
PREPRINT SUBMITTED TO INTERNATIONAL JOURNAL OF CONTROL

State feedback control and delay estimation for LTI systems with unknown

input-delay
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ABSTRACT
The objective of this paper is to build feedback control solutions for LTI systems with unknown con-
stant input-delay. The control scheme includes a time-delay estimation algorithm and a predictor-based
controller. The Lyapunov-Krasovskii theorem provides the global exponential stability of the closed-loop
system. Some examples illustrate the theoretical results and the performances of the proposed method.
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1. Introduction

Time-delay system (TDS) has attracted the attention of the control community for the last decades.
On the one hand, time-delay appears in many real systems, e.g. networked control systems (Bemporad,
Heemels, & Johansson, 2010) and congestion control (Hollot, Misra, Towsley, & Gong, 2002). On the
other hand, time-delay is a source of instability of the controlled system (Fridman, 2014a). In a TDS,
time-delays can be found in the input, the output, the state and even several of them. This paper deals
with the stabilization of LTI systems with unknown constant input-delay. The main objective of this
paper is to estimate the unknown constant delay and then stabilize the system with an appropriate
controller based on the delay estimation.

To stabilize LTI systems with known input-delay, predictive control is one of the most popular methods.
The Smith predictor (Smith, 1959) is firstly introduced to stabilize TDS, and it can compensate arbi-
trarily long time-delay. The Smith predictor is extended to the state-space method by finite spectrum
assignment (FSA) (Manitius & Olbrot, 1979) and reduction method (Artstein, 1982). The predictor-
based controller (Karafyllis & Krstic, 2017; Cacace, Conte, Germani, & Pepe, 2016; Mazenc & Malisoff,
2016) is a new extension of the Smith predictor that stabilizes linear and nonlinear systems with constant
or time-varying delays. Another advantage of the predictor-based controller is the robustness with respect
to the slight delay mismatch (Bresch-Pietri & Petit, 2014). Although the delay value is not perfectly
known (with small errors), the controller is able to stabilize the system. In this paper, the predictor-based
controller is adopted to robustly stabilize the linear TDS with arbitrarily long input-delay.

A vast literature is avaliable on the stabilization of linear TDS with unknown constant input-delay.
The adaptive backstepping approach (Krstic & Bresch-Pietri, 2009; Bekiaris-Liberis & Krstic, 2010) is
the most effective way to stabilize such system. The unknown time-delay is considered as a transport
partial differential equation (PDE). Then the adaptive backstepping controller is designed to stabilize the
coupled system that is composed of the original system and the transport PDE. However, this approach
is hard to implement due to the fact that both the controller and the delay estimation scheme contain
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integral terms. A piecewise-constant delay estimator is proposed in (Cacace, Conte, & Germani, 2017),
the exponential stability of the system is ensured and there is no integral term in the state feedback
controller. However, in this approach, the delay identifiability of the closed-loop system must be checked
off-line with distinct delay values. A low gain feedback controller is designed in (Wei & Lin, 2019) in
order to stabilize TDS. The advantage of this method is that the controller design is not based on the
delay estimation, but all the open-loop poles of the system are assumed to be zero. In (Herrera & Ibeas,
2012), a delay estimator and a modified Smith predictor are combined to regulate the step response of
stable, unstable and integrating TDS. However, this technique is complex since it runs large numbers of
fixed-models with different delays at the same time in order to estimate the time-delay.

This paper introduces a control scheme that includes an on-line delay estimator and an approximated
predictor-based controller. The global exponential stability of the closed-loop system is guaranteed by
the Lyapunov-Krasovskii theorem (Krasovskii, 1963; Hale & Lunel, 1993; Fridman, 2014a). This paper
is organized as follows. The problem formulations and some preliminaries are given in section 2. The
main results of this paper are stated in section 3. In section 4, some simulations are given to illustrate
the performances. Finally, section 5 ends the paper with some conclusions and future works.

2. Problem formulations

Firstly, one introduces some useful symbols and notations in the paper. The maximum and minimum
eigenvalues of a matrix P ∈ Rn×n read as λ̄(P ) and λ(P ), respectively. Let ‖ · ‖ denote the euclidean
norm of a vector x ∈ Rn and the spectral norm of a matrix P ∈ Rn×m. The notation xt : [−h, 0]→ Rn

is defined as xt(θ) = x(t + θ) for all θ ∈ [−h, 0]. The space of continuous functions φ : [a, b] → Rn is
denoted as C([a, b],Rn). The definitions of the Lyapunov stability of the retared functional differential
equation (RFDE) are given in (Hale & Lunel, 1993).

Consider a linear system with input-delay

ẋ(t) = Ax(t) +Bu(t− h), t ≥ 0 (1)

where x(t) ∈ Rn, u(t) ∈ Rp, and A, B have appropriate dimensions. The input-delay h is supposed to
be constant and unknown. Moreover, one assumes that h is bounded in [h, h̄], the bounds h and h̄ are
known. The initial condition of (1) is given by

x(0) = x0,

u(θ) = φu(θ) ∈ C([−2h̄, 0),Rp).
(2)

In (2), the initial condition of u(t) is defined on [−2h̄, 0) instead of [−h̄, 0) because the delay estimator
(13) given in Theorem 3.1 needs the knowledge of u(t) on [−2h̄,−h̄).

Assumption 1. The pair (A,B) is stabilizable.

Assumption 1 ensures the existence of a feedback matrix K ∈ Rp×n such that A+BK is Hurwitz. It
yields that for all positive definite matrix Q ∈ Rn×n, there exists a positive definite matrix P ∈ Rn×n
such that the following algebraic equation (Slotine, Li, et al., 1991, equation (3.19)) holds

(A+BK)TP + P (A+BK) = −Q. (3)

Based on the feedback matrix K given after Assumption 1, one defines the controller as

u(t) = Kz(t), t ≥ 0 (4)

where z(t) is the approximated predictor relies on the knowledge of the delay estimation ĥ(t) (the
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definition of ĥ(t) will be given in section 3)

z(t) = eAĥ(t)x(t) +

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds, t ≥ 0. (5)

The initial condition of z(t) is defined as

z(θ) = φz(θ) ∈ C([−2h̄, 0),Rn). (6)

Similarly, the initial condition of z(t) is defined on [−2h̄, 0) in order to ensure that the delay estimator
(13) is computable.

Remark 1. To simplify the calculations, one chooses the initial condition of z(t) such that

‖φu(θ)‖ ≤ ‖K‖‖φz(θ)‖, θ ∈ [−2h̄, 0). (7)

Moreover, one requires that u(t) and z(t) are continuous at t = 0 gives that

lim
θ→0−

φu(θ) = u(0),

lim
θ→0−

φz(θ) = z(0).
(8)

Equations (8) ensures the continuity of the controller u(t) and the predictor z(t) for all t ≥ −2h̄.

Assumption 2. The delayed input value u(t− h) is available for measurements.

In this paper, one uses the knowledge of u(t − h) to estimate the unknown input-delay. The delayed
input value u(t− h) can be stored and sent to the controller in practice. The same assumption is given
in (Léchappé et al., 2016; Diop, Kolmanovsky, Moraal, & Van Nieuwstadt, 2001) in order to solve the
delay estimation problem. For the stabilization problems, the adaptive backstepping approaches (Krstic
& Bresch-Pietri, 2009, p.4500), (Bekiaris-Liberis & Krstic, 2010, p.278) also claim that the infinite-
dimensional state

u(x, t) = U(t+D(x− 1)) (9)

with the unknown input-delay D, is available for measurement for all x ∈ [0, 1]. Thus, Assumption 2 is
a standard assumption for this problem.
Assumption 2 can be verified in a class of remote control systems (RCS) (Yang, 2011, Chapter 3.4).
Consider a RCS with full-state measurement:{

ẋ(t) = Ax(t) +Bu(t− hi)
y(t) = x(t− ho)

(10)

where hi and ho are the unknown constant input and output delays arisen from the remote data trans-
mission. Firstly, one assumes that the plant sends the measured state x(t) and the delayed input u(t−hi)
back to the controller in the same communication channel (the data transmission of the delayed control
signal is shown by the dashed arrows in Figure 1), then the controller receives y(t) and u(t − hi − ho)
at the same time. In other words, at the controller side, the delayed signal u(t− hi − ho) is available for
measurements. Secondly, since ho is constant, the dynamics of y(t) reads as

ẏ(t) = ẋ(t− ho) = Ax(t− ho) +Bu(t− hi − ho). (11)

Remind that, if one defines h = hi + ho, system (11) is equivalent to an input-delay system

ẏ(t) = Ay(t) +Bu(t− h) (12)
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Figure 1. Control architecture of RCS (10) with full state measurement.

where u(t − h) is available for measurements. This example shows that the input and output delays of
the remote control system (10) can be lumped together, and this system can be equally considered as an
input-delay system (12) in which Assumption 2 is satisfied. This method can also be used for the output
feedback of a RCS (Deng, Léchappé, Moulay, & Plestan, 2019).
Moreover, the authors of (Bresch-Pietri & Krstic, 2010, Section IV) stated that the adaptive backstepping
approach is able to be used for the pitch/ flight path rate control of an aircraft. It also means that
Assumption 2 can be used to handle such real control problems.

3. Main results

The main results of this paper are stated as follows.

Theorem 3.1. Consider the system (1) and the approximated predictor-based controller (4)-(5) with
initial conditions (2) and (6). Assume that Assumptions 1-2 are fulfilled. Define the delay estimator as
follows:

˙̂
h(t) =

‖u(t− h)− u(t− ĥ(t))‖
maxs∈[t−2h̄,t] ‖z(s)‖+ ε

, t ≥ 0 (13)

where ε is a sufficiently small positive constant and the initial condition ĥ(0) = h0 satisfies that h0 ≤ h.
If the initial condition of the delay estimator h0 is sufficiently close to h, then there exist M1 > 0 and
η > 0 such that z(t) is globally uniformly exponentially stable (GUES) with decay rate η:

‖z(t)‖ ≤M1 max
s∈[−h̄,0]

‖z(s)‖e−ηt, t ≥ 0. (14)

Moreover, there also exists M2 > 0 such that the state x(t) globally converges to zero with decay rate η
such that:

‖x(t)‖ ≤M2 max
s∈[−h̄,0]

‖z(s)‖e−ηt, t ≥ 0. (15)

�

Proof. The proof of Theorem 3.1 is divided into two parts. The first part of the proof deals with the
delay estimator and the second part of the proof provides the Lyapunov stability analysis.
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Part 1. The estimation scheme (13) provides that
˙̂
h(t) ≥ 0 for all t ≥ 0. Then, one proves the inequality

ĥ(t) ≤ h, t ≥ 0. (16)

by contradiction. Assume that there exists an instant t0 > 0 such that ĥ(t0) > h, then there must exist
another instant t1 ∈ [0, t0) such that

ĥ(t1) = h,
˙̂
h(t1) > 0 (17)

thanks to the fact h0 ≤ h, the continuity of ĥ(t), the monotonicity of ĥ(t) and the intermediate value

theorem (Beals, 2004, Theorem 8.9). However,
˙̂
h(t1) > 0 cannot be true while ĥ(t1) = h holds. As a

consequence of ĥ(t1) = h, one has

˙̂
h(t1) =

‖u(t1 − h)− u(t1 − ĥ(t1))‖
maxs∈[t1−2h̄,t1] ‖z(s)‖+ ε

=
‖u(t1 − h)− u(t1 − h)‖

maxs∈[t1−2h̄,t1] ‖z(s)‖+ ε
= 0. (18)

There is a contradiction between (17) and (18), then inequality (16) is proven. Since ĥ(t) is increasing
and upper bounded by h, define D = h− h0, it implies that

h− ĥ(t) ≤ D, t ≥ 0. (19)

Inequality (19) will be used in the Lyapunov stability analysis.
Part 2. Differentiating the predictor (5) and using the control law (4) leads to

ż(t) =(A+BK)z(t) + eAĥ(t)B[u(t− h)− u(t− ĥ(t))] +
˙̂
h(t)Az(t)

− ˙̂
h(t)A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds+

˙̂
h(t)eAĥ(t)Bu(t− ĥ(t)), t ≥ 0.

(20)

Combining (7) and (4), one concludes that

‖u(t)‖ ≤ ‖K‖‖z(t)‖, t ≥ −2h̄. (21)

Define the three positive-definite terms as follows:

V1(z) = z(t)TPz(t),

V2(ut, t) =

∫ t

t−ĥ(t)
(2h̄+ s− t)‖u(s)‖2ds,

V3(u̇t, t) =

∫ t

t−h
(h+ s− t)‖u̇(s)‖2ds,

(22)

for t ≥ 0. Consider the Lyapunov-Krasovskii functional

V (z, ut, u̇t, t) = V1(z) + αV2(ut, t) + βV3(u̇t, t) (23)

with α, β > 0. Lemma B.1 (Appdendix B) and the Lyapunov-Krasovskii theorem provides that

V (t) ≤ V (h̄)e−2η(t−h̄), t ≥ h̄ (24)

for well-tuned α, β, η and sufficiently small D. Finally, Lemma A.1 (Appdendix A), Lemma C.1 (App-
dendix C) and inequality (24) result in the exponential stability (14) and the exponential convergence
(15).
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Theorem 3.1 provides a control strategy to the stabilization of LTI systems with unknown constant
input-delay. The main contributions are:

• The controller design is simple, no parameter needs to be tuned for the controller. The parameter ε
does not influence the stability conditions (B24)-(B29), it is only added to avoid the singularity of
(13). In practice, one can just set ε sufficiently small (e.g. ε < 10−3). The constraint on the initial
condition h0 is conservative in the proof, but the system can be stabilized in simulations although
the distance between h and h0 is much further than the theoretical one. This argument will be
discussed in Remark 2 and will be illustrated by the simulations given in section 4.
• Although the closed-loop system has nonlinear behavior, it does not have finite escape time by

virtue of (A9), Lemma A.1 (Appendix A).
• Assumption 2 ensures that one can measure the delayed value u(t− h), then the delay estimation

scheme will not be influenced by the model uncertainties and the external disturbances since u(t)
is stored and u(t− h) is measured.

Moreover, several remarks are given to discuss the main results.

Remark 2. Theorem 3.1 requires that the initial condition h0 should be sufficiently close to the unknown
time-delay h. But the difference between h and h0 can be much larger in applications.
Indeed, this condition on h0 is only used in the proof of Lemma B.1 to ensure that the error term
h− ĥ(t) is sufficiently small for all t ≥ h̄. Consider the case when h0 is not close to h, but ĥ(t)
is sufficiently close to h for all t ≥ h̄, the right-hand sides of (B5) and (B6) are still sufficiently
small and Lemma B.1 still holds. Thus, the exponential stability of the closed-loop system is guaranteed
iin this case. Moreover, the proof of Lemma B.1 is also conservative.
Some simulations with different h0 will be given in subsection 4.1 to test if the system can be stabilized
with less restrictive initial conditions.

Remark 3. Consider the definition of the exponential stability given in (Fridman, 2014a, p.136, Def-
inition 4.1), one makes sure that z(t) is GUES although its trajectory passes through a transient on
t ∈ [0, h̄]. However, one cannot say that x(t) is also GUES in the sense of (Fridman, 2014a, p.136,
Definition 4.1). Thus, one claims in Theorem 3.1 that x(t) globally converges to zero.

Remark 4. One can compare the main results of this article and the one of (Deng et al., 2019), in
which the delay estimator is defined as

˙̂
h(t) = min{‖u(t− h)− u(t− ĥ(t))‖, δ̄}, t ≥ 0. (25)

The differences between the proposed method and the one of (Deng et al., 2019) are stated in the sequel:

• The global exponential stability (14) and global exponential convergence (15) are ensured by The-
orem 3.1 by using the Lyapunov-Krasovskii theorem, rather than the global asymptotic stability
and global convergence provided in (Deng et al., 2019) with Lyapunov-Razumikhin theorem1.
• This work requires a smaller amount of tuning parameters than (Deng et al., 2019). Only the initial

condition h0 need to be tuned in this work; but in (Deng et al., 2019), δ̄ is also required to be
sufficiently small in order to obtain the stability.
• Delay estimator (13) makes the convergence lim

t→∞
ĥ(t) = h easier to achieve in practice. The com-

parison between the two delay estimators will be given in Section 4.2.

1The Lyapunov-Razumikhin theorem given in (Hale & Lunel, 1993, Theorem 4.2, p.152) ensures the uniform asymptotic stability
of the TDS. To obtain the exponential stability by using the Lyapunov-Razumikhin theorem, the Halanay’s inequality must be

additionally checked (Fridman, 2014b, p.273-274).
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4. Simulations

In this section, a system inspired by the system studied in (Zhou, 2014a) is considered. The system is
described as

ẋ(t) =


−1 0 1 0
0 0 0 −1
−1 0 −1 1
0 1 −1 0

x(t) +


0
1
0
0

u(t− h), t ≥ 0. (26)

In subsection 4.1, a simulation illustrates the discussions given in Remark 2 such that the constraint on
the initial condition h0 is less restrictive than Theorem 3.1. In subsection 4.2, one compares the proposed
delay estimator (13) and the existing method (25) mentioned in Remark 4. In subsection 4.3, one shows
that the delay estimator (13) is not influenced by the model uncertainties.

Remark 5. As stated in (Van Assche, Dambrine, Lafay, & Richard, 1999), some numerical problems
may arise during when calculating the integral term of (5) (because the integration must be replaced by
finite sums). Several methods can handle this problem:

• in (Zhou, 2014b; Zhou, Liu, & Mazenc, 2017), an artificial finite-dimensional system that predicts
the future state is used to replace the infinite-dimensional predictor (5);
• in (Bresch-Pietri, Chauvin, & Petit, 2012, p.1548) a trapezoidal discretization method and a peri-

odic reset are used to overcome the numerical issues.

In this paper, one uses the technique proposed in (Bresch-Pietri et al., 2012, p.1548) to calculate the
prediction (5) in order to avoid the numerical problems.

4.1. Simulation results with different initial conditions h0

Consider the system (26) with a large input-delay h = 4.5s, define h = 0s and h̄ = 5s. The initial

conditions of the system are given by x(0) =
[
0.5 0.6 −0.6 0.5

]T
, and u(θ) = −3.1452 for all θ ∈

[−2h̄, 0). The feedback matrix K =
[
6 −8 13 −12

]
leads to the eigenvalues {−1;−1;−3;−5} for

A + BK. The initial condition of z(t) is set to z(θ) =
[
0.2962 0.0502 −0.6335 −0.3096

]T
for all

θ ∈ [−2h̄, 0) that guarantees (7), and the parameter ε is set to 10−4. In this simulation, one tests the
proposed method with two initial conditions h0 = 2s and h0 = 4s.
The simulation results are presented in Figure 2, the system (26) is stabilized in both cases. The

simulation results illustrate the discussions given in Remark 2 such that the estimation error h − ĥ(t)
is only required to be sufficiently small for all t ≥ h̄, but not necessary for all t ≥ 0. In Figure 2, since
the unknown time-delay is almost estimated for all t ≥ h̄ in both cases, then Lemmas A.1, B.1 and C.1
hold, and they guarantee the exponential stability of the closed-loop system.
The simulation results given in this subsection illustrate the discussions of Remark 2, and it shows that
the choice of h0 is much more flexible in practice.

4.2. Comparison between two delay estimators

Consider that the system (26) is subject to an unknown input-delay h = 0.5s that is upper bounded by
h̄ = 0.8s. The initial condition of the delay estimator is set to h0 = 0.2s. The other parameters are the
same as the ones defined in subsection 4.1, and the parameter δ̄ in (25) is set to 0.1.
In Figure 3, the two delay estimators (13) and (25) are compared. The system is stabilized in both

cases, but Figure 3 (Bottom) shows that the convergence lim
t→∞

ĥ(t) = h is only ensured by the proposed

delay estimator (13). Consider the case when ĥ(t) is sufficiently close to h and the system is almost

stabilized, in this case the error term ‖u(t− h)− u(t− ĥ(t))‖ is approximately zero. Hence, (13) makes

the convergence lim
t→∞

ĥ(t) = h easier to achieve since the denominator maxs∈[t−2h̄,t] ‖z(s)‖ + ε is much
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Figure 2. Evolution of ‖x(t)‖ (Top) and ĥ(t) (Bottom) versus time for system (26) with two cases: h0 = 2s and h0 = 4s.

smaller than 1. In other words, the denominator of (13) speeds up the delay estimation when the system
is almost stabilized.
Furthermore, Figure 3 (Top) shows that delay estimator (25) makes ‖x(t)‖ have an oscillation behavior,
but (13) does not. Then one concludes that delay estimator (13) can also improve the performances of
the system.

4.3. Simulation with model uncertainties

In this subsection, one shows that the proposed delay estimator (13) is robust with respect to the model
uncertainties. Considers the system (26) with model uncertainties:

ẋ(t) =



−1 0 1 0
0 0 0 −1
−1 0 −1 1
0 1 −1 0


︸ ︷︷ ︸

A

+


0 0.2 0 0.1

0.1 0 0.1 0
−0.1 0.1 0 0
0.1 0 −0.1 0


︸ ︷︷ ︸

∆A


x(t) +




0
1
0
0


︸︷︷︸
B

+


0.1
−0.2
0.1
−0.1


︸ ︷︷ ︸

∆B


u(t− h), t ≥ 0

(27)
where ∆A and ∆B are unknown. All of the parameters are the same as the ones given in subsection 4.2,
and the control laws (5)-(4)-(13) are calculated by using A and B.
The simulation results are presented in Figure 4, the uncertain system (27) is stabilized although there

exist model uncertainties ∆A and ∆B. Moreover, as stated in Section 3, the delay estimator (13) can
deal with uncertain systems since u(t) is stored and u(t−h) is measured. This simulation highlights the
robustness of the proposed method.
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Figure 3. Evolution of ‖x(t)‖ (Top) and h − ĥ(t) (Bottom) versus time for system (26) (h = 0.5s) with delay estimators (13) and
(25).

5. Conclusions

This paper deals with the stabilization of LTI systems with unknown constant input-delay. The control
scheme is comprised of a delay estimator and an approximated predictor-based controller. The global
uniform exponential stability of the closed-loop system is ensured by using the Lyapunov-Krasovskii
theorem. Several simulations are given to illustrate the performance of the proposed method, they also
show that the constraint on the initial condition of the delay estimator is not restrictive in practice. The
stabilization of the LTI system with time-varying input-delay will be investigated for future works.
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Figure 4. Evolution of ‖x(t)‖ (Top) and h− ĥ(t) (Bottom) versus time for the standard system (26) and the uncertain system (27)
with control strategies (5)-(4)-(13).

Cacace, F., Conte, F., & Germani, A. (2017). State feedback stabilization of linear systems with unknown
input time delay. IFAC-PapersOnLine, 50 (1), 1245 - 1250. (20th IFAC World Congress)

Cacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems
with input delay using closed-loop predictors. International Journal of Robust and Nonlinear
Control , 26 (16), 3524–3540.
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Appendix A. Behaviors of system (20) during the transient on t ∈ [0, h̄]

Lemma A.1 provides the bounds of ‖z(t)‖ and ‖ż(t)‖ during the transient on t ∈ [0, h̄].

Lemma A.1. Define

k = max
s∈[−h̄,0]

‖z(s)‖,

b = ‖A+BK‖+ 2‖K‖‖A‖+ 2e‖A‖h̄‖B‖‖K‖(1 + ‖K‖+ ‖K‖‖A‖h̄).
(A1)

Then the trajectory of the z-system satisfies that

max
s∈[0,h̄]

‖z(s)‖ ≤ kebh̄, max
s∈[0,h̄]

‖ż(s)‖ ≤ bkebh̄. (A2)

�

Proof. Taking account of (21), (16) and the triangle inequality, (13) is upper bounded as follows

˙̂
h(t) ≤ ‖u(t− h)‖+ ‖u(t− ĥ(t))‖

maxs∈[t−2h̄,t] ‖z(s)‖+ ε
≤ 2‖K‖

maxs∈[t−2h̄,t] ‖z(s)‖
maxs∈[t−2h̄,t] ‖z(t)‖+ ε

≤ 2‖K‖, t ≥ 0. (A3)

Consider a scalar function N(t) defined as follows

N(t) =

{
zT (t)z(t) = ‖z(t)‖2, t ≥ 0

φTz (θ)φz(θ) = ‖φz(θ)‖2, −2h̄ ≤ θ < 0
. (A4)

Remind that one has (8), then N(t) is continuous for all t ≥ −2h̄. Differentiating N(t) along the
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trajectories of (20) leads to

Ṅ(t) =zT (t)
[
(A+BK)T + (A+BK) +

˙̂
h(t)(AT +A)

]
z(t) + z(t)T eAĥ(t)B[u(t− h)− u(t− ĥ(t))]

+ [u(t− h)− u(t− ĥ(t))]TBT eA
T ĥ(t)z(t) +

˙̂
h(t)zT (t)eAĥ(t)Bu(t− ĥ(t))

+
˙̂
h(t)

[
eAĥ(t)Bu(t− ĥ(t))

]T
z(t)− ˙̂

h(t)zT (t)A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

− ˙̂
h(t)

[
A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

]T
z(t), t ≥ 0.

(A5)
Taking the norm of the right-hand side of (A5) and using (21), (A3), it follows that

Ṅ(t) ≤ 2‖A+BK‖‖z(t)‖2 + 4e‖A‖h̄‖B‖‖K‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖+ 4‖K‖‖A‖‖z(t)‖2

+ 4‖K‖‖A‖e‖A‖h̄‖B‖‖K‖h̄‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖+ 4‖K‖e‖A‖h̄‖B‖‖K‖‖z(t)‖ max
s∈[t−h̄,t]

‖z(s)‖, t ≥ 0.

(A6)
Due to the fact that ‖z(t)‖ ≤ maxs∈[t−h̄,t] ‖z(s)‖, (A6) is upper bounded as

Ṅ(t) ≤ 2b

(
max

s∈[t−h̄,t]
‖z(s)‖

)2

= 2b max
s∈[t−h̄,t]

N(s), t ≥ 0 (A7)

where b is defined in (A1). The analysis given in (Bresch-Pietri, Mazenc, & Petit, 2018, Appendix B,
p.232-233) proves that the trajectory of N(t) satisfies the following inequality:

N(t) ≤ max
s∈[−h̄,0]

N(s)e2bt, t ≥ 0. (A8)

Since maxs∈[−h̄,0]N(s) = k2, one proves that2

‖z(t)‖ ≤ kebt, t ≥ 0 (A9)

where k and b are defined in (A1). Given that ‖z(θ)‖ ≤ k for all θ ∈ [−h̄, 0], then one has

max
s∈[t−h̄,t]

‖z(s)‖ ≤ kebt, t ≥ 0. (A10)

Next, one takes the norm of (20) and one repeats the calculations given in (A6) and (A7), it follows that

‖ż(t)‖ ≤ b max
s∈[t−h̄,t]

‖z(s)‖, t ≥ 0. (A11)

Combining (A10) and (A11) leads to

‖ż(t)‖ ≤ bkebt, t ≥ 0. (A12)

Inequalities (A9) and (A12) result in (A2), and this ends the proof.

Appendix B. Lyapunov Stability of z(t)

This section gives the Lyapunov stability of z(t) for all t ≥ h̄.

2A similar result is also given in (Selivanov & Fridman, 2016, Appendix A, (A.5)-(A.6)) with the use of the Gronwall-Bellman Lemma.
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Lemma B.1. Consider the Lyapunov-Krasovskii functional (23), if the parameter D described in (19)
is sufficiently small, then there exists η > 0 such that

V (t) ≤ V (h̄)e−2η(t−h̄), t ≥ h̄. (B1)

�

Proof. Firstly, for all r ∈ [ĥ(t), h], one has

ż(t− r) =(A+BK)z(t− r) + eAĥ(t−r)B[u(t− r − h)− u(t− r − ĥ(t− r))]

+
˙̂
h(t− r)Az(t− r) +

˙̂
h(t− r)eAĥ(t−r)Bu(t− r − ĥ(t− r))

− ˙̂
h(t− r)A

∫ t−r

t−r−ĥ(t−r)
eA(t−r−s)Bu(s)ds, t ≥ h̄.

(B2)

Taking the norm of (B2) leads to

‖ż(t− r)‖ ≤ b max
s∈[t−2h̄,t]

‖z(s)‖, t ≥ h̄ (B3)

for all r ∈ [ĥ(t), h] (the parameter b is defined in (A1)). Consider the term u(t − h) − u(t − ĥ(t)) and
the mean value theorem for vector-valued functions (Rudin et al., 1964, Theorem 5.19), there exists

r1 ∈ [ĥ(t), h] such that

‖u(t− h)− u(t− ĥ(t))‖ ≤ (h− ĥ(t))‖K‖‖ż(t− r1)‖, t ≥ h̄ (B4)

which implies that

‖u(t− h)− u(t− ĥ(t))‖ ≤ (h− ĥ(t))‖K‖b max
s∈[t−2h̄,t]

‖z(s)‖, t ≥ h̄. (B5)

Substituting (B5) into (13) yields that

˙̂
h(t) ≤ (h− ĥ(t))‖K‖b

maxs∈[t−2h̄,t] ‖z(s)‖
maxs∈[t−2h̄,t] ‖z(s)‖+ ε

≤ D‖K‖b, t ≥ h̄. (B6)

To simplify the writing, one defines

δ̂ , D‖K‖b (B7)

and one assumes that D is sufficiently small such that δ̂ < 1. Inequality (B6) provides that, if h− ĥ(t) is

sufficiently small, then
˙̂
h(t) is also sufficiently small. This property will be used in the Lyapunov analysis.

The next step is to consider the Lyapunov-Krasovskii functional (23). For all t ≥ h̄, differentiating V1(z)
along the trajectory of (20) and using Lyapunov-equation (3) leads to:

V̇1(z(t)) =− z(t)TQz(t) + z(t)TPeAĥ(t)B[u(t− h)− u(t− ĥ(t))] + [u(t− h)− u(t− ĥ(t))]TBT eA
T ĥ(t)Pz(t)

+
˙̂
h(t)zT

[
ATP + PA

]
z(t) +

˙̂
h(t)z(t)TPeAĥ(t)Bu(t− ĥ(t)) +

˙̂
h(t)z(t)TPeAĥ(t)Bu(t− ĥ(t))

+
˙̂
h(t)

[
eAĥ(t)Bu(t− ĥ(t))

]T
Pz(t)− ˙̂

h(t)z(t)TPA

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

− ˙̂
h(t)

[
A

∫ t

t−ĥ(t)
eA(t−s)Bu(s)ds

]T
Pz(t).

(B8)
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Taking the norm of (B8), applying (B6), (B7) and the triangle inequality for integrals (Rudin, 2006,
Theorem 1.33) one gets

V̇1(z(t)) ≤− λ(Q)‖z(t)‖2 + 2δ̂‖PA‖‖z(t)‖2 + 2δ̂e‖A‖h̄‖B‖‖P‖‖z(t)‖‖u(t− ĥ(t))‖

+ 2δ̂‖PA‖e‖A‖h̄‖B‖‖z(t)‖‖v(t)‖+ 2e‖A‖h̄‖B‖‖P‖‖z(t)‖‖w(t)‖
(B9)

where ‖v(t)‖ =
∫ t
t−ĥ(t) ‖u(s)‖ds and ‖w(t)‖ =

∫ t−ĥ(t)
t−h ‖u̇(s)‖ds. Define c1 = 2‖PA‖, c2 = 2e‖A‖h̄‖B‖‖P‖,

c3 = 2‖PA‖e‖A‖h̄‖B‖, then (B9) is equivalent to

V̇1(z) ≤− (λ(Q)− δ̂c1)‖z(t)‖2 + δ̂c2‖z(t)‖‖u(t− ĥ(t))‖+ δ̂c3‖z(t)‖‖v(t)‖+ c2‖z(t)‖‖w(t)‖. (B10)

Then, by completing the squares, (B10) implies that

V̇1(z) ≤− (λ(Q)− δ̂c1)‖z(t)‖2 +
δ̂c2

2
(‖z(t)‖2 + ‖u(t− ĥ(t))‖2)

+
δ̂c3

2
(‖z(t)‖2 + ‖v(t)‖2) +

(
Dc2

2

β
‖z(t)‖2 +

β

4D
‖w(t)‖2

)
.

(B11)

For all t ≥ h̄, differentiating V2(ut, t) gives that

V̇2(ut, t) ≤ 2h̄‖K‖2‖z(t)‖2 − (1− ˙̂
h(t))(2h̄− ĥ(t))‖u(t− ĥ(t))‖2 −

∫ t

t−ĥ(t)
‖u(s)‖2ds. (B12)

Remind that 1− ˙̂
h(t) ≥ 1− δ̂ ≥ 0 and 2h̄− ĥ(t) ≥ h̄ ≥ 0, one has

(1− ˙̂
h(t))(2h̄− ĥ(t)) ≥ (1− δ̂)h̄ ≥ 0. (B13)

Combining (B12) and (B13) leads to

V̇2(ut, t) ≤ 2h̄‖K‖2‖z(t)‖2 − (1− δ̂)h̄‖u(t− ĥ(t))‖2 −
∫ t

t−ĥ(t)
‖u(s)‖2ds. (B14)

Using the Jensen’s inequality (Gu, Chen, & Kharitonov, 2003, Proposition B.8) and the fact that 0 ≤
ĥ(t) ≤ h̄, the integral term of (B14) is upper bounded as follows

−
∫ t

t−ĥ(t)
‖u(s)‖2ds ≤ − 1

ĥ(t)

[∫ t

t−ĥ(t)
‖u(s)‖ds

]2

≤ −1

h̄

[∫ t

t−ĥ(t)
‖u(s)‖ds

]2

. (B15)

Using (B15), inequality (B14) is developed to

V̇2(ut, t) ≤ 2h̄‖K‖2‖z(t)‖2 − (1− δ̂)h̄‖u(t− ĥ(t))‖2 − 1

2h̄
‖v(t)‖2 − 1

2

∫ t

t−ĥ(t)
‖u(s)‖2ds. (B16)

For all t ≥ h̄, differentiating V3(u̇t, t) leads to

V̇3(u̇t, t) ≤ h̄‖K‖2‖ż(t)‖2 −
∫ t

t−h
‖u̇(s)‖2ds. (B17)
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Remind that one has 0 ≤ h − ĥ(t) ≤ D, then one also has − 1
h−ĥ(t)

≤ − 1
D ≤ 0. So inequality (B17)

becomes to

V̇3(u̇t, t) ≤ h̄‖K‖2‖ż(t)‖2 −
1

2

∫ t−ĥ(t)

t−h
‖u̇(s)‖2ds− 1

2

∫ t

t−h
‖u̇(s)‖2ds

≤ h̄‖K‖2‖ż(t)‖2 − 1

2D
‖w(t)‖2 − 1

2

∫ t

t−h
‖u̇(s)‖2ds.

(B18)

For t ≥ h̄, taking the norm of (20) and taking account of (B6), one has

‖ż(t)‖ ≤‖A+BK‖‖z(t)‖+ δ̂‖A‖‖z(t)‖+ e‖A‖h̄‖B‖‖w(t)‖

+ δ̂‖A‖e‖A‖h̄‖B‖‖v(t)‖+ δ̂e‖A‖h̄‖B‖‖u(t− ĥ(t))‖.
(B19)

Squaring (B19) and using the power means inequality given in (Bullen, 2013, p.203, Theorem 1) yields
that

‖ż(t)‖2 ≤ (c4 + c5δ̂
2)‖z(t)‖2 + c6‖w(t)‖2 + c7δ̂

2‖v(t)‖2 + c6δ̂
2‖u(t− ĥ(t))‖2 (B20)

where c4 = 5‖A + BK‖2, c5 = 5‖A‖2, c6 = 5e2‖A‖h̄‖B‖2 and c7 = 5‖A‖2e2‖A‖h̄‖B‖2. Thus, (B18) is
upper bounded by

V̇3(u̇t, t) ≤h̄‖K‖2
[
(c4 + c5δ̂

2)‖z(t)‖2 + c6‖w(t)‖2 + c7δ̂
2‖v(t)‖2 + c6δ̂

2‖u(t− ĥ(t))‖2
]

− 1

2D
‖w(t)‖2 − 1

2

∫ t

t−h
‖u̇(s)‖2ds.

(B21)

Futhermore, the Lyapunov-Krasovskii functional (23) is upper bounded by

V (z, ut, u̇t, t) ≤ λ̄(P )‖z(t)‖2 + 2αh̄

∫ t

t−ĥ(t)
‖u(s)‖2ds+ βh̄

∫ t

t−h
‖u̇(s)‖2ds. (B22)

For t ≥ h̄, taking account of (B11), (B16), (B21) and (B22) gives that

V̇ + 2ηV ≤−
[
λ(Q)− δ̂c1 − δ̂(c2 + c3)/2−Dc2

2/β − 2αh̄‖K‖2 − βh̄‖K‖2(c4 + c5δ̂
2)− 2ηλ̄(P )

]
‖z(t)‖2

−
[
αh̄− αh̄δ̂ − δ̂c2/2− βh̄‖K‖2c6δ̂

2
]
‖u(t− ĥ(t))‖2 −

[
α/2− 4αh̄η

] ∫ t

t−ĥ(t)
‖u(s)‖2ds

−
[
β/(2D)− β/(4D)− βh̄‖K‖2c6

]
‖w(t)‖2 −

[
α/(2h̄)− δ̂c3/2− βh̄‖K‖2c7δ̂

2
]
‖v(t)‖2

−
[
β/2− 2βh̄η

] ∫ t

t−h
‖u̇(s)‖2ds.

(B23)
Thus, one obtains the stability conditions as follows

λ(Q)− δ̂c1 − δ̂(c2 + c3)/2−Dc2
2/β − 2αh̄‖K‖2 − βh̄‖K‖2(c4 + c5δ̂

2)− 2ηλ̄(P ) ≥ 0 (B24)

αh̄− αh̄δ̂ − δ̂c2/2− βh̄‖K‖2c6δ̂
2 ≥ 0 (B25)

α/(2h̄)− δ̂c3/2− βh̄‖K‖2c7δ̂
2 ≥ 0 (B26)

β/(2D)− β/(4D)− βh̄‖K‖2c6 ≥ 0 (B27)

α/2− 4αh̄η ≥ 0 (B28)

β/2− 2βh̄η ≥ 0 (B29)
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Firstly, one chooses α, β and η sufficiently small in order to verify (B28), (B29) and the following
inequality

λ(Q)/2− 2αh̄‖K‖2 − βh̄‖K‖2c4 − 2ηλ̄(P ) ≥ 0. (B30)

Secondly, it is possible to find sufficiently small δ̂ and D satisfying (B25), (B26), (B27) and the following
inequality:

λ(Q)/2− δ̂c1 − δ̂(c2 + c3)/2−Dc2
2/β − βh̄‖K‖2c5δ̂

2 ≥ 0. (B31)

Thus, there exist δ̂∗ > 0 and D∗ > 0 such that for all δ̂ ≤ δ̂∗ and D ≤ D∗, the stability conditions (B24)-

(B29) are all guaranteed. Reminding the definition of δ̂ given in (B7), one concludes that if h− h0 = D
is sufficiently small, such that

D ≤ min

{
D∗,

δ̂∗

‖K‖b

}
(B32)

then the Lyapunov-Krasovskii theorem (Fridman, 2014a, Theorem 3.1, Definition 4.1) ensures that the
closed-loop z-system is uniformly exponentially stable for all t ≥ h̄. Moreover, one has

V (z, ut, u̇t, t) ≥ w(‖z(t)‖) (B33)

with w(s) = λ(P )s2. Since one has lim
s→+∞

w(s) = +∞, it implies that the closed-loop z-system is GUES

for all t ≥ h̄ such that

V̇ (z, ut, u̇t, t) ≤ −2ηV (z, ut, u̇t, t), t ≥ h̄ (B34)

Finally, (B1) is proven by using (B34).

Appendix C. The exponential stability (14) and the exponential convergence (15)

Lemma C.1 gives the convergences (14) and (15) by using the results of Lemma A.1 and Lemma B.1.

Lemma C.1. If the Lyapunov-Krasovskii functional given by (22) and (23) satisfies (B1), then there
exists M1,M2 > 0 such that (14) and (15) hold. �

Proof. To obtain the stability of z(t) for all t ≥ 0, the boundedness of V (h̄) is necessary, one firstly
bounds the term V (h̄) as follows

V (h̄) ≤ λ̄(P )‖z(h̄)‖2 + 2αh̄‖K‖2
∫ h̄

0
‖z(s)‖2ds+ βh̄‖K‖2

∫ h̄

0
‖ż(s)‖2ds

≤ λ̄(P )‖z(h̄)‖2 + 2αh̄2‖K‖2 max
s∈[0,h̄]

‖z(s)‖2 + βh̄2‖K‖2 max
s∈[0,h̄]

‖ż(s)‖2.
(C1)

Taking account of (C1), (A9) and (A2), the upper bound of V (h̄) satisfies that

V (h̄) ≤
[
λ̄(P )e2bh̄ + 2αh̄2‖K‖2e2bh̄ + βh̄2‖K‖2b2e2bh̄

]
k2. (C2)

Define M2
0 = λ̄(P )e2bh̄ + 2αh̄2‖K‖2e2bh̄ + βh̄2‖K‖2b2e2bh̄, inequalities (B33), (C2) and (B1) yield that

‖z(t)‖ ≤ M0e
ηh̄√

λ(P )
ke−ηt, t ≥ h̄. (C3)
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Moreover, during the transient on 0 ≤ t ≤ h̄, eη(h̄−t) is larger than 1. From (A10), z(t) is upper bounded
as follows

‖z(t)‖ ≤ kebh̄ ≤ kebh̄eη(h̄−t) ≤ ke(b+η)h̄e−ηt, 0 ≤ t ≤ h̄. (C4)

Define

M1 =
M0e

ηh̄√
λ(P )

(C5)

which is larger than e(b+η)h̄ since

M1 ≥

√
λ̄(P )e2bh̄√
λ(P )

eηh̄ ≥ e(b+η)h̄ ≥ 1. (C6)

Therefore, (C3) and (C4) result in the exponential stability (14). The next part of the proof is to
demonstrate (15). Rearranging (5), one gets

x(t) = e−Aĥ(t)z(t)−
∫ t

t−ĥ(t)
eA[t−ĥ(t)−s]Bu(s)ds, t ≥ 0. (C7)

Taking the norm of (C7) and using (21), the upper bound of ‖x(t)‖ reads as follows

‖x(t)‖ ≤ e‖A‖h̄‖z(t)‖+ e‖A‖h̄‖B‖‖K‖h̄ max
s∈[t−h̄,t]

‖z(s)‖, t ≥ 0. (C8)

Consider (14) and (C6), then maxs∈[t−h̄,t] ‖z(s)‖ satisfies

max
s∈[t−h̄,t]

‖z(s)‖ ≤

{
M1k, 0 ≤ t ≤ h̄
M1ke

−η(t−h̄), t ≥ h̄
. (C9)

Note that eη(h̄−t) ≥ 1 for all 0 ≤ t ≤ h̄, then (C9) provides that

max
s∈[t−h̄,t]

‖z(s)‖ ≤M1e
ηh̄ke−ηt, t ≥ 0. (C10)

Substituting (14) and (C10) into (C8), the upper bound of x(t) is developed to

‖x(t)‖ ≤ e‖A‖h̄M1ke
−ηt + e‖A‖h̄‖B‖‖K‖h̄M1e

ηh̄ke−ηt

≤
[
e‖A‖h̄ + e‖A‖h̄‖B‖‖K‖eηh̄h̄

]
M1ke

−ηt, t ≥ 0.
(C11)

Thus, the exponential convergence (15) is proven with M2 =
[
e‖A‖h̄ + e‖A‖h̄‖B‖‖K‖eηh̄h̄

]
M1.
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