊏ a.
The down-set (up-set) of a is ↓a def

= {b ∈ L | b ⊑ a} (↑a def
= {b ∈ L | b ⊒ a}), and

the set of elements covered by a is ↓1a def
= {b | b ≺ a}. An element c ∈ L is said to be

join-irreducible if c = a ⊔ b implies c = a or c = b. If L is finite, c is join-irreducible if
|↓1c| = 1. The set of all join-irreducible elements of L is J (L) and ↓J c

def
= ↓c ∩J (L).

Posets of maps. A map f : X → Y where X and Y are posets is monotonic (or
order-preserving) if a ⊑X b implies f(a) ⊑Y f(b) for every a, b ∈ X . We say that f
preserves the join of S ⊆ X iff f(

⊔
S) =

⊔
{f(c) | c ∈ S}. A self-map on X is a

function f : X → X . If X and Y are posets, we use ⟨X → Y ⟩ to denote the poset
of monotonic functions from X to Y . The functions in M = ⟨X → Y ⟩ are ordered
pointwise: i.e., f ⊑M g iff f(a) ⊑Y g(a) for every a ∈ X .

Definition 2 (Join-endomorphisms and E(L)). Let L be a lattice. We say that a self-
map is a (bottom preserving) join-endomorphism iff it preserves the join of every finite
subset of L. Define E(L) as the set of all join-endomorphisms of L. Furthermore, given
f, g ∈ E(L), define f ⊑E g iff f(a) ⊑ g(a) for every a ∈ L.

Proposition 3 ([12,5]). Let L be a lattice.

P.1 f ∈ E(L) iff f(⊥) = ⊥ and f(a ⊔ b) = f(a) ⊔ f(b) for all a, b ∈ L.
P.2 If f ∈ E(L) then f is monotonic.
P.3 If L is a complete lattice, then E(L) is a complete lattice.



4 C. Pinzón et al.

P.4 E(L) is a complete distributive lattice iff L is a complete distributive lattice.
P.5 If L is finite and distributive, E(L) ∼= ⟨J (L) → L⟩.
P.6 If L is a finite lattice, e =

⊔
L
{c ∈ J (L) | c ⊑ e} for every e ∈ L.

P.7 If L is finite and distributive, f ∈ E(L) iff (∀e ∈ L) f(e) =
⊔
{f(e′) | e′ ∈ ↓J e}.

We shall use these posets in our examples: n̄ is {1, . . . , n} with the order x ⊑ y iff
x = y and Mn

def
= (n̄⊥)

⊤ is the lattice that results from adding a top and bottom to n̄.

2 Computing the Meet of Join-Endomorphisms

Join-endomorphisms and their meet arise as fundamental computational operations in
computer science. We therefore believe that the problem of computing these operations
in the abstract realm of lattice theory is a relevant issue: We may identify general prop-
erties that can be exploited in all instances of these lattices.

In this section, we address the problem of computing the meet of join endomor-
phisms. Let us consider the following maximization problem.

Problem 4. Given a lattice L of size n and two join-endomorphisms f, g : L → L, find
the greatest join-endomorphism h : L → L below both f and g: i.e., h = f ⊓E(L) g.

Notice that the lattice E(L), which could be exponentially bigger than L [22], is
not an input to the problem above. It may not be immediate how to find h; e.g., see the
endomorphism h in Fig.1a for a small lattice of four elements. A naive approach to find
f ⊓E(L) g could be to attempt to compute it pointwise by taking h(a) = f(a) ⊓L g(a)
for every a ∈ L. Nevertheless, the somewhat appealing equation

(f ⊓E(L) g) (a) = f(a) ⊓L g(a) (1)

does not hold in general, as illustrated in the lattices M2 and M3 in Fig.1b and Fig.1c.
A general approach in [22] for arbitrary lattices shows how to find h in Prob.4 by

successive approximations σ0 ⊐ σ1 ⊐ · · · ⊐ σi, starting with some self-map σ0 known
to be smaller than both f and g, and greater than h; while keeping the invariant σi ⊒ h.
The starting point is the naive approach above: σ0(a) = f(a)⊓ g(a) for all a ∈ L. The
approach computes decreasing upper bounds of h by correcting in σi the image under
σi−1 of some values b, c, b⊔ c violating the property σi−1(b)⊔ σi−1(c) = σi−1(b⊔ c).
The correction satisfies σi−1 ⊐ σi and maintains the invariant σi ⊒ h. This approach
eventually finds h in O(n3) basic lattice operations (binary meets and joins).

Recall that in finite distributive lattices, and more generally in co-Heyting algebras
[21], the subtraction operator ⊖ is uniquely determined by the Galois connection b ⊒
c⊖ a iff a ⊔ b ⊒ c. Based on the following proposition it was shown in [22] that if the
only basic operations are joins or meets, h can be computed in O(n3) of them, but if
we also allow subtraction as a basic operation, the bound can be improved to O(n2).

Proposition 5 ([22]). Let L be a finite distributive lattice. Let h = f ⊓E(L) g. Then (1)
h(c) =

d
L
{f(a) ⊔ g(b) | a ⊔ b ⊒ c}, and (2) h(c) =

d
L
{f(a) ⊔ g(c⊖ a) | a ∈ ↓c} .

Nevertheless, it turns out that we can partly use Eq.1 to obtain a better upper bound.
The following lemma states that Eq.1 holds if L is distributive and a ∈ J (L).
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⊥

1 2

⊤

(a) f : , g: →, h: 99K

⊥

1 2

⊤

(b) f : , g: →, h: 99K

⊥

1 2 3

⊤

(c) f : , g: →, h: 99K

Fig. 1: (a) h = f ⊓E(L) g. (b) h(a) def
= f(a) ⊓ g(a) for a ∈ M2 is not in E(M2): h(1 ⊔ 2) ̸=

h(1) ⊔ h(2). (c) Any h : M3 → M3 s.t. h(a) = f(a) ⊓ g(a) for a ∈ J (M3) is not in E(M3):
h(⊤) = h(1 ⊔ 2) = h(1) ⊔ h(2) = 1 ̸= ⊥ = h(2) ⊔ h(3) = h(2 ⊔ 3) = h(⊤).

Lemma 6. Let L be a finite distributive lattice and f, g ∈ E(L). Then the following
equation holds: (f ⊓E(L) g) (a) = f(a) ⊓L g(a) for every a ∈ J (L).

Proof. From Prop.5, (f ⊓E(L) g)(a) =
d

{f(a′) ⊔ g(a⊖ a′) | a′ ∈ ↓a} . Note that since
a ∈ J (L) if a′ ∈ ↓a then a ⊖ a′ = a when a ̸= a′, and a ⊖ a′ = ⊥ when a = a′.
Then, {f(a′)⊔g(a⊖a′) | a′ ∈ ↓a} = {f(a′)⊔g(a⊖a′) | a′ ⊏ a}∪{f(a)⊔g(⊥)} =
{f(a′) ⊔ g(a) | a′ ⊏ a} ∪ {f(a)} = {f(a′) ⊔ g(a) | ⊥ ⊏ a′ ⊏ a} ∪ {f(a), g(a)}.
By absorption, we know that (f(a′) ⊔ g(a)) ⊓ g(a) = g(a). Finally, using proper-
ties of ⊓, (f ⊓E(L) g)(a) =

d
({f(a′) ⊔ g(a) | ⊥ ⊏ a′ ⊏ a} ∪ {f(a), g(a)}) =d

{f(a′) ⊔ g(a) | ⊥ ⊏ a′ ⊏ a} ⊓ f(a) ⊓ g(a) = f(a) ⊓ g(a). ⊓⊔

It is worth noting the Lem.6 may not hold for non-distributive lattices. This is
illustrated in Fig.1c with the archetypal non-distributive lattice M3. Suppose that f
and g are given as in Fig.1c. Let h = f ⊓E(L) g with h(a) = f(a) ⊓ g(a) for all
a ∈ {1, 2, 3} = J (M3). Since h is a join-endomorphism, we would have h(⊤) =
h(1 ⊔ 2) = h(1) ⊔ h(2) = 1 ̸= ⊥ = h(2) ⊔ h(3) = h(2 ⊔ 3) = h(⊤), a contradiction.

Lem.6 and P.7 lead us to the following characterization of meets over E(L).

Theorem 7. Let L be a finite distributive lattice and f, g ∈ E(L). Then h = f ⊓E(L) g
iff h satisfies

h(a) =

{
f(a) ⊓L g(a) if a ∈ J (L) or a = ⊥
h(b) ⊔L h(c) if b, c ∈ ↓1a with b ̸= c

(2)

Proof. The only-if direction follows from Lem.6 and Prop.P.7. For the if-direction, sup-
pose that h satisfies Eq.2. If h ∈ E(L) the result follows from Lem.6 and P.7. To prove
h ∈ E(L) from P.7 it suffices to show (3) h(e) =

⊔
{h(e′) | e′ ∈ ↓J e} for every

e ∈ L. From Eq.2 and since f and g are monotonic, h is monotonic. If e ∈ J (L)
then h(e′) ⊑ h(e) for every e′ ∈ ↓J e . Therefore,

⊔
{h(e′) | e′ ∈ ↓J e} = h(e). If
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(a) Powerset lattices. (b) Arbitrary distributive lattices.

Fig. 2: Comparison between an implementation of Prop.5 (DMEET) and Th.7 (DMEET+).

e ̸∈ J (L), we proceed by induction. Assume Eq.3 holds for all a ∈ ↓1e. By definition,
h(e) = h(b) ⊔ h(c) for any b, c ∈ ↓1e with b ̸= c. Then, we have h(b) =

⊔
{h(e′) |

e′ ∈ ↓J b} and h(c) =
⊔
{h(e′) | e′ ∈ ↓J c}. Notice that e′ ∈ ↓J b or e′ ∈ ↓J c iff

e′ ∈
yJ (b ⊔ c) , since L is distributive. Thus, h(e) = h(b) ⊔ h(c) =

⊔
{h(e′) | e′ ∈yJ (b ⊔ c)} =

⊔
{h(e′) | e′ ∈ ↓J e} as wanted. ⊓⊔

We conclude this section by stating the time complexity O(n) to compute h in the
above theorem. As in [22], the time complexity is determined by the number of basic
binary lattice operations (i.e., meets and joins) performed during execution.

Corollary 8. Given a distributive lattice L of size n, and functions f, g ∈ E(L), the
function h = f ⊓E(L) g can be computed in O(n) binary lattice operations.

Proof. If a ∈ J (L) then from Th.7, h(a) can be computed as f(a) ⊓ g(a). If a = ⊥
then h(a) is ⊥. If a /∈ J (L) and a ̸= ⊥, we pick any b, c ∈ ↓1a such that b ̸= c
and compute h(a) recursively as h(b) ⊔ h(c) by Th.7. We can use a lookup table to
keep track of the values of a ∈ L for which h(a) has been computed, starting with all
a ∈ J (L). Since h(a) is only computed once for each a ∈ L, either as a meet for
elements in J (L) or as a join otherwise, we only perform n binary lattice operations.

Experimental Results. Now we present some experimental results comparing the av-
erage runtime between the previous algorithm in [22] based on Prop.5, referred to as
DMEET, and the proposed algorithm in Th.7, called DMEET+.

Fig.2 shows the average runtime of each algorithm, from 100 runs with a random
pair of join-endomorphisms. For Fig.2a, we compared each algorithm against powerset
lattices of sizes between 22 and 210. For Fig.2b, 10 random distributive lattices of size
10 were selected. In both cases, all binary lattice operation are guaranteed a complexity
in O(1) to showcase the quadratic nature of DMEET compared to the linear growth of
DMEET+. The time reduction from DMEET to DMEET+ is also reflected in a reduction
on the number of ⊔ and ⊓ operations performed as illustrated in Table 1. For DMEET+,
given a distributive lattice L of size n, #⊓ = |J (L)| and #⊔ = |L| − |J (L)| − 1 (⊥ is
directly mapped to ⊥).
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DMEET DMEET+ DMEET DMEET+ DMEET DMEET+
Size Time [s] Time [s] #⊔ #⊔ #⊓ #⊓

16 0.000246 0.000024 81 11 81 4
32 0.000971 0.000059 243 26 243 5
64 0.002659 0.000094 729 57 729 6
128 0.008735 0.000163 2187 120 2187 7
256 0.038086 0.000302 6561 247 6561 8
512 0.244304 0.000645 19683 502 19683 9
1024 1.518173 0.001468 59049 1013 59049 10

Table 1: Average runtime in seconds over powerset lattices. Number of ⊔ and ⊓ operations per-
formed for each algorithm.

3 A Representation of Join-Irreducible Elements of E(L)

In this section we state a characterization of the join-irreducible elements of the lat-
tice of join-endomorphisms E(L). We use it to prove a representation result for join-
endomorphisms. Some of these results may be part of the folklore in lattice theory, our
purpose here is to identify and use them as technical tools in the following section.

The following family of functions can be used to represent J (E(L)).

Definition 9. Let L be a lattice and a, b ∈ J (L). Let fa,b : L → L be given by
fa,b (x)

def
= b if x ∈ ↑a , otherwise fa,b (x)

def
= ⊥.

It is easy to verify that fa,b (⊥) = ⊥. On the other hand, for every c, d ∈ L,
fa,b (c ⊔ d) = fa,b (c) ⊔ fa,b (d) follows from the fact that a ∈ J (L) and by cases on
c ⊔ d ∈ ↑a and c ⊔ d ̸∈ ↑a . Thus, from P.1 we know that fa,b is a join-endomorphism,
and from P.2 it is monotone. Therefore, fa,b↾J (L) ∈ ⟨J (L) → L⟩. In addition, we point
out the following rather technical lemma that gives us way to construct from a function
g ∈ ⟨J (L) → L⟩, a function h ∈ ⟨J (L) → L⟩ covered by g. The proof is given in the
technical report available at https://hal.archives-ouvertes.fr/hal-03323638.

Lemma 10. Let L be a finite lattice. Let g ∈ ⟨J (L) → L⟩, x0 ∈ J (L) and y0 ∈ L
be such that y0 ∈ ↓1g(x0) and g(x) ⊑ y0 for all x ⊏ x0. Define h : J (L) → L as
h(x)

def
= y0 if x = x0 else h(x)

def
= g(x). Then h is monotonic and g covers h.

We proceed to characterize the join-irreducible elements of the lattice E(L). The
next lemma, together with P.6, tell us that every join-endomorphism in E(L) can be
expressed solely as a join of functions of the form fa,b defined in Def.9.

Lemma 11. Let L be a finite distributive lattice. For any join-endomorphism f ∈ E(L),
f is join-irreducible iff f = fa,b for some a, b ∈ J (L).

Proof. For notational convenience let M = ⟨J (L) → L⟩. From P.5 it suffices to prove:
g ∈ M is join-irreducible in M iff g = ga,b for some a, b ∈ J (L) where ga,b =
fa,b↾J (L). We use the following immediate consequence of Lem.10.

https://hal.archives-ouvertes.fr/hal-03323638
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Property (⋆): Let g ∈ M, x1, x2 ∈ J (L) and y1, y2 ∈ L, be such that for each
i ∈ {1, 2}, yi ∈ ↓1g(xi) and g(x) ⊑ yi for all x ⊏ xi. If x1 ̸= x2 or y1 ̸= y2, then
there are two distinct functions g1, g2 ∈ M that are covered by g in M.

1. For the only-if direction, let X = {x ∈ J (L) | g(x) ̸= ⊥} and Y = {g(x) |
x ∈ X}. If X = ∅, then g(x) = ⊥ for all x ∈ J (L), in which case g is not
join-irreducible in M. Thus, necessarily, X ̸= ∅ and Y ̸= ∅. Let us now prove that:
(a) X has a minimum element a ∈ J (L) with g(a) ∈ J (L), and (b) Y = {g(a)}.
(a) Let x1, x2 ∈ X be minimal elements in X . For each i ∈ {1, 2}, let yi ∈

↓1g(xi). Since xi is minimal, it follows that g(x) = ⊥ for all x ⊏ xi. From
(⋆) and the fact that g is join-irreducible, we have x1 = x2 and y1 = y2.
Thus, X has a minimum element. We refer to such element as a. Furthermore,
|↓1g(a)| = 1, i.e. g(a) ∈ J (L).

(b) Let Y ∗ = Y \ {g(a)}. For the sake of contradiction, suppose Y ∗ ̸= ∅. Let
y ∈ Y ∗ be a minimal element and x∗ ∈ X be a minimal of X∗ = {x ∈
X | g(x) = y}. Since a ⊏ x∗ and y ̸= g(a), we have g(a) ⊏ g(x∗) =
y. Then there is at least one z ∈ ↓1y such that g(a) ⊑ z ⊏ y. Since g is
monotonic, Im(g) = {⊥}∪ Y and y is minimal in Y ∗, for all x ⊏ x∗, we have
g(x) ∈ {⊥, g(a)}. Therefore, g(x) ⊑ z for all x ⊏ x∗. From (⋆), with x1 = a,
x2 = x∗, y1 ∈ ↓1g(a) and y2 = z, it follows that g is not join-irreducible in
M, a contradiction.

Monotonicity of g and (a)-(b), imply Im(g) = {⊥, b} with b = g(a). Thus g = ga,b.
2. We prove that g = ga,b has a unique cover in M. Let c be the only cover of b. Define

g∗:J (L) → L as g∗(x) = c if x = a else g∗(x) = g(x). From Lem.10, it follows
that g∗ ∈ M and ga,b covers g∗ in M. It suffices that for any h ∈ M with h ⊏M ga,b,
h ⊑M g∗ holds. Take any such h ∈ M. Since h(a) ̸= b, h(a) ⊏ b. Thus h(a) ⊑ c,
so h(a) ⊑ g∗(a). Indeed, for any x ̸= a, h(x) ⊏ g(x) = g∗(x). Then h ⊑M g∗. ⊓⊔

We conclude with a corollary of Lem.11 that provides a representation theorem for
join-endomorphism on distributive lattices. We will use this result in the next section.

Corollary 12. Let L be a finite distributive lattice and let f ∈ E(L). Then f = FR

where R = {(a, b) ∈ J (L)2 | a ⊑ f(b)} and FR : L → L is the function given by
FR(c)

def
=

⊔
{a ∈ J (L) | (a, b) ∈ R and c ⊒ b for some b ∈ J (L)}.

Proof. From P.6 f =
⊔

E(L)
{g ∈ J (E(L)) | g ⊑E f}. Thus,

f(c) =
(⊔

E(L)
{g ∈ J (E(L)) | g ⊑E f}

)
(c) =

⊔
{g(c) | g ∈ J (E(L)) and g ⊑E f}

=
⊔{

fb,a (c) | (b, a) ∈ J (L)2 and fb,a ⊑E f
}

(Lem.11)

=
⊔{

fb,a (c) | (b, a) ∈ J (L)2 and a ⊑ f(b)
}

=
⊔{

a ∈ J (L) | (b, a) ∈ J (L)2, a ⊑ f(b) and c ⊒ b for some b ∈ J (L)
}

=
⊔

{a ∈ J (L) | (b, a) ∈ R and c ⊒ b for some b ∈ J (L)} = FR(c)
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4 Distributive Lattices and Knowledge Structures

In this section, we introduce some knowledge structures from economics [2,23] and re-
late them to distributive lattices by adapting fundamental duality results between modal
algebras and frames [17]. We will use these structures and their relation to distributive
lattices in the algorithmic results in the next section. We use the term knowledge to
encompass various epistemic concepts including S5 knowledge and belief [7].

Definition 13 ([23]). A (finite) Knowledge Structure (KS) for a set of agents A is a
tuple (Ω, {Ki}i∈A) where Ω is a finite set and each Ki : P(Ω) → P(Ω) is given by
Ki(E) = {ω ∈ Ω | Ri(ω) ⊆ E} where Ri ⊆ Ω2 and Ri(ω) = {ω′ | (ω, ω′) ∈ Ri}.

The elements ω ∈ Ω and the subsets E ⊆ Ω are called states and events, resp. We
refer to Ki and Ri as the knowledge operator and the accessibility relation of agent i.

The notion of event may be familiar to some readers from probability theory; for
example the event “public transportation is suspended” corresponds the set of states at
which public transportation is suspended. An event E holds at ω if ω ∈ E. Thus Ω, the
event that holds at every ω, corresponds to true in logic, union of events corresponds to
disjunction, intersection to conjunction, and complementation in Ω to negation. We use
E for Ω \ E. We write E ⇒ F for the event E ∪ F which corresponds to classic logic
implication. We say that E entails F if E ⊆ F . The event of i knowing E is Ki(E).

The following properties hold for all events E and F of any KS (Ω, {Ki}i∈A). It is
easy to see that (K1) Ki(Ω) = Ω, i.e., agents know the event that holds at every state,
i.e., Ω. A distinctive property of knowledge is (K2) Ki(E) ∩ Ki(F ) = Ki(E ∩ F );
i.e., if an agent knows two events, she knows their conjunction. In fact, K2 implies
(K3) (Ki(E) ∩Ki(E ⇒ F )) ⊆ Ki(F ). This property expresses modus ponens for
knowledge. Other property implied by K2 is that knowledge is monotonic: (K4) if E ⊆
F then Ki(E) ⊆ Ki(F ), i.e., agents know the consequences of their knowledge.

An agent i is wiser (or more knowledgeable) than j iff Kj(E) ⊆ Ki(E) for every
event E; i.e., if j knows E so does i.

Aumann Structures. Aumann structures are the standard event-based formalism in
economics and decision theory [7] for reasoning about knowledge. A (finite) Aumann
structure (AS) is a KS where all the accessibility relations are equivalences.5 The in-
tended notion of knowledge of AS is S5; i.e., the knowledge captured by Prop.K1-K2
and the following three fundamental properties which hold for any AS: (K5) Ki(E) ⊆
E, (K6) Ki(E) ⊆ Ki(Ki(E)), and (K7) Ki(E) ⊆ Ki(Ki(E)). The first says that if
an agents knows E then E cannot be false, the second and third state that agents know
what they know and what they do not know.

Extended KS. We now introduce a simple extension of KS that will allow us to
give a uniform presentation of our results.

Definition 14 (EKS). A tuple (Ω,S, {Ki}i∈A) is said to be an extended knowledge
structure (EKS) if (1) (Ω, {Ki}i∈A) is a KS, and (2) S is a subset of P(Ω) that contains
Ω and it is closed under union, intersection and application of Ki for every i ∈ A.

5 The presentation of AS [2] uses a partition Pi = {Ri(ω) | ω ∈ Ω} of Ω and Ki(E) is
equivalently defined as {ω ∈ Ω | Pi(ω) ⊆ E} where Pi(ω) is the cell of Pi containing ω.



10 C. Pinzón et al.

Notation. Given an underlying EKS (Ω,S, {Ki}i∈A) and f : P(Ω) → P(Ω) we shall
use f̃ for the function f↾S : S → P(Ω), i.e., f̃(E) = f(E) for every E ∈ S. Because
of the closure properties of S, for every i ∈ A we have K̃i : S → S.

Notice that the AS and, in general KS, are EKS where S = P(Ω). Also Kripke
frames [7] can be viewed as EKS with S = P(Ω). Other structures not discussed in
this paper such as set algebras with operators (SOS) [24] and general frames [4] can be
represented as EKSs where S is required to be closed under complement.

4.1 Extended KS and Distributive Lattices

The knowledge operators of an EKS are join-endomorphisms on a distributive lattice.
This is an easy consequence of K1 and K2, and the closure properties of EKS. The next
proposition tells us that the wiser the agent, the lower that (its knowledge operator) is
placed in the corresponding lattice.

Proposition 15. Let (Ω,S, {Ki}i∈A) be an EKS. Then L = (S,⊇) is a distributive
lattice and for each i ∈ A, K̃i ∈ E(L).

Conversely, the join-endomorphisms of distributive lattices correspond to knowl-
edge operators of EKS. Recall that every distributive lattice is isomorphic to (the dual
of) a lattice of sets. The next proposition is an adaptation to finite distributive lattices of
Jónsson-Tarski duality for general-frames and boolean algebras with operators [17].

Proposition 16. Let L be dual to a finite lattice of sets with a family {fi ∈ E(L)}i∈I .
Then (Ω,S, {Ki}i∈I) is an EKS where S = L,Ω = ⊥L, and for every i ∈ I , Ri =

{(ω, ω′) ∈ Ω2 | for all E ∈ S, ω ∈ fi(E) implies ω′ ∈ E}. Also, for i ∈ I , K̃i = fi.

Proof. Notice that L = S is closed under union and intersection since L is the dual of
a lattice of sets. Showing K̃i = fi also proves that S is closed under Ki. Recall that
K̃i(E) = Ki(E) for each E ∈ S. Thus, it remains to prove Ki(E) = fi(E) for all
E ∈ S. From K1 and the fact that fi is a join-endomorphism, Ki(E) = fi(E) = Ω for
E = Ω. Hence, choose an arbitrary E ̸= Ω . First suppose that τ ∈ fi(E). From the
definition of Ri if (τ, τ ′) ∈ Ri, τ ′ ∈ E. Hence Ri(τ) ⊆ E, so τ ∈ Ki(E).

Now suppose that τ ∈ Ki(E) but τ ̸∈ fi(E). From τ ∈ Ki(E) we obtain:

for all τ ′ ∈ Ω if (τ, τ ′) ∈ Ri then τ ′ ∈ E. (4)

From the assumption τ ̸∈ fi(E) and the monotonicity of join-endomorphisms (P.2):

for every F ∈ S if F ⊆ E then τ ̸∈ fi(F ). (5)

Let X = {E′ ∈ S | τ ∈ fi(E
′)}. If X = ∅ then from the definition of Ri we conclude

Ri(τ) = Ω which contradicts (4) since E ̸= Ω. If X ̸= ∅ take S =
⋂
X . Since fi is

a join-endomorphism, it distributes over intersection (i.e., the join in L), we conclude
τ ∈ f(S). Thus, if S ⊆ E we obtain a contradiction with (5). If S ̸⊆ E then there
exists τ ′ ∈ S such that τ ′ ̸∈ E. From the definition of S, τ ′ ∈ E′ for each E′ such that
τ ∈ fi(E

′). But this implies (τ, τ ′) ∈ Ri and τ ′ ̸∈ E, a contradiction with (4). ⊓⊔
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Nevertheless, we can use our general characterization of join endomorphisms in the
previous section (Cor.12) to obtain a simpler relational construction for join endomor-
phisms of powerset lattices (boolean algebras). Unlike the construction in Prop.16, this
characterization of Ri does not appeal to universal quantification.

Proposition 17. Let L be dual to a finite powerset lattice with a family {fi ∈ E(L)}i∈I .

Let (Ω, {Ki}i∈I) be the KS where Ω = ⊥L and Ri = {(ω, ω′) | ω ∈ fi( {ω′} ) }.
Then, for every i ∈ A, Ki = fi.

Proof. Since L is dual to a powerset lattice, ⊔ = ∩, ⊑=⊇, and J (L) = {{τ} | τ ∈ Ω}.
Let Q = {({σ}, {τ}) | (σ, τ) ∈ Ri}. Notice that for every ({σ}, {τ}) ∈ Q, we have
σ ∈ fi( {τ} ). Equivalently, {σ} ⊆ fi( {τ} ) and fi( {τ} ) ⊆ {σ}. Therefore, from
Cor.12, it follows that for every E ∈ L, fi(E) =

⋂
{{σ} ∈ J (L) | ({σ}, {τ}) ∈

Qi and E ⊆ {τ} for some {τ} ∈ J (L)}. We complete the proof as follows:

fi(E) =
⋂

{{σ} ∈ J (L) | ∃{τ} ∈ J (L) : (({σ}, {τ}) ∈ Q and E ⊆ {τ})}

=
⋂

{{σ} ∈ J (L) | ¬∀{τ} ∈ J (L) : (({σ}, {τ}) ∈ Q =⇒ E ̸⊆ {τ})}

=
⋂

{Ω \ {σ} ∈ J (L) | ¬∀τ ∈ Ω : ((σ, τ) ∈ Ri =⇒ τ ∈ E)}

=
⋂

{Ω \ {σ} ∈ J (L) | ¬(Ri(σ) ⊆ E)}

= Ω \ {σ ∈ Ω | ¬(Ri(σ) ⊆ E)} = {σ ∈ Ω | Ri(σ) ⊆ E} = Ki(E)

We conclude this section by pointing out that accessibility relations can be obtained
from knowledge operators. We can use Prop.17 to compute Ri from Ki. For AS we can
obtain the equivalence class Ri(ω) directly from Ki.

Corollary 18. Let K = (Ω, {Ki}i∈A) be a KS. Then (1) Ri = {(ω, ω′) | ω ∈
Ki( {ω′} ) }. (2) If K is an AS then Ri(ω) = Ki( {ω} ) for every ω ∈ Ω.

5 Distributed Knowledge.

The notion of distributed knowledge represents the information that two or more agents
may have as a group but not necessarily individually. Intuitively, it is what someone who
knows what each agent, in a given group, knows. As described in [7], while common
knowledge can be viewed as what “any fool” knows, distributed knowledge can be
viewed as what a “wise man” would know.

Let (Ω, {Ki}i∈A) be a KS and i, j ∈ A. The distributed knowledge of i and j is
represented by D{i,j} : P(Ω) → P(Ω) defined as D{i,j}(E) = {ω ∈ Ω | Ri(ω) ∩
Rj(ω) ⊆ E} where Ri and Rj are the accessibility relations for i and j.

The following property captures the notion of distributed knowledge by relating
group to individual knowledge: (K8) (Ki(E) ∩Kj(E ⇒ F )) ⊆ D{i,j}(F ). It says
that if one agents knows E and the other knows that E implies F , together they have
the distributed knowledge of F even if neither agent knew F .
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Example 19. Let E be the event “Bob’s boss is working from home” and F be the event
“public transportation is suspended”. Suppose that agent Alice knows that Bob’s boss
is working from home (i.e., KA(E)), and that agent Bob knows that his boss works
from home only when public transportation is suspended (i.e., KB(E ⇒ F )). Thus, if
they told each other what they knew, they would have distributed knowledge of F (i.e.,
D{A,B}(F )). Indeed, KA(E) ∩KB(E ⇒ F ) entails D{A,B}(F ) from K8.

A self-explanatory property relating individual and distributed knowledge is (K9)
Ki(E) ⊆ D{i,j}(E). Furthermore, the above basic properties of knowledge Prop.K1-
K2 also hold if we replace the Ki with D{i,j}: Intuitively, distributed knowledge is
knowledge. Indeed, imagine an agent m that combines i and j’s knowledge by having
an accessibility relation Rm = Ri ∩ Rj . In this case we would have Km = D{i,j}.
Therefore, any KS may include distributed knowledge as one of its knowledge oper-
ators. For simplicity, we are considering distributed knowledge of two agents but this
can be easily extended to arbitrary groups of agents. E.g. if Km = D{i,j} then D{k,m}
represents the distributed knowledge of three agents i, j and k.

5.1 The Meet of Knowledge.

In Sec.4.1 we identified knowledge operators and join endomorphisms. We now show
that the notion of distributed knowledge corresponds exactly to the meet of the knowl-
edge operators in the lattice of all join-endomorphisms in (S,⊇).

Theorem 20. Let (Ω,S, {Ki}i∈A) be an EKS and let L be the lattice (S,⊇). Let us
suppose that Km = D{i,j} for some i, j,m ∈ A. Then K̃m = K̃i ⊓E(L) K̃j .

Proof. Let us assume Km = D{i,j}. Then from the closure properties of S, we have
D̃{i,j} = K̃m : S → S. Let f = K̃i ⊓E(L) K̃j . (Recall that the order relation ⊑L over
L is reversed inclusion ⊇, joins are intersections and meets are unions.)

From Prop.K9, for every E ∈ S , D{i,j}(E) ⊑L Ki(E),Kj(E). Thus D̃{i,j} is a
lower bound of both K̃i and K̃j in E(L), so D̃{i,j} ⊑E(L) f.

To prove f ⊑E(L) D̃{i,j}, take τ ∈ D̃{i,j}(E) = D{i,j}(E) for an arbitrary E ∈ S.
By definition of D{i,j}, we have (6) Ri(τ) ∩Rj(τ) ⊆ E. From Prop.5

f(E) =
⋃

{Ki(F ) ∩Kj(H) | F,H ∈ S and F ∩H ⊆ E} (7)

Take F = Ri(τ) and H = Rj(τ), from (6), F ∩H ⊆ E. By definition of knowledge
operator, τ ∈ Ki(F ) and τ ∈ Kj(H). From (7), τ ∈ f(E). Thus f ⊑E(L) D̃{i,j}. ⊓⊔

The theorem above allows us to characterize an agent m having the distributed knowl-
edge of i and j as the least knowledgeable agent wiser than both i and j. In the next
section we consider the decision problem of whether a given m indeed has the dis-
tributed knowledge of i and j.
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5.2 The Distributed Knowledge Problem.

In what follows, let (Ω, {Ki}i∈A) be a KS and let n = |Ω|. Let us now consider the
following decision: Given the knowledge of agents i, j,m, decide whether m has the
distributed knowledge of i and j, i.e., Km = D{i,j}.

The input for this problem is the knowledge of the agents and it can be represented
using either knowledge operators Ki,Kj ,Km or accessibility relations Ri,Rj ,Rm.
For each representation, the algorithm that solves the problem Km = D{i,j} can
be implemented differently. For the first representation, it follows from Th.20 that
Km = D{i,j} holds if and only if Km = Ki ⊓E(L) Kj where L = (P(Ω),⊇). For
the second one, we can verify Rm = Ri ∩ Rj instead. Indeed, as stated in Cor.18,
one representation can be obtained from the other, hence an alternative solution for the
decision problem is to translate the input from the given representation into the other
one before solving.

Accessibility relations represent knowledge much more compactly than knowledge
operators because the former are relations on Ω2 while the latter are relations on P(Ω)2.
For this reason, it would seem in principle that the algorithm for handling the knowledge
operator would be slower by several orders of magnitude. Nevertheless, we can use our
lattice theoretical results from previous sections to show that this is not necessarily the
case, thus it is worth considering both types of representations.

From Knowledge Operators. We wish to determine Km = D{i,j} by establishing
whether Km = Ki⊓E(L)Kj where L = (P(Ω),⊇). Let us assume the following bitwise
representation of knowledge operators. The states in Ω are numbered as ω1, . . . , ωn.
Each event E is represented as a number #E ∈ [0..2n−1] whose binary representation
has its k-th bit set to 1 iff ωk ∈ E. Each input knowledge operator Ki is represented as
an array Ki of size 2n that stores #Ki(E) at position #E, i.e., Ki[ #E ] = #Ki(E).

From Lem.6, Km = Ki ⊓E(L) Kj iff Km(E) = Ki(E) ∪ Kj(E) for every join-
irreducible element E in L. Notice that E ∈ J (L) iff E has the form {ωk} for some
ωk ∈ Ω. Moreover, #{ωk} = (2n−1)−2k. These facts lead us to the following result.

Theorem 21. Given the arrays Ki, Kj , Km where i, j,m ∈ I , there is an effective pro-
cedure that can decide Km = D{i,j} in time O(n2) where n = |Ω|.

Proof. Let L = (P(Ω),⊇). We have Km = D{i,j} iff Km = Ki ⊓E(L) Kj (Th.20) iff
Km(E) = Ki(E) ∪ Kj(E) for every E ∈ J (L) (Lem.6). Furthermore, E ∈ J (L)

iff E = {ω} for some ω ∈ Ω. Then we can conclude that E ∈ J (L) iff #E =
(2n−1)−2k for some k ∈ [0..n−1]. Therefore, Km = D{i,j} iff for every k ∈ [0..n−1]

Km[ pk ] = Ki[ pk ] | Kj [ pk ] (8)

where pk = (2n − 1)− 2k and | is the OR operation over the bitwise representation of
Ki[ pk ] and Ki[ pk ]. For each k ∈ [0..n − 1], the equality test and the OR operation in
Eq.8 can be computed in O(n). Hence the total cost is O(n2). ⊓⊔

From Accessibility Relations. A very natural encoding for accessibility relations is
to use a binary n×n matrix. If the input is encoded using three matrices Mi, Mj and Mm,
we can test whether Rm = Ri ∩Rj (a proxy for Km = D{i,j}) in O(n2) by checking
pointwise if Mm[a, b] = Mi[a, b] · Mj [a, b].
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It suggests that for AS we can use a different encoding and check Rm = Ri ∩ Rj

practically in linear time: More precisely in O(αnn) where αn is the inverse of the
Ackermann function6. The key point is that the relations of AS are equivalences so they
can be represented as partitions. The proof of the following result, which is interesting
in its own right, shows an O(nαn) procedure for deciding Rm = Ri ∩Rj .

Theorem 22. Let R1,R2,R3 ⊆ Ω2 be equivalences over a set Ω of n = |Ω| elements.
There is an O(αnn) algorithm for the following problem:

Input: Each Ri in partition form, i.e. an array of disjoint arrays of elements of Ω,
whose concatenation produces Ω. This is readable in O(n).
Output: Boolean answer to whether R3 = R1 ∩R2.

Proof. We use the Disjoint-Sets data structure [8] whose details are included in the
technical report https://hal.archives-ouvertes.fr/hal-03323638. We can view a disjoint-
set as a function r : I → I that satisfies r ◦ r = r and can be evaluated at a particular
index in O(αn). The element r(i) corresponds to the class representative of i for each
i ∈ I , so that i ∼r j if and only if r(i) = r(j).

If we let ri denote a disjoint-set for Ri for each i ∈ {1, 2, 3}, and we let q denote the
disjoint-set for R1∩R2, then the problem can be divided into computing the disjoint-set
q in O(nαn) and verifying whether ∼q=∼r3 also in O(nαn). To organize these claims,
let us consider the following algorithm descriptions.

Intersection. Takes two disjoint-sets r1 and r2, and produces a disjoint-set q such
that i ∼q j iff i ∼r1 j and i ∼r2 j.
Canonical. Takes a disjoint-set r and produces another r̂ with ∼r=∼r̂, but such
that r̂(i) ≤ i for all i ∈ I .
Equality. Takes two disjoint-sets r1, r2 and determines if i ∼r1 j iff i ∼r2 j for all
i, j ∈ I . This problem is reduced simply to checking if r̂1 = r̂2.

We proceed to show that Algorithms 1 and 2 compute q and r̂ (in array form) in
O(nαn). The complexity follows from the fact that they must read the input function(s)
pointwise and all other operations are linear. It remains to show correctness only.

The array g in Algo.1 is any version of the inverse image of f, i.e. f[g[y]] = y for
every y ∈ Im(f). This guarantees f◦g◦f = f and hence q◦q = g◦f◦g◦f = g◦f = q.
Moreover, for any i, j ∈ I , q[i] = q[j] iff g[f[i]] = g[f[j]] by definition; iff f[i] = f[j]
because f is injective; iff r1(i) = r1(j) and r2(i) = r2(j); iff i ∼r1 j and i ∼r2 j.

Regarding Algo.2, for all i ∈ I , i ∼ t[r(i)], thus r(i) = r(t[r(i)]). This is, r =
r ◦ t ◦ r. Thus, r̂ ◦ r̂ = t ◦ r ◦ t ◦ r = t ◦ r = r̂. Moreover, for any i, j ∈ I , i ∼ j iff
r(i) = r(j); iff t[r(i)] = t[r(j)] since t is injective on J ; iff r̂[i] = r̂[j] by definition.

Experimental Results. Fig.3 shows the average runtime (100 random executions) of
the four algorithms listed below for the distributed knowledge problem. Fixing the num-
ber of elements n = |Ω| elements, the input for each execution consisted of three ran-
domly generated partitions Pi, Pj and Pm. The first two are generated independently

6 αn
def
= min{k : A(k, k) ≥ n}, where A is the Ackermann function. The growth of αn is

negligible in practice, e.g., αn = 4 for n = 22
265536

− 3.

https://hal.archives-ouvertes.fr/hal-03323638
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Algorithm 1 Intersection of disjoint sets
in O(nαn)

1: procedure INTERSECTION(r1, r2)
2: Let f : I → I × I be an array
3: For each i ∈ I do
4: f[i]← (r1(i), r2(i))
5: Let g : Im(f)→ I be a hash map
6: For each i ∈ I do g[f[i]]← i
7: Let q : I → I be an array
8: For each i ∈ I do q[i]← g[f[i]]
9: return q

Algorithm 2 Equality of disjoint sets in
O(nαn)

1: procedure CANONICAL(r)
2: (Comment) J def

= {r(i) : i ∈ I}.
3: Let t : J → I be a hash map.
4: For each i ∈ I do t[r(i)]← r(i).
5: For each i ∈ I do
6: t[r(i)]← min(t[r(i)], i)
7: Let r̂ : I → I be an array
8: For each i ∈ I do r̂[i]← tr(i)
9: return r̂
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Fig. 3: Runtime comparison of several algorithms that solve the distributed knowledge problem.

and uniformly over the set of all possible partitions of n elements. The third, Pm, cor-
responds with 50% probability to the intersection of the relations of the first two, and to
a different but very similar partition otherwise, so as to increase the problem difficulty.

1. The “Cached operator” algorithm is the one described in Th.21. It assumes that the
input knowledge operators can be evaluated in O(1) at any join-irreducible input
E ⊆ Ω. Its complexity is O(n2), because bit-mask operations are linear w.r.t. the
number of bits. However, this is compensated heavily in practice by the speed of
bit-masking operations, at least for the sizes depicted.

2. The “Disjoint set” algorithm is the one described in Th.22 (O(nαn)). It takes the
accessibility relations in partition form as input.

3. The “Relation” algorithm (O(n2)) takes as input the accessibility relations in the
form of n× n binary matrices, and simply verifies if the pointwise-and matches.

4. The “Non-cached operator” (O(n2)) algorithm is that of the “Cached operator”
when the cost of evaluating Ki( · ) is taken into account. It shows that although the
“Cached operator” algorithm is very fast, its speed depends heavily on the assump-
tion that the knowledge operators are pre-computed.
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6 Concluding Remarks and Related Work.

We have used some standard tools from lattice theory to characterize the notion of
distributed knowledge and provide efficient procedures to compute the meet of join-
endomorphisms. Furthermore, we provide an algorithm to compute the intersection of
partitions of a set of size n in O(nαn). As illustrated in the introduction, this algorithm
may have applications for graph connected components and other domains where the
notion of partition and intersection arise naturally.

In [22] we proposed algorithms to compute f ⊓E(L) g with time complexities O(n3)
for arbitrary lattices and O(n2) for distributive lattices. Here we have improved the
bound to O(n) for distributive lattices. The authors in [13] gave a method of logarithmic
time complexity (in the size of the lattice) for meet operations. Since E(L) is isomorphic
to O(J (L)× J (L)op) for a distributive lattice L, finding f⊓E(L)g with their algorithm
would be in O(log2(2

n2

)) = O(n2) in contrast to our linear bound. Furthermore, we
would need a lattice isomorphic to E(L) to find f ⊓E(L) g using their algorithm. This
lattice can be exponentially bigger than L [22] which is the input to our algorithm. We
also provided experimental results illustrating the performance of our procedures. We
followed the work in [16] for generating random distributive lattices.

The finite representation results we used in Sections 3 and 4 to obtain our main re-
sults are adaptations from standard results from duality theory. Jónsson and Tarski [19,17]
originally presented an extension of boolean algebras with operators (BAO), called
canonical extensions, provided with some representation theorems. Roughly speak-
ing, the representation theorems state that (1) every relation algebra is isomorphic to
a complete and atomic relation algebra and (2) every boolean algebra with operators
is isomorphic to a complex algebra that is complete and atomic. The idea behind this
result, as was presented later by Kripke in [20], basically says that the operators can be
recovered from certain binary relations and vice versa. Another approach to this duality
was given by Goldblatt [11] where it is stated that the variety of normal modal algebras
coincides with the class of subalgebras defined on the class of all frames. Canonical
extensions have been useful for the development of duality and algebra. Jónsson proved
an important result for modal logic in [18] and the authors of [10,9,6] have generalized
canonical extensions for BAOs to distributive and arbitrary bounded lattices and posets.

Distributed knowledge was introduced in [15] and various axiomatization and ex-
pressiveness for it have been provided, e.g., in [14,1]. In terms of computational com-
plexity, the satisfiability problem for epistemic logic with distributed knowledge (S5D)
has been shown to be PSPACE-complete [7]. Nevertheless, we are not aware of any
lattice theoretical characterization of distributed knowledge nor algorithms to decide if
an agent has the distributed knowledge of others.
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