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Abstract

Due to the availability of large-scale skeleton datasets,
3D human action recognition has recently called the atten-
tion of computer vision community. Many works have fo-
cused on encoding skeleton data as skeleton image repre-
sentations based on spatial structure of the skeleton joints,
in which the temporal dynamics of the sequence is encoded
as variations in columns and the spatial structure of each
frame is represented as rows of a matrix. To further im-
prove such representations, we introduce a novel skeleton
image representation to be used as input of Convolutional
Neural Networks (CNNs), named SkeleMotion. The pro-
posed approach encodes the temporal dynamics by explic-
itly computing the magnitude and orientation values of the
skeleton joints. Different temporal scales are employed to
compute motion values to aggregate more temporal dynam-
ics to the representation making it able to capture long-
range joint interactions involved in actions as well as filter-
ing noisy motion values. Experimental results demonstrate
the effectiveness of the proposed representation on 3D ac-
tion recognition outperforming the state-of-the-art on NTU
RGB+D 120 dataset.

1. Introduction
Human action recognition plays an important role in var-

ious applications, for instance surveillance systems can be
used to detect and prevent abnormal or suspicious actions,
health care systems can be used to monitor elderly people
on their daily living activities and robot and human interac-
tions.

Over the last decade, significant progress on the ac-
tion recognition task has been achieved with the design of
discriminative representations employed to the image and

video domains on RGB data or optical flow. Such infor-
mation is based on appearance or motion analysis. Due to
the development of low-cost RGB-D sensors (e.g., Kinect),
it becomes possible to employ depth information as well
as human skeleton joints to perform 3D action recognition.
Compared to RGB and optical flow, skeleton data has the
advantages of being computationally efficient since the data
size is smaller. Moreover, skeleton data are robust to illu-
mination changes, robust to background noise and invariant
to camera views [6].

Many works for 3D action recognition have focused on
designing handcrafted feature descriptors [29, 33, 35, 5, 31,
3] to encode skeleton data while adopting Dynamic Time
Warping (DTW), Fourier Temporal Pyramid (FTP) or Hid-
den Markov Model (HMM) to model temporal dynamics in
the sequences. Nowadays, large efforts have been directed
to the employment of deep neural networks. These architec-
tures learn hierarchical layers of representations to perform
pattern recognition and have demonstrated impressive re-
sults on many pattern recognition tasks (e.g., image classifi-
cation [12] and face recognition [24]). For instance, Recur-
rent Neural Networks (RNNs) with Long-Short Term Mem-
ory (LSTM) have been employed to model skeleton data for
3D action recognition [28, 25, 27, 36]. Although RNN ap-
proaches present excellent results in 3D action recognition
task due to their power of modeling temporal sequences,
such structures lack the ability to efficiently learn the spa-
tial relations between the skeleton joints [34].

To take advantage of the spatial relations, a hierarchical
structure was proposed by Du et al. [4]. The authors rep-
resent each skeleton sequence as 2D arrays, in which the
temporal dynamics of the sequence is encoded as variations
in columns and the spatial structure of each frame is repre-
sented as rows. Then, the representation is fed to a Convo-
lutional Neural Network (CNN) which has the natural abil-
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ity of learning structural information from 2D arrays. Such
type of representations are very compact encoding the entire
video sequence in one single image.

To further improve the representation of skeleton joints
for 3D action recognition, in this paper we introduce a
novel skeleton image representation to be used as input of
CNNs named SkeleMotion. The proposed approach en-
codes temporal dynamics by explicitly using motion infor-
mation computing the magnitude and orientation values of
the skeleton joints. To that end, different temporal scales
are used to filter noisy motion values as well as aggregating
more temporal dynamics to the representation making it be-
ing able to capture long-range joint interactions involved in
actions. Moreover, the method takes advantage of a struc-
tural organization of joints that preserves spatial relations of
more relevant joint pairs. To perform action classification,
we train a tiny CNN architecture with only three convolu-
tional layers and two fully-connected layers. Since the net-
work is shallow and takes as input a compact representation
for each video, it is extremely fast to train.

In the literature, many works employed or improved
the skeleton image representation for 3D action recogni-
tion [32, 21, 10, 13, 30, 34, 14, 2]. However, none of the
methods model explicit motion information (i.e., magnitude
and orientation) in multiple temporal scales, as the pro-
posed approach does. Similar to our approach, the works
of [13, 14] were the only ones that tried to encode mo-
tion on skeleton images, however they employed a naive
approach by computing difference of motion joints on con-
secutive frames.

According to the experimental results, our proposed
skeleton image representation can handle skeleton based 3D
action recognition very well. Moreover, SkeleMotion rep-
resentation achieves the state-of-the-art performance on the
large scale NTU RGB+D 120 [15] dataset when combined
with a spatial structural joint representation.

The code of our SkeleMotion representation is publicly
available to facilitate future research 1.

2. Related Work
In this section, we present a literature review of works

that are close to the idea proposed in our approach by em-
ploying different representations based on skeleton images.

As the forerunner of skeleton image representations, Du
et al. [4] represent the skeleton sequences as a matrix. Each
row of such matrix corresponds to a chain of concatenated
skeleton joint coordinates from the frame t. Hence, each
column of the matrix corresponds to the temporal evolution
of the joint j. At this point, the matrix size is J × T × 3,
where J is the number of joints for each skeleton, T is the
total frame number of the video sequence and 3 is the num-

1https://github.com/carloscaetano/skeleton-images

ber coordinate axes (x, y, z). The values of this matrix are
quantified into an image (i.e., linearly rescaled to a [0, 255])
and normalized to handle the variable-length problem. In
this way, the temporal dynamics of the skeleton sequence
is encoded as variations in rows and the spatial structure of
each frame is represented as columns. Finally, the authors
use their representation as input to a CNN model composed
by four convolutional layers and three max-pooling layers.
After the feature extraction, a feed-forward neural network
with two fully-connected layers is employed for classifica-
tion.

Wang et al. [32, 30] present a skeleton representation to
represent both spatial configuration and dynamics of joint
trajectories into three texture images through color encod-
ing, named Joint Trajectory Maps (JTMs). The authors ap-
ply rotations to the skeleton data to mimicking multi-views
and also for data enlargement to overcome the drawback of
CNNs usually being not view invariant. JTMs are gener-
ated by projecting the trajectories onto the three orthogo-
nal planes. To encode motion direction in the JTM, they
use a hue colormap function to “color” the joint trajectories
over the action period. They also encode the motion mag-
nitude of joints into saturation and brightness claiming that
changes in motion results in texture in the JMTs. Finally,
the authors individually fine-tune three AlexNet [12] CNNs
(one for each JTM) to perform classification.

To overcome the problem of the sparse data generated by
skeleton sequence video, Ke et al. [10] represent the tempo-
ral dynamics of the skeleton sequence by generating four
skeleton representation images. Their approach is closer
to Du et al. [4] method, however they compute the relative
positions of the joints to four reference joints by arrang-
ing them as a chain and concatenating the joints of each
body part to the reference joints resulting onto four differ-
ent skeleton representations. According to the authors, such
structure incorporate different spatial relationships between
the joints. Finally, the skeleton images are resized and each
channel of the four representations is used as input to a
VGG19 [26] pre-trained architecture for feature extraction.

To encode motion information on skeleton image repre-
sentation, Li et al. [13] proposed the skeleton motion im-
age. Their approach is created similar to Du et al. [4] skele-
ton image representation, however each matrix cell is com-
posed by joint difference computation between two consec-
utive frames. To perform classification, the authors used Du
et al. [4] approach and their proposed representation inde-
pendently as input of a neural network with a two-stream
paradigm. The CNN used was a small seven-layer net-
work consisting of three convolution layers and four fully-
connected layers.

Yang et al. [34] claim that the concatenation process of
chaining all joints with a fixed order turn into lack of seman-
tic meaning and leads to loss in skeleton structural informa-



tion. To that end, Yang et al. [34] proposed a representa-
tion named Tree Structure Skeleton Image (TSSI) to pre-
serve spatial relations. Their method is created by travers-
ing a skeleton tree with a depth-first order algorithm with
the premise that the fewer edges there are, the more rele-
vant the joint pair is. The generated representation are then
quantified into an image and resized before being sent to a
ResNet-50 [7] CNN architecture.

As it can be inferred from the reviewed methods, most of
them are improved versions of Du et al. [4] skeleton image
focusing on spatial structural of joint axes while the tem-
poral dynamics of the sequence is encoded as variations in
columns, or encode motion information in a naive manner
(difference of motion joints on consecutive frames). De-
spite the aforementioned methods produce promising re-
sults, they do not explicit encode rich motion information.
In view of that, to capture more motion information, our
approach directly encodes it by using orientation and mag-
nitude to provide information regarding the velocity of the
movement in different temporal scales In view of that, our
SkeleMotion approach differs from the literature methods
by capturing the temporal dynamics explicitly provided by
magnitude and orientation motion information.

3. Proposed Approach

In this section, we introduce our proposed skeleton im-
age representation based on magnitude and orientation mo-
tion information, named SkeleMotion.

3.1. SkeleMotion

As reviewed in Section 2, the majority of works that en-
code skeleton data as image representations are based on
spatial structure encoding of the skeleton joints. Accord-
ing to Li et al. [14], temporal movements of joints can also
be used as crucial cues for action recognition and although
the temporal dynamics of the sequence can be implicitly
learned by using a CNN, an explicit modeling can produce
better recognition accuracies.

Recently, a new temporal stream for the two-stream net-
works called Magnitude-Orientation Stream (MOS) [1] was
developed. The method is based on non-linear transforma-
tions and claim that motion information on a video sequence
can be described by the spatial relationship contained on the
local neighborhood of magnitude and orientation extracted
from the optical flow and has shown excellent results on the
2D action recognition problem. Motivated by such results,
in this paper we propose a novel skeleton image representa-
tion (named SkeleMotion), based on magnitude and orien-
tation of the joints to explore the temporal dynamics. Our
approach expresses the displacement information by using
orientation encoding (direction of joints) and magnitude to
provide information regarding the velocity of the move-

ment. Furthermore, due to the successful results achieved
by the skeleton image representations, our approach fol-
lows the same fundamentals by representing the skeleton
sequences as a matrix. First, we apply the depth-first tree
traversal order [34] to the skeleton joints to generate a pre-
defined chain order C that best preserves the spatial rela-
tions between joints in original skeleton structures2. After-
wards, we compute matrix S that corresponds to a chain of
concatenated skeleton joint coordinates from the frame t.
In view of that, each column of the matrix corresponds to
the temporal evolution of the arranged chain joint c. At this
point, the size of matrix S is C × T × 3, where C is the
number of joints of the chain, T is the total frame number
of the video sequence and 3 is the number joint coordinate
axes (x, y, z). Then, we create the motion structure D as

Dc,t = Sc,t+d − Sc, (1)

where each matrix cell is composed by the temporal dif-
ference computation of each joint between two frames of d
distance, resulting in a C × T − d× 3 matrix.

By using the proposed motion structure D, we build two
different representations: one based on the magnitudes of
joint motions and another one based the orientations of the
joint motion. We compute both representations using

Mc,t =
√
(Dx

c,t)
2 + (Dy

c,t)
2 + (Dz

c,t)
2 (2)

and
θc,t = stack(θxyc,t, θ

yz
c,t, θ

zx
c,t)

θxyc,t = tan−1
(
Dy

c,t

Dx
c,t

)
,

θyzc,t = tan−1
(
Dz

c,t

Dy
c,t

)
,

θzxc,t = tan−1
(
Dx

c,t

Dz
c,t

)
,

(3)

where M is the magnitude skeleton representation of size
J×T−d×1 and θ is the orientation skeleton representation
of size J × T − d× 3 (composed by 3 stacked channels).

Since the orientation values are estimated for every joint,
it might generate noisy values for joints without any move-
ment. Therefore, we perform a filtering on θ based on the
values of M as

θ
′

c,t =

{
0, if Mc,t < m

θc,t, otherwise , (4)

where m is a magnitude threshold value.
Finally, the generated matrices are normalized into [0, 1]

and empirically resized into a fixed size of C × 100, since
2Chain C considering 25 Kinect joints: [2, 21, 3, 4, 3, 21, 5, 6, 7, 8, 22, 23,
22, 8, 7, 6, 5, 21, 9, 10, 11, 12, 24, 25, 24, 12, 11, 10, 9, 21, 2, 1, 13, 14,
15, 16, 15, 14, 13, 1, 17, 18, 19, 20, 19, 18, 17, 1, 2], as defined in [34].
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Figure 1. SkeleMotion representation. (a) Skeleton data sequence of T frames. (b) Computation of the magnitude and orientation from the
joint movement. (c) θ

′
and M arrays: each row encodes the spatial information (relation between joint movements) while each column

describes the temporal information for each joint movement. (d) Skeleton image after resizing and stacking of each axes.

number of frames may vary depending on the skeleton se-
quence of each video. Figure 1 gives an overview of our
method for building the SkeleMotion representation.

3.1.1 Temporal Scale Aggregation (TSA)

Skeleton image representations in the literature basically
encodes joint coordinates as channels. In view of that, it
may cause a problem that the co-occurrence features are ag-
gregated locally, being not able to capture long-range joint
interactions involved in actions [14]. Moreover, one draw-
back of encoding motion values of joints is the noisy values
that can be introduced to the representation due to small
distance d between two frames. For instance, if the compu-
tation is performed considering two consecutive frames, it
could add to the representation unnecessary motion of joints
that are irrelevant to predict a specific action (e.g., motion
of the head joint on a handshake action).

To overcome the aforementioned problems, we also pro-
pose a variation of our SkeleMotion representation by pre-
computing the motion structure D considering different d
distances. For each of the motion structures D, we com-
pute its respective magnitude skeleton representation M
and then stack them all into one single representation. The
same is applied to compute the orientation skeleton repre-
sentation θ, however a weighting scheme is applied during
the filtering process explained before, as

θ
′

c,t =

{
0, if Mc,t < m× d

θc,t, otherwise . (5)

Such technique adds more temporal dynamics to the repre-
sentation by explicitly showing temporal scales to the net-
work. In this way, the network can learn which movements
are really important for the action learning and also being
able to capture long-range joint interactions.

4. Experimental Results
In this section we present the experimental results ob-

tained with the proposed skeleton image representation for
the 3D action recognition problem. We compare it to
other skeleton representations in the literature. Besides the
classical skeleton image representation of Du et al. [4],
we compare with other representations used by state-of-
the-art approaches [32, 10, 13, 14, 34] as baselines on
NTU RGB+D 60 [25]. We also compare our approach to
sate-of-the-art methods on the NTU RGB+D 120 [15]. To
isolate only the contribution brought by SkeleMotion to the
action recognition problem, all other representations were
tested on the same datasets with the same split of training
and testing data and using the same CNN.

4.1. Datasets

The NTU RGB+D 60 [25] is publicly available 3D ac-
tion recognition dataset. It consists of 56,880 videos from
60 action categories which are performed by 40 distinct sub-
jects. The videos were collected by three Microsoft Kinect
sensors. The dataset provides four different data informa-
tion: (i) RGB frames; (ii) depth maps; (iii) 395 infrared
sequences; and (iv) skeleton joints. There are two different
evaluation protocols: cross-subject, which split the 40 sub-
jects into training and testing; and cross-view, which uses
samples from one camera for testing and the other two for
training. The performance is evaluated by computing the
average recognition across all classes.

The NTU RGB+D 120 [15] is a large-scale 3D action
recognition dataset captured under various environmental
conditions. It consists of 114,480 RGB+D video samples
captured using the Microsoft Kinect sensor. As in NTU
RGB+D 60 [25], the dataset provides RGB frames, depth
maps, infrared sequences and skeleton joints. It is com-
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Figure 2. Network architecture employed for 3D action recognition.

posed by 120 action categories performed by 106 distinct
subjects in a wide range of age distribution. There are two
different evaluation protocols: cross-subject, which split
the 106 subjects into training and testing; and cross-setup,
which divides samples with even setup IDs for training (16
setups) and odd setup IDs for testing (16 setups). The per-
formance is evaluated by computing the average recognition
across all classes.

4.2. Implementation Details

To isolate only the contribution brought by the proposed
representation to the action recognition problem, all com-
pared skeleton image representations were implemented
and tested on the same datasets and using the same network
architecture. In view of that, we applied the same split of
training and testing data, and employ the evaluation proto-
cols and metrics proposed by the creators of the datasets.

The network architecture employed is a modified ver-
sion of the CNN proposed by Li et al. [13]. They de-
signed a small convolutional neural network which consists
of three convolution layers and four fully-connected (FC)
layers. However, here we modified it to a tiny version, em-
ploying the convolutional layers and only two FC layers.
All convolutions have a kernel size of 3 × 3, the first and
second convolutional layers with a stride of 1 and the third
one with a stride of 2. Max pooling and ReLU neuron are
adopted and the dropout regularization ratio is set to 0.5.
The learning rate is set to 0.001 and batch size is set to 1000.
The training is stopped after 200 epochs. The loss function
employed was the categorical cross-entropy. We opted for
using such architecture since it demonstrated good perfor-
mance and, according to the authors, it can be easily trained
from scratch without any pre-training and is superior on its
compact model size and fast inference speed as well. Fig-
ure 2 presents an overview of the employed architecture.

To cope with actions involving multi-person interaction
(e.g., shaking hands), we apply a common choice in the lit-
erature which is to stack skeleton image representations of

different people as the network input.
To obtain the orientation skeleton image representation

θ
′

we empirically set the parameter m = 0.004, as de-
scribed in Section 3.

4.3. Evaluation

In this section, we present experiments for parame-
ters optimization and report a comparison of our pro-
posed skeleton representation. We used a subset of NTU
RGB+D 60 [25] training set (considering cross-view pro-
tocol) to perform parameter setting and then used such pa-
rameter on the remaining experiments. We focused on the
optimization of the number of temporal scales used on tem-
poral scale aggregation (TSA).

Table 1. Action recognition accuracy (%) results on a subset of
NTU RGB+D 60 [25] dataset by applying temporal scale aggre-
gation (TSA) on our SkeleMotion representation.

Temporal Magnitude Orientation
distances Acc. (%) Acc. (%)
1, 5 64.9 62.4

Two Temporal 1, 10 67.4 62.9
Scales 1, 15 66.0 64.1

1, 20 66.1 63.5

Three Temporal 1, 5, 10 68.6 64.6

Scales 1, 10, 20 69.0 65.4
5, 10, 15 70.1 65.1

Four Temporal 1, 5, 10, 15 69.6 65.2
Scales 5, 10, 15, 20 67.9 64.4

To set the number of temporal scales of our SkeleMo-
tion approach, we empirically varied it from two to four
temporal scales considering 20 frames in total. Table 1
shows the results obtained by such variation. We can see
that the best result is obtained by using three temporal scales
for both magnitude (5, 10, 15) and orientation (1, 10, 20).
Moreover, we noticed that the performance tends to saturate
or drop when considering four temporal scales.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

SkeleMotion

Yang et al. [34]

SkeleMotion + Yang et al. [34]

Action Number

Figure 3. The complementary between SkeleMotion (Magnitude-Orientation TSA) and Yang et al. [34] TSSI representation on NTU
RGB+D 60 [25] dataset for cross-view protocol. Best viewed in color.

Table 2 presents a comparison of our approach with
skeleton image representations of the literature. For the
methods that have more than one “image” per represen-
tation ([32] and [10]), we stacked them to be used as in-
put to the network. The same was performed for our
SkeleMotion approach considering magnitude and orien-
tation. Regarding the cross-subject protocol, the best re-
sult was obtained by Reference Joints representation from
Ke et al., [10] achieving 70.8% of accuracy while our best
result (SkeleMotion Magnitude (TSA)) achieves a compet-
itive accuracy of 69.6%. It is worth noting that there is a
considerable improvement of 12.8 (p.p.) obtained by Skele-
Motion Magnitude (TSA) when compared to Li et al., [13]
baseline, which also explicitly encode motion information.
On the other side, the best result on cross-view protocol was
obtained by our SkeleMotion Magnitude (TSA) approach
achieving 80.1% of accuracy. There is an improvement of
4.5 percentage points (p.p.) when compared to the Tree
Structure Skeleton Image (TSSI) from Yang et al., [34],
which was the best baseline result. Again, there is a con-
siderable improvement of 18.8 (p.p.) when compared to
Li et al., [13] baseline.

Table 2. Action recognition accuracy (%) results on NTU
RGB+D 60 [25] dataset. Results for the baselines were obtained
running each method implementation.

Cross- Cross-
subject view

Approach Acc. (%) Acc. (%)
Du et al. [4] 68.7 73.0
Wang et al. [32] 39.1 35.9

Baselines Ke et al. [10] 70.8 75.5
Li et al. [14] 56.8 61.3
Yang et al. [34] 69.5 75.6

Orientation 60.6 65.6
SkeleMotion Magnitude 58.4 64.2

results Orientation (TSA) 65.3 73.2
Magnitude (TSA) 69.6 80.1

To exploit a possible complementarity of the tempo-

ral (our SkeleMotion) and spatial (Yang et al. [34]) skele-
ton image representations, we combined the different ap-
proaches by employing early and late fusion techniques.
For the early fusion, we simply stacked the representations
to be used as input to the network. On the other hand,
the late fusion technique applied was a non-weighted lin-
ear combination of the prediction scores of each method.
According to the results showed in Table 3, any type of
combination performed with our SkeleMotion provides bet-
ter results than their solo versions. Regarding cross-subject
protocol, our best results achieves 73.5% of accuracy with
early fusion technique against 76.5% of the late fusion ap-
proach. Furthermore, on cross-view protocol, our best re-
sults achieves 82.4% of accuracy with early fusion tech-
nique against 84.7% of the late fusion approach. Detailed
improvements are shown in Figure 3.

Finally, Table 4 presents the experiments of our proposed
skeleton image representation on the recent available NTU
RGB+D 120 [15] dataset. Due to the results obtained on Ta-
ble 3, here we employed the late fusion scheme for methods
combination.

We obtained good results with our SkeleMotion repre-
sentation outperforming many skeleton based methods [25,
9, 8, 18, 17, 20, 10, 16, 22, 19, 11, 23]. When combining our
representation with Yang et al. [34] we achieve state-of-the-
art results, outperforming the best reported method (Body
Pose Evolution Map [23]) by up to 3.1 p.p. on cross-subject
protocol and achieve competitive results on cross-setup pro-
tocol.

In comparison with LSTM approaches, we outperform
the best reported method (Two-Stream Attention LSTM) by
1.7 p.p. using our skeleton image representation and 6.5 p.p.
when combining it with Yang et al. [34] method on cross-
subject protocol. Regarding the cross-setup protocol, we
outperform them by 3.6 p.p. using our skeleton image rep-
resentation fused with Yang et al. [34]. This indicates that
our skeleton image representation approach used as input
for CNNs leads to a better learning of temporal dynamics
than the approaches that employs LSTM.



Table 3. Comparison between late and early fusion techniques on NTU RGB+D 60 [25] dataset.

Cross-subject Cross-view
Approach Acc. (%) Acc. (%)
Magnitude-Orientation 65.6 71.1
Magnitude-Orientation + Yang et al.[34] 70.1 78.8

Early Magnitude-Orientation (TSA) 70.5 78.7
Fusion Magnitude (TSA) + Yang et al.[34] 71.7 82.4

Orientation (TSA) + Yang et al.[34] 69.6 78.9
Magnitude-Orientation (TSA) + Yang et al.[34] 73.5 82.1

Magnitude-Orientation 65.6 71.1
Magnitude-Orientation + Yang et al.[34] 73.2 79.5

Late Magnitude-Orientation (TSA) 72.2 81.7
Fusion Magnitude (TSA) + Yang et al.[34] 75.4 83.2

Orientation (TSA) + Yang et al.[34] 73.6 80.6
Magnitude-Orientation (TSA) + Yang et al.[34] 76.5 84.7

Table 4. Action recognition accuracy (%) results on NTU RGB+D 120 [15] dataset. Results for literature methods were obtained from [15].

Cross-subject Cross-setup
Approach Acc. (%) Acc. (%)
Part-Aware LSTM [25] 25.5 26.3
Soft RNN [9] 36.3 44.9
Dynamic Skeleton [8] 50.8 54.7
Spatio-Temporal LSTM [18] 55.7 57.9
Internal Feature Fusion [17] 58.2 60.9

Literature GCA-LSTM [20] 58.3 59.2
results Multi-Task Learning Network [10] 58.4 57.9

FSNet [16] 59.9 62.4
Skeleton Visualization (Single Stream) [22] 60.3 63.2
Two-Stream Attention LSTM [19] 61.2 63.3
Multi-Task CNN with RotClips [11] 62.2 61.8
Body Pose Evolution Map [23] 64.6 66.9

Orientation (TSA) 52.2 54.1
SkeleMotion Magnitude (TSA) 57.6 60.4

results Magnitude-Orientation (TSA) 62.9 63.0
Magnitude-Orientation (TSA) + Yang et al.[34] 67.7 66.9

5. Conclusions and Future Works
In this work, we proposed a novel skeleton image rep-

resentation to be used as input of CNNs, named SkeleMo-
tion. The method is based on temporal dynamics encoding
by explicitly using motion information (magnitude and ori-
entation) of the skeleton joints. We further propose a vari-
ation of the magnitude skeleton representation considering
different temporal scales in order to filter noisy motion val-
ues as well as aggregating more temporal dynamics to the
representation. Experimental results on two publicly avail-
able datasets demonstrated the excellent performance of the
proposed approach. Another interesting finding is that the
combination of our representation with methods of the liter-
ature improves the 3D action recognition outperforming the
state-of-the-art on NTU RGB+D 120 dataset.

Directions to future works include the evaluation of
SkeleMotion with other distinct architectures. Moreover,

we intend to evaluate its behavior on 2D action datasets with
skeletons estimated by methods of the literature.
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