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Counting and Computing Join-Endomorphisms in
Lattices

Santiago Quintero2, Sergio Ramirez1, Camilo Rueda1, Frank Valencia1,2

1 Pontificia Universidad Javeriana Cali
2 CNRS & LIX, École Polytechnique de Paris

Abstract. Structures involving a lattice and join-endomorphisms on it are ubiq-
uitous in computer science. We study the cardinality of the set J(L) of all join-
endomorphisms of a given finite lattice L. We show that the cardinality of J(L)
is sub-exponential, exponential and super-exponential in the size of the lattice for
boolean algebras, linear-orders, and arbitrary lattices, respectively. We also study
the following problem: Given a lattice L of size n and a set S ⊆ J(L) of size
m, find the greatest lower bound

d
J(L)

S. The join-endomorphism
d

J(L)
S has

meaningful interpretations in epistemic logic, distributed systems, and Aumann
structures. We show that this problem can be solved with worst-case time com-
plexity in O(mnlog2 3) for powerset lattices, O(mn2) for lattices of sets, and
O(mn + n3) for arbitrary lattices. The complexity is expressed in terms of the
basic binary lattice operations performed by the algorithm.

1 Introduction

There is a long established tradition of using lattices to model structural entities in many
fields of mathematics and computer science. For example, lattices are used in concur-
rency theory to represent the hierarchical organization of the information resulting from
agent’s interactions [10]. Mathematical morphology (MM), a well-established theory
for the analysis and processing of geometrical structures, is founded upon lattice theory
[1,11]. Lattices are also used as algebraic structures for modal and epistemic logics as
well as Aumann structures (e.g., modal algebras and constraint systems [7]).

In all these and many other applications, lattice join-endomorphisms appear as fun-
damental. In MM, join-endomorphisms correspond to one of its fundamental opera-
tions; dilations. In modal algebra, they correspond via duality to the box modal operator.
In epistemic settings, they represent belief or knowledge of agents. In fact, our own in-
terest in lattice theory derives from using join-endomorphisms to model the perception
that agents may have of a statement in a lattice of partial information [7].

For finite lattices, devising suitable algorithms to compute lattice maps with some
given properties would thus be of great utility. We are interested in constructing al-
gorithms for computing lattice morphisms. This requires, first, a careful study of the
space of such maps to have a clear idea of how particular lattice structures impact on
the size of the space. We are, moreover, particularly interested in computing the maxi-
mum join-endomorphism below a given collection of join-morphisms. This turns out to
be important, among others, in spatial computation (and in epistemic logic) to model
the distributed information (resp. distributed knowledge) available to a set of agents as
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conforming a group [8]. It could also be regarded as the maximum perception consistent
with (or derivable from) a collection of perceptions of a group of agents.

Problem. Consider the set J(L) of all join-endomorphisms of a finite lattice L. The
set J(L) can be made into a lattice by ordering join-endomorphisms point-wise wrt the
order of L. We investigate the following maximization problem: Given a lattice L of
size n and a set S ⊆ J(L) of size m, find in J(L) the greatest lower bound of S, i.e.,d

J(L)
S. Simply taking σ : L → L with σ(e)

def
=

d
L
{f(e) | f ∈ S} does not solve the

problem as σ may not be a join-endomorphism. Furthermore, since J(L) can be seen as
the search space, we also consider the problem of determining its cardinality. Our main
results are the following.

Contributions. We give pleasant characterizations of the exact cardinality of J(L)
for some fundamental lattices in terms of sub-exponentials, the central binomial coef-
ficient, and Laguerre polynomials. We show that the number of join-endomorphisms
is (1) sub-exponential nlog2 n for powerset lattices, (2) exponential

(
2n
n

)
for linear lat-

tices. We also consider the stereotypical non-distributive lattice Mn. We show that (3)
|J(Mn)| equals the super-exponential rn0 + . . .+ rnn + rn+1

1 = n!Ln(−1) + (n+ 1)2.
(rmk is number of ways to place k non-attacking rooks on an m ×m board and Ln(x)
is the Laguerre polynomial of degree n.) Furthermore, (4) we provide an algorithm that
computes

d
J(L)

(S) with worst-case time complexity in O(mnlog2 3) for powerset lat-
tices and O(mn2) for lattices of sets. For general lattices, (5) we provide an algorithm
that computes

d
J(L)

(S) with worst-case time complexity in O(nm+ n3).
Organization. Section 2 introduces the background. In Section 3 we present the

contributions (1-3) regarding the cardinality of J(L). In Section 4 we provide the al-
gorithms for computing

d
J(L)

(S) from contributions (4-5). We present experiments
and an example in Section 4.5. Due to space restrictions, some proofs are given in the
Appendix.

2 Background: Join-Endomorphisms and Their Space

We presuppose basic knowledge of order theory [2] and use the following notions. Let
(L,v) be a partially orderer set (poset), and let S ⊆ L. We use

⊔
L
S to denote the least

upper bound (or supremum or join) of S in L, if it exists. Dually,
d

L
S is the greatest

lower bound (glb) (infimum or meet) of S in L, if it exists. We shall often omit the index
L from

⊔
L

and
d

L
when no confusion arises. As usual, if S = {c, d}, c t d and c u d

represent
⊔
S and

d
S, respectively. If L has a greatest element (top) >, and a least

element (bottom) ⊥, we have
⊔
∅ = ⊥ and

d
∅ = >. The poset L is distributive iff for

every a, b, c ∈ L, a t (b u c) = (a t b) u (a t c).
The poset L is a lattice iff each finite subset of L has a supremum and infimum in

L, and it is a complete lattice iff each subset of L has a supremum and infimum in L.
A self-map on L is a function f : L → L. A self-map f is monotonic if a v b

implies f(a) v f(b), and f preserves the join of S ⊆ L iff f(
⊔
S) =

⊔
{f(c) | c ∈ S}.

We shall use the following posets and notation. Given n, we use n to denote the
poset {1, . . . , n}with the linear order x v y iff x ≤ y. The poset n̄ is the set {1, . . . , n}
with the discrete order x v y iff x = y. Given a poset L, we use L⊥ for the poset that
results from adding a bottom element to L. The poset L> is similarly defined. The
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lattice 2n is the n-fold Cartesian product of 2 ordered coordinate-wise. We define Mn

as the lattice (n̄⊥)>. A lattice of sets is a set of sets ordered by inclusion and closed
under finite unions and intersections. A powerset lattice is a lattice of sets that includes
all the subsets of its top element.

We shall investigate the set of all join-endomorphisms of a given lattice ordered
point-wise. Notice that every finite lattice is complete lattice.
Definition 1 (Join-endomorphisms and their space). Let L be a complete lattice. We
say that a self-map is a (lattice) join-endomorphism iff it preserves the join of every
finite subset of L. Define J(L) as the set of all join-endomorphisms of L. Furthermore,
given f, g ∈ J(L), define f vJ g iff f(a) v g(a) for every a ∈ L.

The following are immediate consequences of the above definition.
Proposition 1. Let L be a complete lattice. f ∈ J(L) iff f(⊥) = ⊥ and f(a t b) =
f(a) t (b) for all a, b ∈ L. If f is a join-endomorphism of L then f is monotonic.

Given a set S ⊆ J(L), where L is a finite lattice, we are interested in finding the
greatest join-endomorphism in J(L) below the elements of S, i.e.,

d
J(L)

S. Since every
finite lattice is also a complete lattice, the existence of

d
J(L)

S is guaranteed by the
following proposition from [6].

Proposition 2. Let (L,v) be a complete lattice. Then (J(L),vJ) is a complete lattice.

In the following sections we study join-endomorphisms of some fundamental fam-
ilies of finite lattices. In particular, powerset lattices and lattices of sets. Birkhoff’s
representation theorem bear witness to the importance of these lattices: Every finite
distributive lattice is isomorphic to a lattice of sets and any finite boolean algebra is
isomorphic to a powerset lattice [2]. We shall investigate the cardinality of J(L) and
also provide efficient algorithms to compute

d
J(L)

S.

3 The Size of the Function Space

In this section we determine the size of J(L) for powerset lattices, and for two extreme
opposites; the total order and the discrete order extended with a top and bottom.

3.1 Distributed Lattices
We begin with lattices isomorphic to 2n. They include finite boolean algebras and pow-
erset lattices [2].

Theorem 1. Suppose thatm ≥ 0. Let L be any lattice isomorphic to the product lattice
2m. Then |J(L)| = nlog2 n where n = 2m is the size of L.

Thus powerset lattices and boolean algebras have a super-polynomial, sub-exponen-
tial number of join-endomorphisms. Nevertheless, linear order lattices allows for an
exponential number of join-endomorphisms given by the central binomial coefficient.

Theorem 2. Suppose that n ≥ 0. Let L be any lattice isomorphic to the linear order
lattice n⊥. Then |J(L)| =

(
2n
n

)
.

It is easy to prove that 1√
π(n+ 1

2 )
4n ≤

(
2n
n

)
≤ 4n for n ≥ 1. Together with Thm.2,

this gives us explicit exponential lower and upper bounds for |J(L)| for linear lattices.
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3.2 Non-distributive Case

For general lattices, the number of join-endomorphisms can be super-exponential and
be characterized in terms of Laguerre (and rook) polynomials.

Laguerre polynomials are solutions to Laguerre’s second-order linear differential
equation xy′′+ (1− x)y′+ny = 0. The Laguerre polynomial of degree n in x, Ln(x)

is given by the summation
∑n
k=0

(
n
k

) (−1)k
k! xk.

The lattice Mn is non-distributive for any n ≥ 3. The size of J(Mn) can be suc-
cinctly expressed as follows.

Theorem 3. |J(Mn)| = (n+ 1)2 + n!Ln(−1).

In combinatorics rook polynomials are generating functions of the number of ways
to place non-attacking rooks on a board. A rook polynomial (for square boards)Rn(x)
has the form

∑n
k=0 x

kr(k, n) where the (rook) coefficient r(k, n) represents the num-
ber of ways to place k non-attacking rooks on an n × n chessboard. For example,
r(0, n) = 1, r(1, n) = n2, r(n, n) = n!. In general r(k, n) =

(
n
k

)2
k!.

Rook polynomials are related to Laguerre polynomials byRn(x) = n!xnLn(−x−1).
Therefore, as a direct consequence of the above theorem, we can also characterize
|J(Mn)| in combinatorial terms as the following sum of rook coefficients.

Corollary 1. Let r′(n+ 1, n) = r(1, n+ 1) and r′(k, n) = r(k, n) if k ≤ n. Then
|J(Mn)| =

∑n+1
k=0 r

′(k, n).

We conclude this section with another pleasant correspondence between the endo-
morphisms in J(Mn) and Rn(x). Let f : L → L be a function over a lattice (L,v).
We say that f is non-reducing in L iff it does not map any value to a smaller one; i.e.,
there is no e ∈ L such that f(e) @ e. The number of join-endomorphisms that are
non-reducing in Mn is exactly the value of the rook polynomialRn(x) for x = 1.

Theorem 4. Rn(1) = |{ f ∈ J(Mn) | f is non-reducing in Mn }|.

We now present the proofs of Thm.1-3, the proof of Thm.4 is given in the Appendix A.

Proof of Theorem 1. We wish to prove the following: Let L be any lattice isomorphic
to the product lattice 2m. Then |J(L)| = nlog2 n where n = 2m is the size of L.

Take any set S of size m. Consider the powerset lattice L = P(S) ordered by
inclusion. We have n = |P(S)| = 2m. We shall show that |J(L)| = nlog2 n. Since
P(S) is isomorphic to 2m, Theorem 1 follows from the fact that isomorphic lattices
have the same number of join-endomorphisms.

Let F be the family of functions f : P(S) → P(S) that satisfy (a) f(T ) =⋃
t∈T f({t}) if |T | > 1 and (b) f(∅) = ∅. The equality |J(L)| = nlog2 n follows

from the following claim: (1) F = J(L) and (2) |F| = nlog2 n.
To prove (1) one can verify that if f ∈ F then f is a join-endomorphism where

t is ∪ and ⊥ is the ∅. Hence f ∈ J(L). On the other hand, if f 6∈ F then either
f(T ) 6=

⋃
t∈T f({t}) for some T ⊆ S or f(∅) 6= ∅. But since t = ∪ and ⊥ = ∅, we

have T =
⊔
t∈T {t} but f(T ) 6=

⊔
t∈T f({t}) or f(⊥) 6= ⊥. Hence f 6∈ J(L).
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To prove (2) notice that given f ∈ F , for each T ⊆ S if |T | > 1 then the value
f(T ) is determined by the values of f applied to each singleton {t} ⊆ S, and if |T | = 0
the value f(T ) is fixed to ∅. The set P(S) has log2 n = m singletons. Since there is no
restriction on how each f ∈ F should map singletons, |F| = nlog2 n as wanted. ut

Proof of Theorem 2. We now show that the size of J(L) for linear orders is determined
by the central binomial coefficient. Let L be any lattice isomorphic to the linear order
lattice n⊥. We want to show that |J(L)| =

(
2n
n

)
.

Let M⊥(L) be the set of monotonic functions from L to L that preserve ⊥. We
claim thatM⊥(L) = J(L). The inclusion J(L) ⊆M⊥(L) follows from Proposition 1
and the fact that join-endomorphisms preserve bottoms. For M⊥(L) ⊆ J(L), take
f ∈ M⊥(L). By definition f(⊥) = ⊥. Take any a, b ∈ L. So either a v b or b v a. If
a v b then f(a t b) = f(b) and by monotonicity of f , f(b) = f(a) t f(b). Similarly
if b v a then f(a t b) = f(a) = f(a) t f(b). We conclude that f ∈ J(L).

Now, for every f ∈ M⊥(L) we have f(⊥) = ⊥, then |J(L)| = |M⊥(L)| =
|M(L \ {⊥} → L)| whereM(L \ {⊥} → L) is the set of monotonic functions from
L\{⊥} to L. Thus to prove Theorem 2 it suffices to show |M(L\{⊥} → L)| =

(
2n
n

)
.

Notice that |L| = n + 1. Consider the equation
∑n+1
i=1 Xi = n where the variable

Xi takes a value between 0 and n. Let Sol(n) be the set of all solutions to this equation.
We can show that |Sol(n)| = |M(L \ {⊥} → L)| by providing the following bijection
σ :M(L \ {⊥} → L)→ Sol(n). The function σ associates each f ∈ M(L \ {⊥} →
L) with a solution σ(f) assigning to every Xi the number of consecutive values from
L \ {⊥} mapped by f to the i-th value of L.

From combinatorics we know that for any pair of positive integers n and k, the
number of k-tuples of non-negative integers whose sum is n equals

(
n+k−1
n

)
[4]. For

k = n+1 these tuples correspond exactly to the solutions in Sol(n). Therefore we have
shown |J(L)| = |M⊥(L)| = |M(L \ {⊥} → L)| = |Sol(n)| =

(
2n
n

)
as wanted. ut

Proof of Theorem 3. We show that |J(Mn)| is super-exponential and can be expressed
in terms of Laguerre polynomials: |J(Mn)| = (n+ 1)2 + n!Ln(−1).

Let F =
⋃4
i=1 Fi where the mutually exclusive Fi’s are defined in Table 1, and

I = {1, . . . , n}. The proof is divided in two parts: (I) F = J(Mn) and (II) |F| =
(n+ 1)2 + n!Ln(−1).

Part (I) For F ⊆ J(Mn), it is easy to verify that each f ∈ F is a join-endomorphism.
For J(Mn) ⊆ F we show that for any function f from Mn to Mn if f 6∈ F , then

f 6∈ J(Mn). Immediately, if f(⊥) 6= ⊥ then f 6∈ J(Mn).
Suppose f(⊥) = ⊥. Let J,K,H be disjoint possibly empty sets s.t. I = J ∪K∪H

and let j = |J |, k = |K| and h = |H|. The sets J,K,H represent the elements
of I mapped by f to >, to elements of I , and to ⊥, respectively. More precisely,
Img(f�J) = {>}, Img(f�K) ⊆ I and Img(f�H) = {⊥}. Furthermore, for every
f either (1) f(>) = ⊥, (2) f(>) ∈ I or (3) f(>) = >. We show that f 6∈ J(Mn) for
case (3), proofs of cases (1) and (2) are included in the Appendix A.
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⊥

1 2 3 4 5

>

⊥

1 2 3 4 5

>

Let F1 be the family of functions f that for all
e ∈ Mn, f(e) = ⊥.

Let F2 be the family of bottom preserving func-
tions f such that for some e, e′ ∈ I: (a) f(>) =
e, (b) f(e′) = ⊥ or f(e′) = e, and (c) f(e′′) =
e for all e′′ ∈ I \ {e′}.

⊥

1 2 3 4 5

>

⊥

1 2 3 4 5

>

Let F3 be the family of top and bottom pre-
serving functions f such that for some e ∈ I:
(a) f(e) = ⊥, and (b) f(e′) = > for all
e′ ∈ I \ {e}.

Let F4 be the family of top and bottom preserv-
ing functions where for each f ∈ F4 there are
disjoint sets J,K1,K2 with I = J ∪K1 ∪K2

s.t.: (a) for all e ∈ J , f(e) = >, (b) f�K1
and

f�K2
are injective, and (c) Img(f�K1

) ⊆ J and
Img(f�K2

) ⊆ I \ J .
Table 1: Families F1, . . . ,F4 of join-endomorphisms of Mn. I = {1, . . . , n}. f�A is
the restriction of f to a subset A of its domain. Img(f) is the image of f . A function
from each Fi for M5 is depicted with blue arrows.

Suppose k = 0. Notice that f 6∈ F3 and f 6∈ F4 hence h 6= 1 and h 6= 0. Thus
h > 1 implies that there are at least two e1, e2 ∈ H s.t. f(e1) = f(e2) = ⊥. But then
f(e1 t e2) = f(>) = > 6= ⊥ = f(e1) t f(e2), hence f 6∈ J(Mn).

Suppose k > 0. Assume h = 0. Let K1,K2 be disjoint possibly empty sets such
that K1 ∪ K2 = K, Img(f�K1

) ⊆ J and Img(f�K2
) ⊆ I \ J . Notice that f is a ⊥

and > preserving function and satisfies conditions (a) and (c) of F4 but f 6∈ F4, then
f must violate condition (b). Thus f�K1

or f�K2
is not injective. Let us assume that

f�K1
is not injective (the case when f�K2

is not injective is analogous). Then there are
a, b ∈ K1 and c ∈ J , such that a 6= b but f(a) = f(b) = c. By definition > 6∈ J , then
f(a) t f(b) = c 6= > = f(a t b). Consequently, f 6∈ J(Mn).

Assume h > 0. There must be e1, e2, e3 ∈ I such that f(e1) = ⊥ and f(e2) = e3.
Notice that f(e1) t f(e2) = e3 6= > = f(>) = f(e1 t e2). Therefore, f 6∈ J(Mn).
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Part (II) We prove that |F| =
∑4
i=1 |Fi| = (n+1)2 +n!Ln(−1). Recall that n = |I|.

It is easy to prove that |F1| = 1, |F2| = n2 + n and |F3| = n. The reader is referred to
Appendix A for details. Here we prove that |F4| = n!Ln(−1).

Let f ∈ F4 and let J,K1,K2 be disjoint possibly empty sets such that I = J ∪
K1 ∪ K2, Img(f�J) = {>}, Img(f�K1

) ⊆ J and Img(f�K2
) ⊆ I \ J , where f�K1

and f�K2
are injective functions. We shall call j = |J | and k1 = |K1|.

For each of the
(
n
j

)
possibilities for J , the elements of K1 are to be mapped to

them by the injective function f�K1
. This is possible only if k1 ≤ j, so we take k1 ≤

min(j, n− j). The number of choices ofK1 is
(
n−j
k1

)
and the number of choices among

J that can be targets of those is
(
j
k1

)
. Each of these can be mapped from any permutation

ofK1, so we have
(
j
k1

)
k1! = j!

(j−k1)! possibilities to chooseK1 and map its elements by
f�K1

to elements of J . Similarly, the number of possibilities to choose K2 and map its
elements by f�K2

to elements of I \ J is
(

n−j
n−j−k1

)
(n− j − k1)! = (n−j)!

k1!
. Therefore,

|F4| =
∑n
j=0

(
n
j

)∑min(j,n−j)
k1=0

(
n−j
k1

)
j!

(j−k1)!
(n−j)!
k1!

. We can simplify the inner sum:∑min(j,n−j)
k1=0

(
n−j
k1

)
j!

(j−k1)!
(n−j)!
k1!

= n!
j! . We then obtain |F4| =

∑n
j=0

(
n
j

)
n!
j! . This sum

equals n!Ln(−1) which in turn is equal to Rn(1). It follows that |F| =
∑4
i=1 |Fi| =

(n+ 1)2 + n!Ln(−1) as wanted. ut

4 Algorithms

We shall provide efficient algorithms for the maximization problem mentioned in the
introduction: Given S ⊆ J(L) find

d
J(L)

S, i.e., the greatest join-endomorphism in the
lattice J(L) below all the elements of S.

Finding
d

J(L)
S may not be immediate. E.g., see

d
J(L)

S in Fig.1a for a small lattice
of four elements and two join-endomorphisms. As already mentioned, a naive approach
is to compute

d
J(L)

S by taking σS(c)
def
=

d
L
{f(c) | f ∈ S} for each c ∈ L. This does

not work since σS is not necessarily a join-endomorphism as shown in Fig.1b.
A brute force solution to computing

d
J(L)

S can be obtained by generating the set
S′ = {g | g ∈ J(L) and g v f for all f ∈ S} and taking its join. This approach
works since

⊔
S′ =

d
J(L)

S but as shown in Section 3, the size of J(L) can be super-
polynomial for distributive lattices and super-exponential in general.

Nevertheless, one can use lattice properties to compute
d

J(L)
S efficiently. For dis-

tributed lattices, we use the inherent compositional nature of
d

J(L)
S. For arbitrary

lattices, we present an algorithm that uses the function σS in the naive approach to
compute

d
J(L)

S by approximating it from above.
We will give the time complexities in terms of the number of basic binary lattice

operations (i.e., meets, joins and subtractions) performed during execution.

4.1 Meet of Join-Endomorphisms in Distributed Lattices

Here we shall illustrate some pleasant compositionality properties of the infima of join-
endomorphisms that can be used for computing the join-endomorphism

d
J(L)

S in a
finite distributed lattice L. In what follows we assume n = |L| and m = |S|.

We use XJ to denote the set of tuples (xj)j∈J of elements xj ∈ X for each j ∈ J.



8 Santiago Quintero , Sergio Ramirez , Camilo Rueda , Frank Valencia

⊥

1 2

>

f1

f1

f1

f1 f2

f2

f2

f2

f

f

f

f

(a)

⊥

1 2

>

f1

f1

f1

f1 f2

f2

f2

f2

σS

σS

σS

σS

(b)

⊥

1 2 3

>

f1 f2

f2

f1

f1

f2

f1, f2

f1, f2

δS

δS
δS

δS

δS

(c)

Fig. 1: S = {f1, f2} ⊆ J(L). (a) f =
d

J(L)
S. (b) σS(c)

def
= f1(c) u f2(c) is not a join-

endomorphism of M2: σS(1 t 2) 6= σS(1) t σS(2). (c) δS in Lemma 1 is not a join-
endomorphism of the non-distributive lattice M3: δS(1)tδS(2) = 1 6= ⊥ = δS(1 t 2).

Lemma 1. Let L be a finite distributive lattice and S = {fi}i∈I ⊆ J(L). Thend
J(L)

S = δS where δS(c)
def
=

d
L
{
⊔
i∈I fi(ai) | (ai)i∈I ∈ LI and

⊔
i∈I ai w c}.

The above lemma basically says that
(d

J(L)
S
)
(c) is the greatest element inL below

all possible applications of the functions in S to elements whose join is greater or equal
to c. The proof that δS wJ

d
J(L)

S uses the fact that join-endomorphisms preserve
joins. The proof that δS vJ

d
J(L)

S proceeds by showing that δS is a lower bound in
J(L) of S. Distributivity of the lattice L is crucial for this direction. In fact without itd

J(L)
S = δS does not necessarily hold as shown by the following counter-example.

Example 1. Consider the non-distributive lattice M3 and S = {f1, f2} defined as in
Fig.1c. We obtain δS(1 t 2) = δS(>) = ⊥ and δS(1) t δS(2) = 1 t ⊥ = 1. Then,
δS(1 t 2) 6= δS(1) t δS(2), i.e., δS is not a join-endomorphism.

Algorithm A1. One could use Lemma 1 directly in the obvious way to provide an
algorithm, call itA1, for

d
J(L)

S by computing δS : i.e., computing the meet of elements
of the form

⊔
i∈I fi(ai) for every tuple (ai)i∈I such that

⊔
i∈I ai w c. For each c ∈ L,

δS(c) checks nm tuples (ai)i∈I , each one with a cost in O(m). Thus A1 can computed
J(L)

S by performing O(n× nm ×m) = O(mnm+1) binary lattice operations.
Nevertheless, we can use Lemma 1 to provide a recursive characterization of

d
J(L)

S
that can be used in a divide-and-conquer algorithm with lower time complexity.

Proposition 3. Let L be a finite distributive lattice and S = S1 ∪ S2 ⊆ J(L). Then(d
J(L)

S
)
(c) =

d
L
{
(d

J(L)
S1

)
(a) t

(d
J(L)

S2

)
(b) | a, b ∈ L and a t b w c}.

The above proposition bear witness to the compositional nature of
d

J(L)
S in distributed

lattices. It can be proven by replacing
(d

J(L)
S1

)
(a) and

(d
J(L)

S2

)
(b) by δS1(a) and

δS2(b) using Lemma 1 and the distributivity in L of joins over meets.

Algorithm A2. We can use Prop.3 to compute
d

J(L)
S recursively: Take any partition

{S1, S2} of S such that the absolute value of |S1|− |S2| is at most 1. Then compute the
meet of all

(d
J(L)

S1

)
(a)t

(d
J(L)

S2

)
(b) for every a, b such that at b w c. Then given
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c ∈ L, the time complexity for computing
(d

J(L)
S
)
(c) can be obtained as the solution

of the equation T (m) = n2(1 + 2T (m/2)) and T (1) = 1 which is in O(mn2 log2m).
Therefore,

d
J(L)

S can be computed in O(mn1+2 log2m).
Certainly, the time complexity of Algorithm A2 is better than that of Algorithm A1.

However, we will show that one can compute
d

J(L)
S in a much lower complexity order.

4.2 Using Subtraction and Downsets to characterize
d

J(L)
S

In what follows we show the main result of this section:
d

J(L)
S can be computed in

O(mnlog2 3) for powerset lattices, and in O(mn2) for lattices of sets. To achieve this
we use the subtraction operator from co-Heyting algebras and the notion of down set.

Subtraction Operator. Notice that in Prop.3 we are considering all pairs a, b ∈ L such
that atb w c. However, because of the monotonicity of join-endomorphisms, it suffices
to take, for each a ∈ L, just the least b such that a t b w c. In finite distributed lattices,
and more generally in co-Heyting algebras [5], the subtraction operator c\a gives us
exactly such a least element. The subtraction operator is uniquely determined by the
property (Galois connection) b w c\a iff a t b w c for all a, b, c ∈ L.

Down-sets. Besides using just c\a instead of all b’s such that a t b w c, we can use
a further simplification: Rather than including every a ∈ L, we only need to consider
every a in the down-set of c. Recall that the down-set of c is defined as ↓c = {e ∈
L |e v c}. This additional simplification is justified using properties of distributive
lattices to show that for any a′ ∈ L, such that a′ 6v c, there exists a v c such that(d

J(L)
S1

)
(a) t

(d
J(L)

S2

)
(c\a) v

(d
J(L)

S1

)
(a′) t

(d
J(L)

S2

)
(c\a′).

The above observations lead us to the following theorem.

Theorem 5. Let L be a finite distributive lattice and S = S1 ∪ S2 ⊆ J(L). Then(d
J(L)

S
)
(c) =

d
L
{
(d

J(L)
S1

)
(a) t

(d
J(L)

S2

)
(c\a) | a ∈ ↓c}.

4.3 Algorithms for Distributed Lattices

We first describe the algorithm DMEETAPP that computes the value
(d

J(L)
S
)
(c).

We then describe the algorithm DMEET that computes the function
d

J(L)
S by call-

ing DMEETAPP in a particular order to avoid repeating computations. To specify the
calling order we need the following definition.

Definition 2. A binary partition tree (bpt) of a finite set S 6= ∅ is a binary tree such that
(a) its root is S, (b) if |S| = 1 then its root is a leaf, and (c) if |S| > 1 it has a left and
a right subtree, themselves bpts of S1 and S2 resp., for a partition {S1, S2} of S.

Let ∆ be a bpt of S. We use ∆(S′) for the subtree of ∆ rooted at S′ ⊆ S, if it exists.
Clearly, ∆ = ∆(S). We use the triple 〈S,∆1, ∆2〉 for the bpt of S with ∆1 and ∆2 as
its left and right subtrees.

The following proposition is an immediate consequence of the previous definition.

Proposition 4. The size (number of nodes) of any bpt of S is 2m− 1 where m = |S|.
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DMEETAPP(∆, c). Let ∆ = 〈S,∆1, ∆2〉 be a bpt of S ⊆ J(L) where L is a distribu-
tive lattice. The recursive program DMEETAPP(∆, c) defined in Algorithm 1 computes(d

J(L)
S
)
(c). It uses a global lookup table T for storing the results of calls to DMEE-

TAPP. Initially each entry of T stores a null value not included in L. Since S is the
union of the roots of ∆1 and ∆2, the correctness of DMEETAPP(∆, c) follows from
Thm.5. Termination follows from the fact that L is finite and the bpts ∆1 and ∆2 in the
recursive calls are strictly smaller than ∆.

Algorithm 1 DMEETAPP(∆, c) returns
(d

J(L)
S
)
(c) where ∆ is a bpt of S ⊆ J(L)

and L is a finite distributive lattice. The global variable T is used as a lookup table.
1: procedure DMEETAPP(∆, c) . ∆ = 〈S,∆1,∆2〉 is a bpt of S
2: if IsNull(T [S, c]) then . Test if T [S, c] does not store yet a value from L.
3: if S = {f} then
4: T [S, c]← f(c)
5: else
6: T [S, c]←

d
L
{DMEETAPP(∆1, a) t DMEETAPP(∆2, c\a) | a ∈ ↓c}.

7: return T [S, c]

Computing
d

J(L)
S for Lattices of Sets. Recall that every finite distributive lattice is

isomorphic to a lattice of sets and that any finite boolean algebra is isomorphic to a pow-
erset lattice [2]. We show how to compute

d
J(L)

S with a worst-case time complexity
in O(mn2) for lattices of sets and in O(mnlog2 3) for powerset lattices.

Let L be a finite lattice of sets and ∆ = 〈S,∆1, ∆2〉 be a bpt of S ⊆ J(L). Let
n = |L| and m = |S|. Let us consider an execution of DMEETAPP(∆, c). From the
definition of subtraction it follows that c\a ∈ ↓c . Then for each recursive call DMEE-
TAPP(∆′, a′) performed by an execution of DMEETAPP(∆, c) we have a′ ∈ ↓c .

The above leads us to the following observation about the order of the number of bi-
nary lattice operations (meets, joins, and subtractions) performed by DMEETAPP(∆, c).

Observation 6 Let ∆ = 〈S,∆1, ∆2〉 with ∆1 and ∆2 rooted at S1 and S2. Assume
that T [S1, a

′], T [S2, a
′] ∈ L for every a′ ∈ ↓c . Then the number of binary lattice

operations performed by DMEETAPP(∆, c) is in O(| ↓c |).

Since each entry of T is initialized with a null value not in L, the assumption
in Obs.6 implies that for every a′ ∈ ↓c the values of DMEETAPP(∆1, a

′) and DMEE-
TAPP(∆2, a

′) have been previously stored in T.Under this condition DMEETAPP(∆, c)
performs at most | ↓c | binary joins, | ↓c | subtractions, | ↓c | − 1 binary meets.

DMEET(L, S). The join-endomorphism
d

J(L)
S can be computed by the program in

Algorithm 2 as follows. The program first initializes each entry of table T with a null
value. Then, to satisfy the assumption in Obs.6, it traverses a partition-tree ∆ of S and
the lattice L as follows: It visits each node S′ of ∆ in post-order (i.e., before visiting
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Algorithm 2 DMEET(L, S) finds
d

J(L)
S for S ⊆ J(L) with |S| ≥ 1. L is a finite

lattice of sets and ∆ is a partition-tree of S
1: T (S′, a)← null . for each a ∈ L and each node S′ of ∆
2: for each S′ in a post-order traversal sequence of ∆ do . Visit each node in post-order
3: for i = 0 to |>| do . Traversing L
4: DMEETAPP(∆(S′), ci) . for each set ci ∈ L s.t. |ci| = i

5: f(c)← T [S, c] . for each c ∈ L
6: return f

a node it first visits its children). For each subtree ∆(S′) of ∆, it computes DMEE-
TAPP(∆(S′), ci) for every ci ∈ L of size i, with 0 ≤ i ≤ h and h the size of the top el-
ement of L. The correctness of DMEET(L, S) follows from that of DMEETAPP(∆, c).

Complexity for arbitrary lattices of sets. It is easy to see that the above-mentioned
traversals of∆ and L ensure that the assumption in Obs.6 is satisfied by each call of the
form DMEETAPP(∆(S′), ci) performed during the execution of DMEET(L, S). From
Prop.4 we know that the number of iterations of the outer for is 2m − 1. Clearly | ↓c |
is in O(n). Thus for any given S′, we conclude from Obs.6 that the total number of
operations from all calls of the form DMEETAPP(∆(S′), ci), executed in the inner for,
is in O(n2). The worst-case time complexity of DMEET(L, S) is then in O(mn2).

Complexity for Powerset Lattices. Assume that the lattice of sets L is a powerset lattice
of size n. From Prop.4, the initialization (Line 1) takes O(nm). Let h be the cardinality
of the top element of L. Since L is a powerset, n = 2h, | ↓c | = 2i where i = |c|, and
the number of elements in L of size i is

(
h
i

)
. Thus for any given S′ and i, it follows from

Obs.6 that the number of operations from all calls of the form DMEETAPP(∆(S′), ci)
is in the order of 2i ×

(
h
i

)
. Then for any given S′, the number of operations from all

calls of the form DMEETAPP(∆(S′), ci), executed by the inner for, is in the order of∑h
i=0 2i ×

(
h
i

)
= 3h. But n = 2h, then 3h = 3log2 n = nlog2 3. Using Prop.4 we

conclude that the worst-case time complexity of DMEET(L, S) is in O(mnlog2 3).

4.4 Algorithm for Arbitrary Lattices

The previous algorithm may fail to produce the
d

J(L)
S for non-distributive finite lat-

tices. Nonetheless, for any arbitrary finite lattice L,
d

J(L)
S can be computed by suc-

cessive approximations, starting with some self-map known to be smaller than each
f ∈ S and greater than

d
J(L)

S . Assume a self-map σ : L→ L such that σ w
d

J(L)
S

and, for all f ∈ S, σ v f. A good starting point is σ(u) =
d
{f(u) | f ∈ S}, for all

u ∈ L. By definition of u, σ(u) is the biggest function under all functions in S, hence
σ w

d
J(L)

S. The program GMEET in Algorithm 3 computes decreasing upper bounds
of

d
J(L)

S by correcting σ values not conforming to the following join-endomorphism
property: σ(u) t σ(v) = σ(u t v). The correction decreases σ and maintains the in-
variant σ w

d
J(L)

S, as stated in Thm.7.

Theorem 7. Let L be a finite lattice, u, v ∈ L, σ : L → L and S ⊆ J(L). Assume
σ w

d
J(L)

S holds, and consider the following updates:
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1. when σ(u) t σ(v) @ σ(u t v), assign σ(u t v)← σ(u) t σ(v)
2. when σ(u) t σ(v) 6v σ(u t v), assign σ(u)← σ(u) u σ(u t v) and also σ(v)←
σ(v) u σ(u t v)

Let σ′ be the function resulting after the update. Then, (1) σ′ @ σ and (2) σ′ w
d

J(L)
S.

Algorithm 3 GMEET finds σ =
d

J(L)
S

1: σ(u)←
d
{f(u) | f ∈ S} . for all u ∈ L

2: while u, v ∈ L ∧ σ(u) t σ(v) 6= σ(u t v) do
3: if σ(u) t σ(v) @ σ(u t v) then . case (1)
4: σ(u t v)← σ(u) t σ(v)
5: else . case (2)
6: σ(u)← σ(u) u σ(u t v)
7: σ(v)← σ(v) u σ(u t v)

The procedure (see Algo.3) loops through pairs u, v ∈ L while there is some pair
satisfying cases (1) or (2) above for the current σ. When there is, it updates σ as men-
tioned in Thm.7. At the end of the loop all pairs u, v ∈ L satisfy the join preservation
property. By the invariant mentioned in the theorem, this means σ =

d
J(L)

S.
As for the previous algorithms in this paper the worst-time time complexity will be

expressed in terms of the binary lattice operations performed during execution. Assume
a fixed set S of size m. The complexity of the initialization (Line 1) of GMEET is
O(nm) with n = |L |. The value of σ for a given w ∈ L can be updated (decreased)
at most n times. Thus, there are at most n2 updates of σ for all values of L. Finding a
w = u t v where σ(w) needs an update because σ(u) t σ(v) 6= σ(u t v) (test of the
loop, Line 2) takes O(n2). Hence, the worst time complexity of the loop is in O(n4).

The program GMEET+ in Algo.4 uses appropriate data structures to reduce signifi-
cantly the time complexity of the algorithm. Essentially, different sets are used to keep
track of properties of (u, v) lattice pairs with respect to the current σ. We have a support
(correct) pairs set Supw = {(u, v) | w = u t v ∧ σ(u) t σ(v) = σ(w)}. We also have
a conflicts set Conw = {(u, v) | w = u t v ∧ σ(u) t σ(v) @ σ(w)} and failures set
Failw = {(u, v) | w = u t v ∧ σ(u) t σ(v) 6v σ(w)}.

Algorithm 4 updates σ as mentioned in Thm.7 and so maintains the invariant σ wd
J(L)

S. An additional invariant is that, for all w, sets Supw, Conw, Failw are such
Supw ∪ Conw ∪ Failw = {(u, v) | ut v = w} and Supw ∩ Conw ∩ Failw = ∅. When
the outer loop finishes sets Conw and Failw are empty (for all w) and thus every (u, v)
belongs to Suputv , i.e. the resulting σ =

d
J(L)

S.
Auxiliary procedure CHECKSUPPORTS(u) identifies all pairs of the form (u, x) ∈

Suputx that may no longer satisfy the join-endomorphism property σ(u) t σ(x) =
σ(u t x) because of an update to σ(u). When this happens, it adds (u, x) to the ap-
propriate Con, or Fail set. The time complexity of the algorithm depends on the set
operations computed for each w ∈ L chosen, either in the conflicts Conw set or in the
failures Failw set. When a w is selected (for some (u, v) s.t. ut v = w) the following
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Algorithm 4 GMEET+ finds σ =
d

J(L)
S

1: σ(u)←
d
{f(u) | f ∈ S} . for all u ∈ L

2: Initialize Supw, Conw, Failw, for all w
3: while w ∈ L s.t. (u, v) ∈ Conw do . some conflict set not empty
4: Conw ← Conw\{(u, v)}
5: σ(w)← σ(u) t σ(v)
6: Failw ← Failw ∪ Supw . all pairs previously in Supw are now failures
7: Supw ← {(u, v)}
8: CHECKSUPPORTS(w) . for u ∈ L, verify property Supwtu

9: while z ∈ L s.t. (x, y) ∈ Failz do . some failures set not empty
10: Failz ← Failz\{(x, y)}
11: if σ(x) 6= σ(x) u σ(z) then
12: σ(x)← σ(x) u σ(z) . σ(x) decreases
13: Failx ← Failx ∪ Supx . all pairs in Supx are now failures
14: Supx ← ∅
15: CHECKSUPPORTS(x) . for u ∈ L, verify property Supxtu

16: if σ(y) 6= σ(y) u σ(z) then
17: σ(y)← σ(y) u σ(z) . σ(y) decreases
18: Faily ← Faily ∪ Supy . all pairs in Supy are now failures
19: Supy ← ∅
20: CHECKSUPPORTS(y) . for u ∈ L, verify property Supytu

21: if σ(x) t σ(y) = σ(z) then
22: Supz ← Supz ∪ {(x, y)} . (x, y) is now correct
23: else
24: Conz ← Conz ∪ {(x, y)} . (x, y) is now a conflict

holds: (1) at least one of σ(w), σ(u), σ(v) is decreased, (2) some fix k number of ele-
ments are removed from or added to a set, (3) a union of two disjoint sets is computed,
and (4) new support sets of w, u or v are calculated.

With an appropriate implementation, operations (1)-(2) take O(1), and also opera-
tion (3), since sets are disjoint. Operation (4) clearly takes O(n). In each loop of the
(outer or inner) cycles of the algorithm, at least one σ reduction is computed. Further-
more, for each reduction of σ, O(n) operations are performed. The maximum possible
number of σ(w) reductions, for a given w, is equal to the length d of the longest strictly
decreasing chain in the lattice. The total number of possible σ reductions is thus equal
to nd. The total number of operations of the algorithm is then O(n2d). In general, d
could be (at most) equal to n, therefore, after initialization, worst case complexity is
O(n3). The initialization (Lines 1-2) takes O(nm) + O(n2), where m = |S|. Worst
time complexity is thusO(mn+n3). For powerset lattices, d = log2 n, thus worst time
complexity in this case is O(mn+ n2 log2 n).

4.5 Experimental Results and Small Example

Here we present some experimental results showing the execution time of the proposed
algorithms. We also discuss a small example with join-endomorphisms representing
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Fig. 2: Average performance time of GMEET+, DMEET and BRUTE-FORCE. Plots A and D use
2n lattices, B and E distributive lattices, and C and F arbitrary (possibly non-distributive) lattices.
Plots A-C have a fixed number of join-endomorphisms and plots D-F have a fixed lattice size.

dilation operators from Mathematical Morphology [1]. We use the algorithms presented
above to compute the greatest dilation below a given set of dilations and illustrate its
result for a simple image.

Consider Figure 2. In plots 2.A-C, horizontal axis is the size of the lattice. In plots
2.D-F, horizontal axis is the size of S. Curves in images 2.A-C plot, for each algorithm,
the average execution time of 100 runs (10 for 2.A) with random sets S ⊆ J(L) of
size 4. Images 2.D-F, show the mean execution time of each algorithm for 100 runs
(10 for 2.D) varying the number of join-endomorphisms (|S| = 4i, 1 ≤ i ≤ 8). The
lattice size is fixed: |L| = 10 for 2.E and 2.F, and |L| = 25 for 2.D. For a given lattice
L and S ⊆ J(L), the brute-force algorithm explores the whole space J(L) to find all
the join-endomorphism below each element of S and then computes the greatest of
them. In particular, the measured spike in plot 2.C corresponds to the random lattice
of seven elements with the size of J(L) being bigger than in the other experiments in
the same figure. In our experiments we observed that for a fixed S, as the size of the
lattice increases, DMEET outperforms GMEET+. This is noticeable in lattices 2n (see
2.A). Similarly, for a fixed lattice, as the size of S increases GMEET+ outperforms
DMEET. GMEET+ performance can actually improve with a higher number of join-
endomorphisms (see 2.D) since the initial σ is usually smaller in this case.

To illustrate some performance gains, Table 2 shows the mean execution time of the
algorithms discussed in this paper. We include A1 and A2, the algorithms outlined just
after Lemma 1 and Proposition 3.

An MM Example. Mathematical morphology (MM) is a theory, based on topologi-
cal, lattice-theoretical and geometric concepts, for the analysis of geometric structures.
Its algebraic framework comprises [1,11,12], among others, complete lattices together
with certain kinds of morphisms, such as Dilations, defined as join-endomorphisms
[11]. Our results give bounds about the number of all dilations over certain specific
finite lattices and also efficient algorithms to compute their infima.
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Size A1 A2 GMEET GMEET+ DMEET

16 2.01 0.958 0.00360 0.000603 0.000632
32 64.6 25.3 0.0633 0.00343 0.00181
64 1901 600 0.948 0.0154 0.00542

128 >600 >600 15.4 0.0860 0.0160
256 >600 >600 252 0.361 0.0483
512 >600 >600 >600 2.01 0.166

1024 >600 >600 >600 10.7 0.547

Table 2: Average time in seconds over powerset lattices with |S| = 4

A typical application of MM is image processing. A binary image on a digital space
G = Z2 can be expresed as I ⊆ G, where I is defined as the set of pixels that are
set to black, or activated. In this setting, a dilation δsi describes an interaction of an
image with a structuring element si ⊆ D, e.g. a pixel is part of the dilated set if, when
placing the structuring element anywhere in the image, one of its points hits (overlaps)
with the set I . Let L be the powerset lattice for some finite set D ⊆ G. It turns out that
the dilation

d
J(L)

S corresponds to the intersection of the structuring elements of the
corresponding dilations in S. Fig.3 illustrates

d
J(L)

S for the two given dilations.

Fig. 3: Dilations δs1 , δs2 , binary image I (on the left).
(d

J(L)
{δs1 , δs2}

)
(I) on the right. New

elements of the image after each operation in grey.

5 Conclusions and Related Work

We have shown that in the worst-case
d

J(L)
S can be computed in O(mnlog2 3) binary

lattice operations for powerset lattices, O(mn2) for lattices of sets, and O(nm + n3)
for arbitrary lattices, where n = |L| and m = |S|. We illustrated the experimental per-
formance of our algorithms and a small example from mathematical morphology. We
have determined the cardinality of the set of join-endomorphisms J(L) for significant
families of finite lattices. Namely, nlog2 n for powersets (boolean algebras), central bi-
nomial coefficient

(
2n
n

)
for linear orders, and (n + 1)2 + n!Ln(−1), where Ln(x) is a

Laguerre polynomial, for the lattice Mn.
The lattice J(L) have been studied in [6]. The authors showed that a finite latticeL is

distributive iff J(L) is distributive. A lower bound of 22n/3 for the number of monotonic
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self-maps of any finite posetL is given in [3]. Nevertheless to the best of our knowledge,
no other authors have studied the problem of determining the size J(L) nor algorithms
for computing

d
J(L)

S. We believe that these problems are important, as argued in the
Introduction, algebraic structures consisting of a lattice and join-endomorphisms are
very common in mathematics and computer science. In fact, our interest in this sub-
ject arose in the algebraic setting of spatial and epistemic constraint systems [8] where
continuous join-endomorphisms, called space functions, represent knowledge and the
infima of endomorphisms correspond to distributed knowledge. We showed in [8] that
distributed knowledge can be computed in O(mn1+log2(m)) for distributed lattices and
O(n4) in general. In this paper we have provided much lower complexity orders for
computing infima of join-endomorphisms. Furthermore [8] does not provide the exact
cardinality of the set of space function of a given lattice.

As future work we plan to explore in detail the applications of our work in math-
ematical morphology. Furthermore, in the same spirit of [9] we have developed gen-
erators of distributed and arbitrary lattices. We observed that for every lattice L gen-
erated of size n, nlog2 n ≤ |J(L)| ≤ (n + 1)2 + n!Ln(−1) and if L is distributive
nlog2 n ≤ |J(L)| ≤

(
2n
n

)
. This suggest that the lattices we studied are extreme cases for

the value |J(L)|. We plan to establish if this is the case in future work.
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A Proofs

Proof of Theorem 3. We show that |J(Mn)| is super-exponential and can be expressed
in terms of Laguerre polynomials: |J(Mn)| = (n+ 1)2 + n!Ln(−1).

Let F =
⋃4
i=1 Fi where the mutually exclusive Fi’s are defined in Table 1, and

I = {1, . . . , n}. The proof is divided in two parts: (I) J(Mn) = F and (II) |F| =
(n+ 1)2 + n!Ln(−1).

Part (I) For F ⊆ J(Mn), it is easy to verify that each f ∈ F is a join-endomorphism.
For J(Mn) ⊆ F we show that for any function f from Mn to Mn if f 6∈ F , then

f 6∈ J(Mn). Immediately, if f(⊥) 6= ⊥ then f 6∈ J(Mn).
Suppose f(⊥) = ⊥. Let J,K,H be disjoint possibly empty sets s.t. I = J ∪K∪H

and let j = |J |, k = |K| and h = |H|. The sets J,K,H represent the elements of I
mapped by f to >, to elements of I , and to ⊥, resp. More precisely, Img(f�J) = {>},
Img(f�K) ⊆ I and Img(f�H) = {⊥}. Furthermore, for every f either (1) f(>) = ⊥,
(2) f(>) ∈ I or (3) f(>) = >. For each case we show that f 6∈ J(Mn).

1. f(>) = ⊥. Since f 6∈ F1 there is an e ∈ I s.t. f(e) 6= ⊥. We have e v > but
f(e) 6v f(>). Then f is not monotonic. From Prop. 1 we conclude f 6∈ J(Mn).

2. f(>) ∈ I . Let K1,K2 be disjoint possibly empty sets such that K1 ∪ K2 = K,
Img(f�K1

) = {f(>)} and Img(f�K2
) 6= {f(>)}. Notice that if j > 0 or |K2| >

0, f is non-monotonic and then f 6∈ J(Mn).
We then must have j = 0 and K2 = ∅. Since Img(f�K) = {f(>)} and f 6∈ F2

then h > 1. Therefore there must be e1, e2 ∈ H such that f(e1) = f(e2) = ⊥.
This implies f(e1 t e2) = f(>) 6= ⊥ = f(e1) t f(e2), therefore f 6∈ J(Mn).

3. f(>) = >.

3.1. Suppose k = 0. Notice that f 6∈ F3 and f 6∈ F4 hence h 6= 1 and h 6= 0. Thus
h > 1 implies that there are at least two e1, e2 ∈ H s.t. f(e1) = f(e2) = ⊥.
But then f(e1 t e2) = f(>) = > 6= ⊥ = f(e1) t f(e2), hence f 6∈ J(Mn).

3.2. Suppose k > 0. Assume h = 0. Let K1,K2 be disjoint possibly empty sets
such that K1 ∪ K2 = K, Img(f�K1

) ⊆ J and Img(f�K2
) ⊆ I \ J . Notice

that f is a ⊥ and > preserving function and satisfies conditions (a) and (c) of
F4 but f 6∈ F4, then f must violate condition (b). Thus f�K1

or f�K2
is not

injective. Let us assume that f�K1
is not injective (the case when f�K2

is not
injective is analogous). Then there are a, b ∈ K1 and c ∈ J , such that a 6= b but
f(a) = f(b) = c. By definition> 6∈ J , then f(a)t f(b) = c 6= > = f(at b).
Consequently, f 6∈ J(Mn).
Assume h > 0. There must be e1, e2, e3 ∈ I such that f(e1) = ⊥ and f(e2) =
e3. Notice e1 t e2 = >, we then have f(e1) t f(e2) = e3 6= > = f(e1 t e2).
Therefore, f 6∈ J(Mn).

Part (II) We prove that |F| =
∑4
i=1 |Fi| = (n+1)2 +n!Ln(−1). Recall that n = |I|.

1. |F1| = 1. There is only one function mapping every element in Mn to ⊥.
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2. |F2| = n2 + n. Since > is mapped to an element of I , there are n possibilities
to choose such element. If there is an element of I mapped to ⊥, for each one of
the previous n options there are also n possibilities to choose an element of I to
be mapped to ⊥. Then, in this case there are n2 functions. If no element of I is
mapped to ⊥, then there are n additional functions.

3. |F3| = n. One of the elements of I is mapped to ⊥. All the other elements of I are
mapped to >. Then, there are n functions that can be defined in F3.

4. |F4| = Rn(1). Let f ∈ F4 and let J,K1,K2 be disjoint possibly empty sets such
that I = J∪K1∪K2, Img(f�J) = {>}, Img(f�K1

) ⊆ J and Img(f�K2
) ⊆ I \J ,

where f�K1
and f�K2

are injective functions. We shall call j = |J | and k1 = |K1|.
For each of the

(
n
j

)
possibilities for J , the elements ofK1 are to be mapped to them

by the injective function f�K1
. This is possible only if k1 ≤ j, so we take k1 ≤

min(j, n − j). The number of choices of K1 is
(
n−j
k1

)
and the number of choices

among J that can be targets of those is
(
j
k1

)
. Each of these can be mapped from any

permutation of K1, so we have
(
j
k1

)
k1! = j!

(j−k1)! possibilities to choose K1 and
map its elements by f�K1

to elements of J . Similarly, the number of possibilities to
choose K2 and map its elements by f�K2

to elements of I \J is
(

n−j
n−j−k1

)
(n− j−

k1)! = (n−j)!
k1!

. Therefore, |F4| =
∑n
j=0

(
n
j

)∑min(j,n−j)
k1=0

(
n−j
k1

)
j!

(j−k1)!
(n−j)!
k1!

. We

can simplify the inner sum:
∑min(j,n−j)
k1=0

(
n−j
k1

)
j!

(j−k1)!
(n−j)!
k1!

= n!
j! . We then obtain

|F4| =
∑n
j=0

(
n
j

)
n!
j! . This sum equals n!Ln(−1) which in turn is equal toRn(1).

It follows that |F| =
∑4
i=1 |Fi| = (n+ 1)2 + n!Ln(−1) as wanted. ut

A.1 Proof of Lemma 1

Let L be a finite distributive lattice and S = {fi}i∈I ⊆ J(L). Then
d

J(L)
S =

δS where δS(c)
def
=

d
L
{
⊔
i∈I fi(ai) | (ai)i∈I ∈ LI and

⊔
i∈I ai w c}.

Proof. Recall that
d

J(L)
S = max{h ∈ J(L) | h vJ g for all g ∈ S} and let us define

Γ = {
⊔
i∈I fi(ai) | (ai)i∈I ∈ LI and

⊔
i∈I ai w c}. We prove (1)

d
J(L)

S vJ δS and
(2) δS vJ

d
J(L)

S.

1. δS vJ

d
J(L)

S.
We prove (a) δS ∈ J(L) and (b) δS vJ fi for every fi ∈ S.
(a) Prove that δS vJ fi, for every fi ∈ S.

Let c ∈ L. From definition of δS , for every i ∈ I , the element fi(c) = fi(c) t⊔
j∈I\{i} fj(⊥) ∈ Γ . Then for every c ∈ L, δS(c) v fi(c). Therefore for

every fi ∈ S, δS vJ fi.
(b) δS ∈ J(L).

We show that for any H ⊆ L, δS(
⊔
H) =

⊔
{δS(e) | for every e ∈ H}. Since

H is finite, it suffices to show that our claim holds for H = ∅ and H = {c, d}.
Assume H = ∅. One can verify that δS(⊥) = ⊥.
Assume H = {c, d}. Firstly, we prove that δS is monotonic. Suppose c w d.
For any (ai)i∈I ∈ LI such that

⊔
i∈I ai w c, we have

⊔
i∈I ai w d. Therefore,
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{
⊔
i∈I fi(ai) |

⊔
i∈I ai w c} ⊆ {

⊔
i∈I fi(ai) |

⊔
i∈I ai w d} which implies

δS(c) w δS(d).
By monotonicity of δS , we know δS(c t d) w δS(c) t δS(d). The other direc-
tion follows from the derivation below:

δS(c) t δS(d)

= 〈Definition of δS(d)〉

δS(c) t
l

L
{
⊔
i∈I

fi(bi) | (bi)i∈I ∈ LI and
⊔
i∈I

bi w d}

= 〈t distributes over u〉
l

L
{δS(c) t

⊔
i∈I

fi(bi) | (bi)i∈I ∈ LI and
⊔
i∈I

bi w d}

= 〈Definition of δS(c)〉
l

L
{
l

L
{
⊔
i∈I

fi(ai) | (ai)i∈I ∈ LI and
⊔
i∈I

ai w c} t
⊔
i∈I

fi(bi) | (bi)i∈I ∈ LI and
⊔
i∈I

bi w d}

= 〈t distributes over u〉
l

L
{
l

L
{
⊔
i∈I

fi(ai) t
⊔
i∈I

fi(bi) | (ai)i∈I ∈ LI and
⊔
i∈I

ai w c} | (bi)i∈I ∈ LI and
⊔
i∈I

bi w d}

= 〈Associativity of u〉
l

L
{
⊔
i∈I

(fi(ai) t fi(bi)) | (ai)i∈I , (bi)i∈I ∈ LI and
⊔
i∈I

ai w c and
⊔
i∈I

bi w d}

w〈xwy and wwz implies xtwwytz; ci=aitbi; fi(ci)=fi(aitbi)〉
l

L
{
⊔
i∈I

fi(ci) | (ci)i∈I ∈ LI and
⊔
i∈I

ci w c t d}

= 〈Definition of δS(ctd)〉
δS(c t d)

Thus we conclude δS ∈ J(L).
From items (a) and (b), δS vJ

d
J(L)

S holds.
2.

d
J(L)

S vJ δS .
Let c ∈ L and (ai)i∈I ∈ LI be an arbitrary tuple such that

⊔
i∈I ai w c. No-

tice that
⊔
i∈I
(d

J(L)
S
)
(ai) v

⊔
i∈I fi(ai). Since

d
J(L)

S is a join-endomorphism
of L and monotonic, we know that

⊔
i∈I
(d

J(L)
S
)
(ai) =

(d
J(L)

S
)
(
⊔
i∈I ai) w(d

J(L)
S
)
(c). Thus

(d
J(L)

S
)
(c) v

⊔
i∈I fi(ai), i.e.,

(d
J(L)

S
)
(c) is a lower bound

of Γ . Then for every c ∈ L,
(d

J(L)
S
)
(c) v δS(c). Therefore

d
J(L)

S vJ δS .

We conclude
d

J(L)
S = δS .

A.2 Proof of Theorem 4.

We wish to prove that |A| = Rn(1) whereA = { f ∈ J(Mn) | f is non-reducing in Mn }.
Let F =

⋃4
i=1 Fi where the mutually exclusive Fi’s are defined in Table 1. In the proof
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of Theorem 3 we show that J(Mn) = F and that Rn(1) = |F4|. Notice that every
function in F4 is non-reducing and every function in F \F4 is not non-reducing. Hence
A = F4, thus |A| = Rn(1).

A.3 Proof of Proposition 3

Let (L,v) be a finite distributive lattice and S = {fi}i∈I ⊆ J(L). Let S1, S2 ⊆ J(L)
be such that S = S1 ∪ S2. Then(l

J(L)
S
)
(c) =

l
L
{
(l

J(L)
S1

)
(a) t

(l
J(L)

S2

)
(b) | a t b w c}.

Proof. The proof follows using the fact that
d

J(L)
S ∈ J(L) and Lemma 1.

Let a, b, c ∈ L such that at b v c. Let S1 = {fj}j∈J and S2 = {fk}k∈K such that
I = J ∪K. From Lemma 1(l

J(L)
S1

)
(a) =

l
L
{
⊔
j∈J

fj(aj) | (aj)j∈J ∈ LJ and
⊔
j∈J

aj w a}

and (l
J(L)

S2

)
(b) =

l
L
{
⊔
k∈K

fk(bk) | (bk)k∈K ∈ LK and
⊔
k∈K

bk w b}.

By distributivity of t over u,
(d

J(L)
S1

)
(a) t

(d
J(L)

S2

)
(b) can be written as:

l
L
{
⊔
i∈I

fi(ci) | (ci)i∈I ∈ LI and
⊔
i∈I

ci w a t b}

where ci is either ai, bi or ai t bi.
l

L
{
(l

J(L)
S1

)
(a) t

(l
J(L)

S2

)
(b) | a t b w c}

=〈Construction of
(d

J(L)S1

)
(a)t

(d
J(L)S2

)
(b)〉

l
L
{
l

L
{
⊔
i∈I

fi(ci) | (ci)i∈I ∈ LI and
⊔
i∈I

ci w a t b} | a t b w c}

=〈Associativity of u〉
l

L
{
⊔
i∈I

fi(ci) | (ci)i∈I ∈ LI and
⊔
i∈I

ci w a t b and a t b w c}

=〈(w)Transitivity ofw; (v)Associativity of u.〉
l

L
{
⊔
i∈I

fi(ci) | (ci)i∈I ∈ LI and
⊔
i∈I

ci w c}

=〈Lemma 1〉(l
J(L)

S
)
(c)
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A.4 Proof of Theorem 5

Suppose (L,v) is a finite distributive lattice. Let S1, S2 ⊆ J(L) be such that S =
S1 ∪ S2 ⊆ J(L). Then(l

J(L)
S
)
(c) =

l
L
{
(l

J(L)
S1

)
(a) t

(l
J(L)

S2

)
(c\a) | a ∈ L and a v c}.

Proof. Firstly, we prove that(l
J(L)

S
)
(c) =

l
L
{
(l

J(L)
S1

)
(a) t

(l
J(L)

S2

)
(c\a)}. (1)

From its definition c\a represents the least element e such that a t e w c, i.e.,c\a =d
{e|a t e w c}. Take any b such that a t b w c. Then b w c\a and since

d
J(L)

S1 andd
J(L)

S2 are monotonic(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(b) w

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(c\a).

From this it follows that
l

L
(C ∪ {

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(c\a) ,

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(b)})

=
l

L
(C ∪ {

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(c\a)})

for any C ⊆ L. This shows that
(d

J(L)
S1

)
(a) t

(d
J(L)

S2

)
(b) is redundant since(d

J(L)
S1

)
(a) t

(d
J(L)

S2

)
(c\a) is included in the set on the right-hand side of Equa-

tion 1.
The theorem can be seen as a simplification of Equation 1. Take any a′ 6v c. It

suffices to find a v c such that(l
J(L)

S1

)
(a′) t

(l
J(L)

S2

)
(c\a′) w

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(c\a)

since then for any C ⊆ L
l

L
(C ∪ {

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(c\a),

(l
J(L)

S1

)
(a′) t

(l
J(L)

S2

)
(c\a′)})

=
l

L
(C ∪ {

(l
J(L)

S1

)
(a) t

(l
J(L)

S2

)
(c\a)}).

Since a′ 6v c either (a) a′ A c or (b) a′ and c are incomparable w.r.t. v, written
a′ ‖ c. Suppose (a) holds. Then take a = c thus c\a = true. By monotonicity
we have

(d
J(L)

S1

)
(a′) t

(d
J(L)

S2

)
(c\a′) w

(d
J(L)

S1

)
(a) t

(d
J(L)

S2

)
(c\a) as

wanted. Suppose that (b) a′ ‖ c holds. Notice that c\a′ v c. Suppose that c\a′ = c.
Then we can take a = ⊥, and thus c\a = c = c\a′. By monotonicity we have(d

J(L)
S1

)
(a′)t

(d
J(L)

S2

)
(c\a′) w

(d
J(L)

S1

)
(a)t

(d
J(L)

S2

)
(c\a) as wanted. Sup-

pose c\a′ @ c holds. In this case, which is more interesting, we can build a poset
L = ({a′ t c, a′, c, c\a′, a′ u (c\a′) },v) and verify that L is a non-distributive
sub-lattice of (L,v), isomorphic to a lattice known as N5 (see Fig. 4). But from order
theory we know this cannot happen since we assumed (L,v) to be distributive, and
distributive lattices do not have sub-lattices isomorphic to N5 ([2]).
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a

b

c

d

e

Fig. 4: Non-distributive lattice: N5.

A.5 Proof of Theorem 7

Let L be a finite lattice, u, v ∈ L, σ : L → L and S ⊆ J(L). Assume σ w
d

J(L)
S

holds, and consider the following updates:

1. when σ(u) t σ(v) @ σ(u t v), assign σ(u t v)← σ(u) t σ(v)
2. when σ(u) t σ(v) 6v σ(u t v), assign σ(u) ← σ(u) u σ(u t v) and also σ(v) ←
σ(v) u σ(u t v)

Let σ′ be the function resulting after the update. Then, (1) σ′ @ σ and (2) σ′ w
d

J(L)
S

Proof. For update (1):
given the condition, the assignment obviously decreases σ(u t v), so σ′ @ σ. For the
invariant, since σ w

d
J(L)

S, then, σ(u) w
(d

J(L)
S
)
(u) and σ(v) w

(d
J(L)

S
)
(v), and,

therefore, σ′(utv) = σ(u)tσ(v) w
(d

J(L)
S
)
(u)t

(d
J(L)

S
)
(v) =

(d
J(L)

S
)
(u t v).

For update (2),
the assignments either decrease σ(u) or σ(v) (or both). To see why, assume the oppo-
site, σ(u) = σ(u)uσ(ut v)→ σ(u) v σ(ut v), and also σ(v) = σ(v)uσ(ut v)→
σ(v) v σ(u t v). Therefore, σ(u) t σ(v) v σ(u t v), contradicting the condition for
update 2. Assignments in update 2 also preserve the invariant σ w

d
J(L)

S.
assume σ(u) u σ(u t v) @ σ(u) (otherwise the invariant holds trivially). By the

invariant hypothesis for σ before the assignment, we have that σ(u) w
(d

J(L)
S
)
(u)

and σ(u t v) w
(d

J(L)
S
)
(u t v). Therefore,

σ(u) u σ(u t v) w
(d

J(L)
S
)
(u) u

(d
J(L)

S
)
(u t v)

=
(d

J(L)
S
)
(u) u (

(d
J(L)

S
)
(u) t

(d
J(L)

S
)
(v))

=
(d

J(L)
S
)
(u) t (

(d
J(L)

S
)
(u) u

(d
J(L)

S
)
(v))

=
(d

J(L)
S
)
(u)

The proof for σ′(v) is analogous.


	Counting and Computing Join-Endomorphisms in Lattices 

