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The aim of this study is to investigate mathematics students’ understanding of geometrical objects 

such as curves and surfaces in space, when these objects are presented algebraically, that is, by 

their equations. Flexible use of different representations, in this case geometric and algebraic, as 

well as the ability to convert between implicit and parametric types of equations, is often assumed 

as a prerequisite in multivariable calculus. We have performed an in-depth analysis of students’ 

answers to exam questions to identify types of students’ difficulties in these conversions. However, 

our results also point to the impact of the didactic contract on students’ productions which possibly 

prevented students to fully present their understanding. 

Keywords: Transition across university mathematics, multivariable calculus, curve, representation, 

didactic contract 

Introduction  

In this paper we investigate learning difficulties that students face in the transition from the first 

courses in linear algebra and multivariable calculus, to more advanced mathematical courses that 

involve mathematical analysis of functions of several variables. As described by Kondratieva and 

Winsløw (2018), requests for efficiency and economy of exposition at university level often lead to 

narrow and disconnected teaching modules. Our teaching experiences indicate similar disparities in 

the transition from courses in analytical geometry, linear algebra and calculus on one side, to 

mathematical analysis of functions of several variables and differential geometry on the other. We 

noticed misconceptions and knowledge gaps in dealing with basic objects such as curves and 

surfaces in three-dimensional space, in using their implicit and parametric representations, and in 

converting from one representation to the other. These notions are essential for calculating curve 

integrals, applying Green-Stokes theorem, or in introductory lessons in differential geometry, for 

instance, the introduction of curve and surface curvature. 

A curve in three-dimensional space can be presented either by a parametrization, that is, as a trace 

of a moving particle, or by a system of equations in three variables, that is, as an intersection of 

surfaces. Transitions from one representation to the other and vice versa are theoretically 

underpinned in multivariable calculus by implicit and inverse function theorems. However, 

students’ work in basic examples usually happens in the domain of algebra and geometry – solving 

systems of (not necessarily linear) equations and giving them geometrical meaning. We noticed 

many students’ difficulties in this process, starting from a non-meaningful manipulation of 

equations in a way that just leads to new equations, understanding what a solution of a system of 

equations is, especially when a solution is not unique, and, finally, providing a geometrical 

interpretation of the obtained objects. Students’ difficulties in the same field but with linear objects, 
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in recognition of lines and planes given by their implicit (Cartesian) and parametric equation, and 

the presentation of these objects as sets (subsets in space satisfying the same conditions or 

equations) are well evidenced (Artigue, 1999; Alves-Dias; 1998; Nihoul, 2016). However, students’ 

work related to curved objects in space is an under-researched area. 

Motivation  

Our study was motivated by the following question posed as one of five questions in the midterm 

exam for the course Introduction to differential geometry in spring semester 2017: 

The question could be answered by following the procedure taught during the exercise classes (for a 

somewhat more complicated curve), which requires a curve to be parametrized. From the 

parametrization, one calculates its torsion, which should vanish for a planar curve, or determines its 

binormal field, which should be constant. However, in the above example the tedious calculation of 

a torsion (which often results in a calculation error) could have been avoided by using the definition 

of the planar curve emphasized during lectures. By a simple manipulation of the given equations, it 

is possible to eliminate the square terms to get 2x + 2y + z = 1, which could be recognized as an 

equation of a plane in which the curve lies. Among 136 students who provided any answer to this 

question (of 172 who participated in the exam), only 7 % (10 students) solved the task using that 

approach, and 10 % more solved it using both approaches, that means, they obtained the equation 

2x + 2y + z = 1, and then still parametrized the curve and applied the tedious procedure. Some 27 % 

of students obtained the plane equation without providing an interpretation, and 30 % of students 

solved the question by immediately parametrizing the curve and appling the procedure only. The 

remaining 26 % did not obtain the equation nor a correct parametrization. This high number of 

students who focused only on procedure and failed to apply the definition of a planar curve, 

encouraged us to implement a more though-out approach in the next year courses followed by a 

deeper analysis of students’ work.  

Theoretical framework and research questions 

Mathematical concepts are identified and represented through various representations, which reflect 

possibly different features of a concept, but simultaneously complement each other. Treating a 

concept within a certain representation (representational mode or register) and successfully 

converting between different registers of representation, is considered as a prerequisite for 

conceptual understanding. Conversion processes entail recognition of the same mathematical 

objects through representations from different registers and therefore require coordination of 

registers. Many students’ difficulties can be described and explained by the lack of coordination of 

different registers of representation (Duval, 1993, 2006). Research provides examples (Artigue, 

1999; Alves-Dias, 1998; Nihoul, 2016) of students’ difficulties in using the algebraic representation 

of lines and planes in space, and vice-versa, in recognizing straight lines and planes in space from 

their equations, and in converting between parametric and implicit viewpoints. 

Question. Prove that the space curve given by 2 2 2 2, 2 2 1x y z x y x y       is planar and 

determine its osculating plane. 



 

 

In this study we tried to answer the following research question: What are students’ learning 

difficulties in relation to different representations of curves and surfaces in 3-dimensional space? 

As observed in the motivational example, it seems that students tend to use lengthy procedures as 

opposed to conceptual definitions. This indicates that the work of some students does not show their 

complete mathematical understanding and difficulties, but rather that their answers are governed by 

reasons of didactical nature. We use the notion of didactic contract from the Theory of Didactic 

Situations (TDS) by Brousseau (1997), a framework useful to study phenomena at university level 

(González-Martín, Bloch, Durand-Guerrier, & Maschietto, 2014): 

A core TDS conceptual tool is Brousseau’s notion of the didactic contract, the implicit set of expectations 

that teacher and students have of each other regarding mathematical knowledge and regarding the 

distribution of responsibilities during the teaching and learning processes. … The didactic contract is 

linked to an institution and, in particular at university level, the terms of the didactic contract can be quite 

strong. (pp. 119, 131) 

Although our ultimate goal is to study the cognitive and epistemological dimensions for the concept 

of a curve in space, we first had to analyze the didactical constraints that govern students’ answers.  

Hence, motivated by our students’ work we wanted to trace the impact of the didactic contract on 

students’ exam productions and investigate if students’ understanding could be improved through 

some changes in this contract. 

Methodology and mathematical context 

The participants of our study in 2018 were in total 173 students at a department of mathematics in 

Croatia, while participating in elective course Introduction to differential geometry (students of 

undergraduate program in mathematics and in mathematics education). The course has 2 hours of 

lecture and 2 hours of exercise class per week for 13 weeks. It is naturally divided into two parts, 

with the first part that focuses on the use of differential calculus to study geometrical properties of 

curves in 2D and 3D (curvature and torsion). The second part focuses on the study of surfaces and 

special curves on surfaces. The emphasis of the course is on low dimensions to encourage students 

to use the geometrical register in interpreting and understanding the results. The second author is 

the lecturer, while the first author is one of three teaching assistants for the course. 

In 2018, during the exercise classes, the teaching assistants led the discussion about the exam 

question from the year before. The aim of this discussion was to re-negotiate the didactic contract 

built during previous courses in which teachers assign tasks and students answer in the way they 

were taught. In this case, it means that students apply the lengthy procedure, not the definition of a 

planar curve in space, which is intuitive and, although presented during the course, not exclusively a 

part of differential geometry content. As learning can be accomplished, in many cases, through the 

ruptures of the didactic contract (Brousseau, 1997), the assistants showed both strategies and 

emphasized that the aim of the course is to encourage students to use the geometrical interpretation. 

In other words, it is the conceptual and not the lengthy approach that was expected and aimed for. It 

was important for the students to hear that all correct answers are acknowledged at the exam, not 

just those that follow procedures from the exercise classes, since their comment during the 

discussion on the “non-standard” approach was that “they did not know this was allowed”. In 



 

 

addition, the teaching assistants addressed other students’ difficulties observed by the preliminary 

insight into students’ work in 2017, like false generalizations and analogies from plane to space 

geometry (2D to 3D) in interpretation of equations and non-adequate conversions between implicit 

and parametric viewpoints of a curve.   

The source of data for the in-depth analysis were midterm exam solutions. Questions were 

formulated in the geometric register, where curves are given as intersections of surfaces. The 

properties of the intersection curve can be recognized algebraically (from its equation) or 

geometrically (by some geometrical properties, such as its curvature). In this paper we analyze the 

questions presented in Figure 1.  

 

Figure 1: Exam questions analyzed in the study 

In Question 1, the set of points satisfying both equations, the equation of a hyperboloid of one sheet 

and a special plane, is to be identified either from a system of transformed implicit equations, or 

from its obtained parametrization which enables determining the curvature. Simple calculation in 

the algebraic register gives the system of transformed implicit equations as x = y, z = ±2, therefore 

the intersection set consists of two parallel lines that are given as intersections of two pairs of non-

parallel planes. 

In Question 2, the expected solution is to state that y = x + 1 is an equation of a plane, so the curve 

is planar by definition. For the second part it is expected that the equation of the sphere is 

recognized, and that the curve is a circle since it is the intersection of the sphere and the plane. The 

radius R of the circle may be determined geometrically, so the curvature can be expressed as 1/R. 

The projection onto xz-plane is given by the equation 2 21
2( ) 8,

2
x z   which is the equation of an 

ellipse. Another correct approach is to parametrize the obtained curve, and then to calculate its 

curvature by using the formulas from the lecture. Conclusion that the curve is a circle should follow 

from the fact that the curvature is a non-zero constant, and the projection curve could be recognized 

from the parametrization with y = 0. 

Students’ answers were processed in an iterative way. First, based on our mathematical analysis of 

the question, we formulated codes regarding the register in which the task was solved: algebraic 

(following the algebraic procedure given in the exercise class) or geometric (geometrically 

interpreting equations), as well as the success of the students (if the calculation was completed or 

the conclusion reached). Second, the codes were refined to track students’ different strategies and 

Question 1. Determine the set of points in space given by the equations 2 2 2 4,x y z     

0.x y   Find its parametrization and determine its curvature. Which object does it represent 

geometrically? 

Question 2. The curve c is given by the equations 2 2 2 17
, 1.

2
x y z y x      (a) Explain why c 

is planar. (b) Determine the curvature of c and decide what curve it is. (c) What curve is obtained 

by projecting c onto the xz-plane? 



 

 

unexpected answers pointing to some difficulties. Next, the observed categories and special cases 

were discussed between the authors and an agreement was reached to cluster the codes with low 

frequency pointing to the same type of difficulties. As an example, in Table 1 we present the data 

for Question 2 (a). 

Table 1: Codes and frequencies for Question 2(a) 

Results  

In Question 1, approximately half of the students (51 %) noted correctly that the intersection of a 

doubly-curved surface (an hyperboloid of one sheet) and a plane is a pair of parallel straight lines. 

Most of the students (76 %) who reasoned correctly relied on parametrizing the obtained set as c(t) 

= (t, t, ±2) and calculating its curvature, which turned out to be 0 in all of its points, and some (29 

%) relied on recognizing the lines from the system of transformed equations, whereas 5 % of 

students used both approaches.  

Among students who did not provide a complete solution, approximately half gave no answer at all, 

further 30 % succesfully obtained transformed equations or calculated the curvature, but did not 

interpret the  result geometrically and approximately 20 % misinterpreted the obtained result. Most 

of the errors in the last group occcured when trying to interpret a transformed implicit equation, 

which was seen as the requested intersection curve, and not as a new surface on which the 

intersection curve lies (the intersection set described as a plane, a cone, or a hyperbolic paraboloid); 

many errors also come from the misinterpretation of a transformed implicit equation without z-

coordinate as a curve (a hyperbola instead of a hyperbolic cylinder).  

In Question 2, 46 out of 173 students (27 %) noted that the given equation is an equation of a plane 

and successfully concluded that the curve is planar without further calculation, and a smaller 

number (18 %) of them went still for calculation of the torsion. More students than in 2017 

successfully concluded that a curve is planar by the first approach, but still more than 70 % did not 

use this approach. Among the students that did not provide a solution, 9 % stated that y = x + 1 is an 

equation of a straight line in space, which is a well-evidenced false generalization in transition from 

2D to 3D in linear algebra (Nihoul, 2016). Further students’ false argumentation runs as follows 

“since this is a line, and lines belong to a certain plane, therefore the curve is planar”. Furthermore, 

careless approach to ambient space in which a curve is given seems to generate another case of false 

transition from 2D to 3D, since 38 students chose the formula for curvature that is the formula for 

curves in IR
2
, not in IR

3
.  

Question 2 (a)   

No answer 57 33% 

Recognizing the equation of the plane  46 27% 

Using torsion = 0 

as criterion  

Showing that torsion equals 0 8 5% 

Only stating the criterion 23 13% 

Wrong arguments 

y = x + 1 is a line, and lines lie in planes  15 9% 

x
2
 + y

2 
+ z

2 
=17/2 is a plane  7 4% 

Substituting and stating that the curve is an ellipse in yz-plane  17 10% 



 

 

Among 122 students who tried to parametrize the curve, 80 students (65 %) used the local 

parametrization 2 2( ) ( , 1, 17 / 2 ( 1) )c t t t t t      of the intersection curve, which is not adequate 

to conclude that the (whole) curve is planar, contrary to the linear case, where the standard 

procedure provides a global parametrization. To determine the curvature of the curve, students 

predominantly (70 %) used parametrization for further calculation over geometric approach. Only 

15 (9 %) of them used a geometric approach by stating that the plane intersection of a sphere is a 

circle, with only 4 of them even moving forward to determine geometrically the radius of a circle.      

Discussion  

In general, we may state that students’ difficulties in converting algebraic equations into 

geometrical objects are persisting, even after the first courses in linear algebra and calculus. In the 

case of a planar curve identification, students predominantly focus on the known procedure, 

although it is burdened with calculation, over using the conceptual definition of a planar curve 

which involves recognizing a plane by its implicit equation. We may also say that we observed the 

influence of the didactic contract, as the students tried to ensure that their answers included newly 

learned procedures during the exercise classes. However, students’ difficulties in recognizing a 

plane by its equation can be seen as a particular case of a more general lack of coordination between 

algebraic equations and spatial geometrical objects. When manipulating equations defining a spatial 

curve, students interpret the new implicit equation as that intersection curve, not as a new surface on 

which the curve lies. 

The above general observations point out to several further remarks. The first remark concerns 

evidence on students’ false generalizations and analogies in their passage from 2D to 3D. As 

already stated, this was particularly the case when they identified the equation of a special plane 

with a line, a circular cylinder with a circle, or a hyperbolic cylinder with a hyperbola. Similar 

difficulties are observed in linear algebra, e.g. in the case of a plane in space given by an equation 

ax + by = c (Alves-Dias, 1998; Nihoul, 2016). It is a clear example of the fact that a piece of 

existing knowledge (a single equation represents a curve) may undergo a hasty generalization, and 

therefore standing in the way of full comprehension. It is not irrelevant to notice that the missing 

insight of different ambient (2D and 3D) is also identified in students’ inappropriate use of formulas 

for the curvature of curves. 

Our second remark concerns students’ use of and conversion between the implicit and the 

parametric representation (viewpoints) of curves. Again, students’ difficulties in this process in 

linear algebra are well evidenced (Artigue, 1999; Alves-Dias; 1998; Nihoul, 2016). In our study 

with curved objects, we observed that students did not invoke the need for conversion to a 

parametric representation, nor is the conversion found as flexible as it is assumed, already discussed 

in the case of linear algebra (Artigue, 1999, p. 1384): 

Flexibility seems to be considered as automatically internalized once one has “understood” the notion, 

as if it were a simple question of homework that one can leave to the private work of the student. 

Another remark is related to students’ difficulty coming from the character of non-linear problems. 

Conversion from implicit equations to parametrization and vice-versa, that relies on a procedure of 



 

 

“eliminating a parameter” or “substituting a variable by a parameter” from linear algebra has a local 

character in the non-linear case and cannot produce an instant answer as in the linear case. This 

conversion brings many different transformation approaches, usually non-routine ones (especially 

when trigonometric and hyperbolic functions are involved). For example, in Question 2, a local 

parametrization is not adequate to conclude that the curve is planar. A relevant explanation can be 

provided with the implicit and inverse function theorems, which although do not provide a recipe to 

change representation, should be discussed during the class to emphasize the subtleties in the non-

linear case. Students’ focus on procedures suggests that their knowledge is an “amalgamation of 

practical blocks” (Brandes & Hardy, 2018, p. 506). Moreover, the observed absence of theoretical 

insight in students’ knowledge might be seen as a missing brick in Transition of type 1 (Winsløw, 

Barquero, De Vleeschouwer, & Hardy, 2014). 

Conclusion 

Different representations of curves and surfaces and their flexible conversions are essential for 

various mathematical courses that involve the analysis of functions of several variables. We also 

repeat that our study tries to see some of the students’ bad performances as a result of the impact of 

the didactic contract. However, students’ productions firstly point out to the existence of difficulties 

which were also observed in linear algebra in representations of lines and planes (Artigue, 1999; 

Alves-Dias; Nihoul, 2016). False generalizations from 2D to 3D appear (a line in space is 

represented by a single implicit linear equation, and vice-versa, single implicit linear equation with, 

for instance, no z-coordinate is an equation of a line in space; the same student’s reasoning appears 

for e.g. a circle and a circular cylinder). This observation may also point to the presence of some 

learning obstacles in the sense introduced by Brousseau (1997), which needs to be further explored. 

According to Brousseau, obstacles of various origins can stand in the way of an efficient learning of 

mathematics. Brousseau distinguishes between cognitive (due to the state of mental development), 

didactical (due to a certain way of teaching) and epistemological obstacles (due to the very nature of 

mathematical concepts). Clear distinction among them, due to the complex nature of human’s 

knowledge acquisition, is not always possible. Obstacles become evident in students’ errors which 

are not related to chance but persist, or in difficulties and problems that students encounter that slow 

down the learning process. When this becomes evident, it does not point out to the lack of 

knowledge, but often to the piece of knowledge that was adequate in a previous situation, but now 

leads to incorrect reasoning. Brousseau suggests that to overcome an obstacle, a sufficient flow of 

new situations challenging old knowledge is needed. Whether careful task design with different 

potentials for student learning would be beneficial as well (Gravesen, Grønbæk, & Winsløw, 2017), 

is another question to be explored in the future. 
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