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Abstract: Automatic detection and analysis of human activities captured by various sensors (e.g.1

sequence of images captured by RGB camera) play an essential role in various research fields in order2

to understand the semantic content of a captured scene. The main focus of the earlier studies has3

been widely on supervised classification problem, where a label is assigned for a given short clip.4

Nevertheless, in real-world scenarios, such as in Activities of Daily Living (ADL), the challenge is5

to automatically browse long-term (days and weeks) stream of videos to identify segments with6

semantics corresponding to the model activities and their temporal boundaries. This paper proposes7

an unsupervised solution to address this problem by generating hierarchical models that combine8

global trajectory information with local dynamics of the human body. Global information helps in9

modeling the spatiotemporal evolution of long-term activities and hence, their spatial and temporal10

localization. Moreover, the local dynamic information incorporates complex local motion patterns of11

daily activities into the models. Our proposed method is evaluated using realistic datasets captured12

from observation rooms in hospitals and nursing homes. The experimental data on a variety of13

monitoring scenarios in hospital settings reveals how this framework can be exploited to provide14

timely diagnose and medical interventions for cognitive disorders such as Alzheimer’s disease. The15

obtained results show that our framework is a promising attempt capable of generating activity16

models without any supervision.17

Keywords: Activity recognition; Activity of Daily Living; Assisted living; Hierarchical activity18

models; Unsupervised modeling19

1. Introduction20

Activity detection has been considered as one of the major challenges in computer vision due to21

its utter importance for several applications including video perception, healthcare, surveillance, etc.22

For example, if a system could monitor human activities, it could prevent the elderly from missing23

their medication doses by learning their habitual patterns and daily routines. Unlike regular activities24

that usually occur in a closely controlled background (e.g. playing soccer), Activities of Daily Living25

(ADL) usually happen in uncontrolled and disarranged household or office environments, where the26

background is not a strong cue for recognition. In addition, ADLs are more challenging to detect and27

recognize because of their unstructured and complex nature that create visually perplexing dynamics.28

Moreover, each person has his/her own ways to perform various daily tasks resulting in infinite29

variations of speed and style of performance which accordingly add extra complexity to detection and30

recognition tasks.31
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From the temporal aspect, detecting ADLs in untrimmed videos is a difficult task since they are32

temporally unconstrained and can occur at any time and in an arbitrarily long video (e.g. recordings33

of patients in a nursing home for days and weeks). Therefore, in activity detection, we are not only34

interested in knowing the type of the activities happening, but also we want to precisely know the35

temporal delineation of the activities in a given video (temporal activity localization).36

Most of the available state-of-the-art approaches deal with this problem through detection by37

classification task [1–3]. These methods classify the generated temporal segments either in the form38

of sliding windows in multiple scales [4–6] or another external proposal mechanism [7,8]. These39

methods infer the occurring activity by exhaustively applying trained activity classifiers at each time40

segment. Although they achieved encouraging performances in short actions and small-scale datasets,41

these computationally expensive methods can not be conveniently applied to large-scale datasets and42

complex activities such as ADLs. These methods are not capable of precisely predicting flexible activity43

boundaries. Temporal scale variability of the activities can be dealt with by using multiple-scale sliding44

window approaches, however, such methods are computationally expensive. To compensate the high45

computational cost of these methods, a class of methods [4,8,9] influenced by advancements in the field46

of object detection [10–12] have been developed in which instead of exhaustive scanning, perform a47

quick scan to single out candidate activity segments. The sought after activities are more likely to occur48

in these segments. In the second step, the activity classifiers are only applied to the candidate segments,49

therefore, remarkably reduce the operational cost. Although these methods have shown good results50

on activity recognition tasks [13–15], they rarely use context priors in their models. Another drawback51

is that instead of learning an end-to-end deep representation, they use off-the-shelf hand-crafted [16]52

or deep [17,18] representations independently learned from images. This will result in a poor detection53

performance as these representations are not intended and not optimal for localization.54

Most of the above-mentioned methods are single-layered supervised approaches. In the training55

phase of the activities, the labels are fully (supervised) [16,19,20] or partially (weakly supervised)56

[21,22] given. In other studies [23,24], the location of the person or the interacted object is known.57

Usually the discovery of temporal structure of activities is done by a linear dynamic system [25], a58

Hidden Markov Model [26], hierarchical grammars [27–29] or by spatiotemporal representation [30,31].59

These methods have shown satisfying performance on well-clipped videos, however, ADLs consist of60

many simple actions forming a complex activity. Therefore, representation in supervised approaches61

is insufficient to model these activities and a training set of clipped videos for ADL cannot cover all62

the variations. In addition, since these methods require manually clipped videos, they can mostly63

follow an offline recognition scheme. There also exist unsupervised approaches [32,33] which are64

strong in finding meaningful spatiotemporal patterns of motion. However, global motion patterns65

are not enough to obtain a precise classification of ADL. For long-term activities, many unsupervised66

approaches model global motion patterns and detect abnormal events by finding the trajectories67

that do not fit in the pattern [34,35]. Other methods have been applied to traffic surveillance videos68

to learn the regular traffic dynamics (e.g. cars passing a crossroad) and detect abnormal patterns69

(e.g. a pedestrian crossing the road) [36]. However, modeling only the global motion pattern in70

a single-layered architecture cannot capture the complex structure of long-term human activities.71

Moreover, a flat architecture focuses on one activity at a time and intrinsically ignores modeling72

of sub-activities. Hierarchical modeling, therefore, enables us to model activities considering their73

constituents in different resolutions and allows us to combine both global and local information to74

achieve a rich representation of activities.75

In this work, we propose an unsupervised activity detection and recognition framework to model76

as well as evaluate daily living activities. Our method provides a comprehensive representation of77

activities by modeling both global and body motion of people. It utilizes a trajectory-based method78

to detect important regions in the environment by assigning higher priors to the regions with dense79

trajectory points. Using the determined scene regions, it creates a sequence of primitive events in order80

to localize activities in time and learn the global motion pattern of people. To describe an activity81
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semantically, we can adapt a notion of resolution by dividing an activity into different granularity82

levels. This way, the generated models describe multi-resolution layers of activities by capturing their83

hierarchical structure and their sub-activities. Hereupon, the system can move among different layers84

in the model to retrieve relevant information about the activities. We create the models to uniquely85

characterize the activities by deriving relative information and constructing a hierarchical structure.86

Additionally, a large variety of hand-crafted and deep features are employed as an implicit hint to87

enrich the representation of the activity models and finally perform accurate activity detection. To88

summarize, the core contributions of this paper set forth below:89

• an unsupervised framework for scene modeling and activity discovery90

• dynamic length unsupervised temporal segmentation of videos91

• generating Hierarchical Activity Models using multiple spatial layers of abstraction92

• online detection of activities, as the videos are automatically clipped.93

• finally, evaluating daily living activities, particularly in health care and early diagnosis of94

cognitive impairments.95

following these objectives, we conducted extensive experiments on both public and private datasets96

and achieved promising results. The rest of the paper is organized as follows: Section 2 presents the97

related studies from the literature. Section 3 explains our suggested approach followed by describing98

the conducted experiments in section 4. Lastly, Section 5 concludes the paper.99

2. Related Work100

Activity recognition: For the past few decades, activity recognition has been extensively studied in101

which most of the proposed methods are supervised approaches based on the hand-crafted perceptive102

features [16,17,20–23,37,38]. The linear models [25,26,39,40] gained the most popularity through103

modeling action transitions. Later on, more complicated methods modeling activity’s hierarchical and104

graphical relations were introduced [28,29,41].105

Recent re-emergence of deep learning methods has been led to remarkable performances106

in various tasks. That success followed by adapting convolutional networks (CNNs) to activity107

recognition problem for the first time in [42]. The inclination toward using CNNs in the field, reinforced108

by the introduction of two-stream [43] and 3D-CNN [17] architectures to utilize both motion and109

appearance features. Most of these methods are segment-based and usually use a simple method110

for aggregating the votes of each segment (frame or snippet). There are also other approaches that111

investigate long-range temporal relations of activities through temporal pooling [37,44,45]. However,112

the main assumptions in these methods are that the given videos are manually clipped and the113

activities take place in the entire duration of the videos. Therefore, the temporal localization of those114

activities is not taken into account.115

Temporal and Spatiotemporal Activity detection: The goal in activity detection is to find both the116

beginning and end of the activities in long-term untrimmed videos. The previous studies in activity117

detection were mostly dominated by sliding window approaches where the videos are segmented118

by sliding a detection window followed by training classifiers on various feature types [4,6,46–48].119

These methods are computationally expensive and produce noisy detection performances especially in120

activity boundaries.121

Recently, several studies [4,9,49,50] incorporated deep networks and tried to avoid the sliding122

window approach and searched for activities with dynamic lengths. This is usually achieved by123

temporal modeling of activities using Recurrent neural network (RNN) or Long short-term memory124

(LSTM) networks [51,52]. For example, [9] uses an LSTM to encode Convolution3D (C3D) [17] features125

of each segment and classify it without requiring an extra step for producing proposals. Though126

their model is still dependant on hand-crafted features. In order to resolve the problem of short127

dependencies in RNN based methods, time-series models such as Temporal Convolutional Networks128

(TCN) [53,54] employs a combination of temporal convolutional filters and upsampling operations129

for acquiring long-range activity relations. However, applying convolutional operations on the130
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local neighborhood for detecting long-range dependencies is not efficient in terms of computational131

time. Moreover, many methods use the concept of Actioness [55] to produce initial temporal activity132

proposals. Actioness indicates the likelihood of a generic activity localized in the temporal domain.133

Reliability of the Actioness hinges upon the correctness of distinguishing the background. Unlike134

conventional activity datasets which contain many background segments, long activities in ADL135

datasets are usually linked through short background intervals. Accordingly, methods [2,56] relying136

on Actioness cannot effectively determine the temporal boundary of ADLs in such datasets.137

The methods used in [57–61] explore the videos to detect activities in spatial and temporal domains138

simultaneously. Some methods [61,62] employ a supervoxel approach to perform spatiotemporal139

detection, while others use human detectors [60,63] and treat the detection problem as a tracking140

problem [57,59]. Most of these approaches require object detection for a more accurate detection141

and therefore, demand exhaustive annotation of objects in long videos which is a tedious and142

time-consuming process. Note that the activity detection problem is closely related to object detection143

problem from images. A major part of the studies in the literature is inspired by object detection but,144

as it is not the focus of this study, we do not review object detection based methods here. However, it145

is worth mentioning that although the models currently do not utilize object detection features, yet,146

the models have a flexible design which depends on the availability of features, any number and types147

of features can be included or excluded from the models.148

Apart from the supervised methods mentioned above, recently there has been an increasing149

attention towards methods with unsupervised learning of activities. A pioneer study conducted150

by Guerra-Filho and Aloimonos [64] to overcome the problem of temporal segmentation of human151

motion which does not require training data. They suggested a basic segmentation method followed152

by clustering step relied on motion data. Based upon these motion descriptors, they made use153

of a parallel synchronous grammar system to learn sub-activities of a long activity analogous to154

identify words in a complete sentence. Another study performed by Fox et al. [65] made use of155

the non-parametric Bayesian approach to model pattern of several related atomic elements of an156

activity identical to elements of a time series without any supervision. Similarly, Emonet et al. [66]157

proposed an unsupervised Non-parametric Bayesian methods based on Hierarchical Dirichlet Process158

(HDP) to discover recurrent temporal patterns of words (Motifs). The method automatically finds159

the number of topics, number of time they occur and the time of their occurrence. Furthermore,160

several methods took advantage of temporal structure of video data for adjusting parameters of deep161

networks without using any labeled data for training [67,68]. Some others [69–72] utilized temporal162

pattern of activities in an unsupervised way for representation and hence, for detection of activities.163

Lee et al. [71] formulated representation learning as a sequence sorting problem by exploiting the164

temporal coherence as a supervisory hint. Temporally shuffled sequence of frames were taken as165

input for training a convolutional neural network to determine the correct order of the shuffled166

sequences. In another study conducted by Ramanathan et al.[72], a ranking loss based approach was167

presented for incorporating temporal context embedding based on past and subsequent frames. A168

data augmentation technique was also developed to emphasize the effect of visual diversity of context169

embedding. Fernando et al. [70] leveraged the parameters of a frame ranking function as a new video170

representation method to encode temporal evolution of activities in the videos. The new representation171

provide a latent space for each video where they use a principled learning technique to model activities172

without requiring annotation of atomic activity units. Similarly, [73] encoded structured representation173

of postures and their temporal evolution as motion descriptors for activities. A combinatorial sequence174

matching method is proposed to realize the relationship between frames and a CNN is utilized to175

detect the conflict of transitions.176

So far, state-of-the-art methods are constrained by full supervision and require costly frame level177

annotation or at least ordered list of activities in untrimmed videos. By growing the size of video178

datasets, it is very important to discover activities in long untrimmed videos. Therefore, recent works179

propose unsupervised approaches to tackle the problem of activity detection in untrimmed videos.180
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Figure 1. The flow diagram of the unsupervised framework: Training and Testing phases. The red
dashed box shows the training of the visual codebooks of the descriptors. The green box in the testing
phase shows the descriptor matching procedure.

In this work, we use training videos to specify temporal clusters of segments that contain similar181

semantics throughout all training instances.182

3. Unsupervised Activity Detection Framework183

The proposed framework provides a complete representation of human activities by incorporating184

(global and local) motion and appearance information. It automatically finds important regions in the185

scene and creates a sequence of primitive events in order to localize activities in time and learn the186

global motion pattern of people. To perform accurate activity recognition, it uses a large variety of187

features such as Histogram of oriented Gradients (HOG), Histogram of optical flow (HOF) or deep188

features as an implicit hint.189

As figure 1 shows, first, long-term videos are processed to obtain trajectory information of the190

people’s movement (input). This information is used to learn scene regions by finding the parts of191

the scene with a higher prior for activities to occur, i.e. dense regions in terms of trajectory points. A192

common approach is to assume that there is only one kind of action occurs inside a region [34,36,74].193

However, in unstructured scene settings, this assumption may not be valid. In order to distinguish194

actions occurring inside the same region, we benefit from the local motion and appearance features195

(visual vocabularies). The learned regions are employed to create primitive events which basically196

determine primitive state transitions between adjacent trajectory points. Based on the acquired197

primitive events, a sequence of discovered (i.e. detected) activities is created to define the global198

motion pattern of people, such as staying inside a region or moving between regions. For each199

discovered activity, motion statistics, such as time duration, etc., are calculated to represent the global200

motion of the person. Finally, a model of a certain activity is constructed through the integration of201

all extracted features and attributes. During the testing phase, the learned regions are used to obtain202

primitive events of the test video. Again, the video is clipped using discovered zones and the action203

descriptors are extracted for each discovered activity. Similar to the training phase, for each discovered204

activity, by combining the local motion information with global motion and other attributes, an activity205

model is constructed. To recognize activities, a comparison is performed between trained activity206

models and acquired test activity. A similarity score between the test instance and trained activity207

models are calculated by comparing global and local motion information of the models. Finally, the208

activity model with the maximum similarity score is considered as recognized activity of the test209
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instance. Through all the steps, an online scheme is followed to perform continuous activity detection210

in assisted living scenarios. The subsequent sections describe different parts of the framework in more211

details.212

3.1. Feature Extraction213

For local feature detection, improved dense trajectories [75] are employed which densely sample214

points of interests and track them in consecutive frames of a video sequence. The points of interests are215

sampled using a W pixels sized grid in multiple scales. Each trajectory is track separately at each scale216

for L frames and the trajectories exceeding this limit are removed from the process. Once the trajectories217

are extracted, the descriptors in the local neighbourhood of interest-points are computed. There are218

three different types of descriptors extracted from the interest-points: Trajectory shape, motion (HOF219

and Motion Boundaries Histogram a.k.a MBH [75]) and appearance (HOG [76]) descriptors.220

Given a trajectory of length L, its shape can be described by a sequence (S = (∆Pt, . . . , ∆Pt+L−1))221

of displacement vectors: ∆P = (Pt+1 − Pt). The final descriptor (trajectory shape descriptor a.k.a TSD)222

is computed by normalizing the magnitude of the displacement vector. Other than spatial scales, the223

trajectories are also calculated in multiple temporal scales in order to represent actions done with224

speed.225

Motion descriptors (HOF and MBH) are computed in a volume around the detected interest-points226

and throughout their trajectories (spatiotemporal volume). Size of the constructed volume is N × N227

pixels around the interest-point and L frames long. For all of the grids in the spatiotemporal volume,228

the descriptors are calculated and concatenated to represent the final descriptor. While motion-based229

descriptors focus on the representation of the local motion, appearance descriptor (HOG) represents230

static appearance information by calculating Gradiant vectors around the calculated trajectory point.231

Geometrical descriptors are also used for representing the spatial configuration of the skeleton232

joint information and model human body pose in each frame. To represent the skeleton, both joints’233

Euclidean distances and angles in polar coordinate are calculated using normalized joint positions.234

In order to preserve temporal information in pose representation, a feature extraction scheme based235

on temporal sliding window is adapted [77]. At each time instance, Euclidean distances between236

all the joints are calculated. Besides, for each joint, distance from other instances’ joints included in237

the sliding window is calculated and stored. If Jt
i represents features of joint i at time t and w shows238

the sliding window size: Jt
i = [xt

i , yt
i ] defines raw skeleton features at time t, where i = 1, ..., 8. Then,239

Fd calculates the distance descriptor: Fd =
√
(xt

i − xt′
j )

2 + (yt
i − yt′

j )
2. Similarly, to calculate angular240

feature in polar coordinate, we use: Fa = arctan (xt
i − xt′

j , yt
i − yt′

j ), where t′ ∈ {t, t− 1, ..., t−w}, t′ > 0241

and i, j = 1, 2, ..., 8 for both equations. Combining these features produces the final descriptor vector242

F = [Fd, Fa].243

In order to compare the effect of hand-crafted and deep features on our generated activity models,244

the framework also uses Trajectory-Pooled Deep-Convolutional Descriptors (TDD) introduced in245

[37]. Computing these features are similar to dense trajectory descriptors. The main difference here246

is that rather than computing the hand-crafted features around the spatiotemporal volume of the247

trajectories, deep features are extracted using convolutional neural network (CNN) maps. To compute248

these features, multi-scale convolutional feature maps pool deep features around the interest-points of249

the detected trajectories. The two-stream ConvNet architecture proposed by Simonyan [43] is adapted250

for TDD feature extraction. The two-stream CNN consists of two separate CNNs: spatial and temporal251

networks. The motion features (temporal) are trained on optical flow and extracted using conv3 and252

conv4 layers of CNN. Additionally, for the training of the appearance features (spatial) on RGB frames,253

conv4 and conv5 layers of CNN are used.254



Version September 22, 2019 submitted to Sensors 7

3.2. Global Tracker255

Information about the global position of the subjects is indispensable in order to achieve an256

understanding of long-term activities. For person detection, the algorithm in [78] is applied that257

detects head and shoulders from RGBD images. Trajectories of the detected people in the scene are258

obtained using the multi-feature algorithm in [79] using 2D size, 3D displacement, color histogram, the259

dominant color, and covariance descriptors as a feature and the Hungarian algorithm [80] to maximize260

the reliability of the trajectories. We use the control algorithm in [81] to tune tracking parameters in an261

online manner. The output of the tracking algorithm is the input for the framework:262

Input = {Seq1, ..., Seqn} (1)

where Seqi = Traj1, . . . , TrajT . i is the label of the tracked subject and T is the number of trajectories in263

each sequence. Each scene region characterizes a spatial part of the scene and will be represented as a264

Gaussian distribution: SRi ∼ (µi, σi).265

3.3. Scene Model266

In most of the trajectory-based activity recognition methods, a priori contextual information is267

ignored while modeling the activities. The proposed framework performs automatic learning of the268

meaningful scene regions (topologies) by taking into account the subject trajectories. The regions are269

learned at multiple resolutions. By tailoring topologies at different levels of resolution, a hierarchical270

scene model is created. A topology at level l is defined as a set of scene regions (SR):271

Tlevell = {SR0, ..., SRk−1} (2)

k indicates the number of scene regions defining the resolution of the topology. The scene regions272

are obtained through clustering which takes place in two stages. This two stages clustering helps273

to reduce the effect of outlier trajectory points in the overall structure of the topologies. In the first274

stage, the interesting regions for each subject in the training set are found by clustering their trajectory275

points. For each Seq, the clustering algorithm produces k clusters: Cluster(Seqi) = {Cl1, ..., Clk} where276

each resulted cluster characterizes the scene based on the motion information of subject i. µ and277

ω parameters of the distribution of the SRi are calculated from the clustering. Cth cluster center278

(Clc) corresponds to scene region i (SRi). For SRi, µ is the spatial coordinate of the cluster centroid:279

SRi(µ) = centroid(Clc) and the standard deviation σ is computed from the point coordinate sequence280

of the trajectory set. The second stage of the clustering merges individual scene regions into a single281

comprehensive set of regions. Each region is a new cluster (Cl) in the second stage partitioning the282

obtained cluster centroids in the first stage. K-means algorithm is used for the clustering where the283

optimal value of K is calculated based on the Bayesian Information Criterion (BIC) [82]. We define a284

scene model as a set of scene regions (topologies) at different resolutions:285

SceneModel =< Topologyhighlevel, Topologymidlevel, Topologylowlevel > (3)

We create a model with topologies at three levels, each aims to describe the scene at a high, medium286

and low degree of abstraction. Figure 2 depicts an example of the calculated scene regions in a hospital287

room in CHU dataset1.288

3.4. Primitive Events289

To fill the gap between the low-level image features and high-level semantic description of the290

scene, an intermediate block capable of linking the two is required. Here, we describe a method that291

1 https://team.inria.fr/stars/demcare-chu-dataset/
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Figure 2. Example of k-means clustering using city-block distance measurements of CHU Nice dataset.
The number of clusters is set to 5, 10 and 15.

defines a construction block for learning the activity models. With a deeper look at the activity292

generation process, it can be inferred that the abstraction of low-level features into high-level293

descriptions does not happen in a single step and this transition is gradual. As a solution, we294

use an intermediate representation named Primitive Event (PE). Given the two consecutive trajectory295

data points (Traji and Trajj), by using their distance from the cluster centroids, their corresponding296

scene regions (StartRegion and EndRegion) can be found. A primitive event is represented as a pair of297

directed scene regions of these trajectory points:298

PrimitiveEvent = (StartRegion→ EndRegion) (4)

where StartRegion and EndRegion variables take values of SR indices. For example, if StartRegion of299

Traji: SR2 and EndRegion of Trajj: SR4 then, we will have (2→ 4) as a primitive event. PE describes an300

atomic motion block and is used for characterizing motion of a person in a scene. This way, a whole301

sequence of trajectory can be translated into PEs. A Primitive Event’s type is Stay, when the region302

labels (Such as SR1) stay constant between two time intervals. It is equivalent to a sequence of stays in303

the scene region P:304

Primitive Event = StayP_P (5)

When a Primitive Event’s type is Change, a change of region (from region P to region Q) between two305

successive time instants (i.e. two successive trajectory points) occurs. It is equivalent to a region306

transition:307

Primitive Event = ChangeP_Q (6)

The duration of the current status (stay/change) can be calculated simply by Duration =308
EndEventFrame−BeginEventFrame

f ps where fps is the frame rate of the recorded images. Using a learned309

topology T for every video sequence, a corresponding primitive event sequence PEseq is calculated:310

PEseq = (< PE1, . . . , PEn >, T) (7)

A primitive Event sequence provides information regarding the underlying structure of long-term311

activities.312

3.5. Activity Discovery (detection)313

We refer to the detection of the boundaries of the activities as Activity Discovery. Annotating the314

beginning and end of the activities is a challenging task even for humans. The start/end time of the315

annotated activities varies from one human annotator to another. The problem is that humans tend to316

pay attention to one resolution at a time. For example, when a person is sitting on a chair, the annotated317
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Figure 3. A sample video encoded with primitive events and discovered activities in three resolution
levels.

label is "sitting". Later, when the subject "moves an arm", she is still sitting. Discovering activities using318

a different resolution of the trained typologies helps to automatically detect these activity parts and319

sub-parts at different levels of activity hierarchy using previously created semantic blocks (Primitive320

Events). Input for activity discovery process is a spatiotemporal sequence of activities described321

by primitive events. After the activity discovery process: 1) The beginning and end of all activities322

in a video are estimated and the video is automatically clipped. 2) The video is classified naively323

into discovered activities indicating similar activities in the timeline. A discovered activity (DA) is324

considered either as 1) staying in current state ("Stay") or 2) changing of the current state ("Change").325

Basically, a Stay pattern is an activity that occurs inside a single scene region and is composed of326

primitive events with the same type:327

Discovered Activity = StayP→P = {Stay PEs} (8)

A "Change" pattern is an activity that happens between two topology regions. A "Change" activity
consists of a single primitive event of the same type:

Discovered Activity = ChangeP→Q = Change PE (9)

Although detection of primitive events takes place at three different resolutions, the activity discovery328

process only considers the coarse resolution. Therefore, after discovery process, the output of the329

algorithm for the input sequence is a data structure containing information about the segmented input330

sequence in the coarse level and its primitive events in two other lower levels. This data structure331

holds spatiotemporal information similar to the structure in Figure 3. The algorithm for this process332

simply checks for primitives’ boundaries and constructs the data structure for each discovered activity.333

Employing DAs and PEs, it shows the hierarchical structure of an activity and its sub-activities.334

Although Discovered Activities present global information about the movement of people, it is not335

sufficient to distinguish activities occurring in the same region. Thus, for each discovered activity, body336

motion information is incorporated by extracting motion descriptors (section 3.1). These descriptors337

are extracted in a volume of NxN pixels and L frames from videos. Fisher Vector (FV) method [83] is338

then followed to obtain a discriminative representation of activities. The descriptors are extracted for339

all Discovered Activities that are automatically computed. The local descriptor information is extracted340

only for Discovered Activities at the coarse resolution level.341

3.6. Activity Modeling342

Here, the goal is to create activity models with high discriminative strength and less susceptibility343

to noise. We use attributes of an activity and its sub-activities for modeling and accordingly, learning344

is performed automatically using the DAs and PEs in different resolutions. Learning such models345
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Figure 4. The process of creating activity tree. The PEs from the training instances are clustered into
nodes and at the same time, the neighborhood set is detected. The final structure is constructed with
those building blocks.

enables the algorithm to measure the similarity between them. To create the models, a method for346

assembling the DAs and PEs from different resolutions is required. This is achieved by the concept of347

hierarchical neighborhood.348

3.6.1. Hierarchical Neighborhood349

The hierarchical representation of activity A at resolution level l is a recursive representation of350

the links between A and its primitive events Bi at the finer resolutions:351

Aneighborhood = ((B1, B1neighborhood), . . . , (Bn, Bnneighborhood)) (10)

B1, . . . , Bn are the primitive events of A in the next finer resolution. The links between the different352

levels are established using temporal overlap information. For example, primitive event B is353

sub-activity of activity A in a higher level if their temporal interval overlaps in the activity timeline.354

Formally, B is sub-activity of A if the following statement holds:355

((startFrameA ≤ start f rameB) ∧ (endFrameA ≥ startFrameB))

‖ ((startFrameA ≤ endFrameB) ∧ (endFrameA ≥ endFrameB))

‖ ((startFrameA ≤ startFrameB) ∧ (endFrameA ≥ endFrameB))

‖ ((startFrameA ≥ startFrameB) ∧ (endFrameA ≤ endFrameB))

(11)

By applying 10 to a discovered activity, we can find the primitives in its neighborhood. This automatic356

retrieval and representation of the neighborhood of a DA help in creating the hierarchical activity357

models.358

3.6.2. Hierarchical Activity Models359

Hierarchical activity model (HAM) is defined as a tree that captures the hierarchical structure360

of daily living activities by taking advantage of the hierarchical neighborhoods to associate different361

levels. For an input DA (Aneighbourhood) and its neighborhood, the goal is to group similar PEs obtained362

by clustering to create nodes (N) of the activity tree. Clustering is performed using Type attribute of363

the PEs which groups PEs of the same type in one cluster. This process is repeated for all levels. After364
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Figure 5. An example of model architecture in node level where each node is composed of attributes
and sub-attributes.

clustering, nodes of the tree model are determined followed by linking them together to construct the365

hierarchical model of the tree. The links between the nodes are realized from the activity neighborhood366

of each node (Figure 4 shows the complete procedure of creating an activity tree from neighborhood367

set instances of a DA). After linking, a complete tree structure of the given DA is obtained and the368

model is completed by adding attribute information for nodes of the tree. Each node in the activity369

tree contains information about the similar detected primitive events sharing similar properties such370

as duration and type of the primitive as well as similar sub-activities in the lower level. So, a node371

is the representative of all the similar primitives in that level. Each node has two types of properties.372

The node attributes that store information about primitive events such as average duration of its373

constituents as well as information about parent node and the associated nodes in the lower level of374

the hierarchy. The nodes can keep different spatial and temporal attributes about the activity and its375

sub-activities. The former type is consisted of:376

• Type attribute is extracted from the underlying primitive or discovered activity (in case of the root377

node). For node N, TypeN = TypePE or TypeDA, where Type of PEs and DAs are either Stay or378

Change states.379

• Instances list PEs of training instances indicating the frequency of each PE included in the node.380

• Duration is a Gaussian distribution Duration(µd, σ2
d ) describing the temporal duration of the PEs381

({PE1, PE2, . . . , PEn, }) or discovered activities ({DA1, DA2, . . . , DAn, }) of the node. It is frame382

length of the primitives or discovered activities calculated as:383

µd =
n

∑
i,j=1

(end f ramePEiorDAj − start f ramePEiorDAj)

n
(12)

σ2
d = E[((end f ramePEiorDAj − start f ramePEiorDAj)− µd)

2] (13)

where n is the number of PEs or DAs.384

• Image Features store different features extracted from the discovered activities. There is no385

limitation on the type of feature. It can be extracted hand-crafted features, geometrical or deep386

features (section 3.1). It is calculated as the histogram of the features of the instances in the387

training set.388

• Node association indicates the parent node of the current node (if it is not the root node) and the389

list of neighborhood nodes in the lower levels.390
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Figure 6. The process of learning visual codebook for each activity model and matching the given
activity’s features with the most similar dictionary: Training and Testing phases.

The above-mentioned attributes do not describe the relationship between the nodes which is important391

in the overall description of the activities. In order to model the relationship among the nodes, for392

each node, two other attributes are defined regarding their sub-nodes: Mixture and Timelapse. Mixture393

shows contribution of the type of the sub-activities (Stay2−2) in the total composition of sub-nodes.394

This number is modeled with a Gaussian mixture Θmixture
type . Timelapse of the nodes (with the same type395

and level in different training instances) represents the distribution of the temporal duration of the396

sub-nodes. This attribute is also computed as a Gaussian distribution Θtimelapse
type . The created HAM397

structure is a hierarchical tree that provides recursive capabilities. Accordingly, it makes the calculation398

of the attributes and the score in the recognition step efficient and recursive. Figure 5 illustrates an399

example of a HAM model with its nodes and their attributes and sub-attributes.400

3.7. Descriptor Matching of Tree Nodes401

Descriptor matching can be denoted as a method that captures the similarity between a given402

local dynamic information of an activity and a set of calculated multi-dimensional distributions. The403

obtained descriptor vectors (H) characterize local motion and appearance of a subject. Knowing the404

vector representation of the descriptors of discovered activities enables the use of a distance (Eq. 14)405

measurement to characterize the similarity between different activities. As it is shown in figure 6, in406

training, the scene model is used to clip the long videos to the short clips belonging to each region.407

Next, the descriptors of the clipped videos are extracted and employed to learn a visual codebook408

V (one for each region) by clustering the descriptors (Using k-means). The codebook of each region409

is stored in the created activity model of that region. During the testing phase, when a new video is410

detected by the scene model, its descriptors are extracted and the feature vectors are created. These411

feature vectors are encoded with the learned dictionaries of the models. The distance of the current412

descriptor is calculated with the trained codebooks of all regions (to find the closest one) using the413

Bhattacharyya distance:414

Distance(H, V) =
N

∑
i=1

BC(H, Vi) (14)

where N is the number of learned code words and BC is the Bhattacharyya coefficient:415

BC =
N,M

∑
x,y=1

H(x)Vi(y) (15)
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N and M display dimensions of the descriptor and trained codebooks, respectively. The most416

similar codebook is determined by the minimum distance score acquired. That codebook (and its417

corresponding activity model) is assigned by a higher score in the calculation of the final similarity418

score with the test instance in the recognition phase.419

3.8. Model Matching for Recognition:420

To measure the similarity among the trained HAM models, different criteria can be considered.421

The assumed criterion can vary from one application to another. While one application can emphasize422

more on the duration of activities, local motion can be more important for others. Although these423

criteria can be set depending on the application, the weights of the feature types are learned to424

determine the importance of each type. The recognition is carried out in five steps as follows:425

1. Perceptual information, such as trajectories of a new subject, is retrieved.426

2. Using the previously learned scene model, the primitive events for the new video are calculated.427

3. By means of retrieved primitive events, the discovered activities are calculated.428

4. Using the collected attribute information, a test instance HAM (ω∗) is created.429

5. The similarity score of the created HAM and trained HAM models are calculated and the activity430

with the highest score is selected as the target activity.431

Once the activity models are trained, to find the one that matches with an activity in a test video, we432

follow a Bayesian scheme. We choose the final label using the Maximum A Posteriori (MAP) decision433

rule. If Ω = {ω1, ..., ωS}, where S = |Ω| represent the set of generated activity models and given the434

data for an observed test video, ω?, we select the activity model, ωi, that maximizes the likelihood435

function [Eq. 16]:436

p(ω?|ωi) =
p (ω?) p (ωi|ω?)

p (ωi)
(16)

where p (ωi|ω?) denotes the likelihood function defined for activity models ω1, ..., ωs in model set Ω.437

We assume that the activity models are independent. Therefore, a priori probability of trained models438

p (ω1, ..., ωs) is considered equal. We can eliminate p (ωi) and use the following formula [Eq. 17]439

p̃(ω?|ωi) = p (ω?)
S

∏
i=1

p (ωi|ω?) (17)

p (ω?) is the relative frequency of ω? in the training set. Since the generated models are constructed440

following a tree structure, the likelihood value should be calculated recursively to cover all nodes of441

the tree. For each model, the recursive probability value is therefore calculated as Eq. 18442

p(ωi|ω?) = p(ω[l]
i |ω

?[l]) + Recur([l]− 1) (18)

Recur recursively calculates the probabilities of the nodes in lower levels and stops when there443

is no more leaf to be compared. Superscripts index the levels of the tree ([l]=1,2,3). p(ω[l]
i |ω

?[l])444

calculates probability in the current node given ω? and p(ω[l]
i |ω

?[l−1] returns the probability values445

of this node’s child nodes (sub-activities). Given the data for node n of the activity in the test video,446

ω?(n) = {type?(n), duration?(n), l?(n)} and the activity model i, ωi(n) = {typei(n), ∆i
duration(n),447

Distancei(n)}, where ∆i
duration = {µi, σi}. The likelihood function for node n is defined as Eq. 19.448

p̃
(

ωi(n)l |ω?(n)
)
= p

(
ω?(n)|type? = typei(n)

)
∗

p
(
duration?(n)|∆i

duration(n)
)
∗ (19)

p
(
ω?(n)|l? = Distancei(n)

)
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p
(
ω?(n)|type? = typei(n)

)
checks whether the types of nodes in test tree and trained model are the

same or not:

p
(

ω?(n)|type = typei(n)
)
=

{
1 i f type? = typei(n)
0 otherwise

(20)

p
(
duration?(n)|∆i

duration(n)
)

measures the difference between activity instance ω?’s duration and449

activity model i bounded between 0 and 1.450

p
(

ω?(n)|µ = µi
duration(n)

)
∝ exp−Distduration(n) (21)

where

Distduration(n) =
|duration?(n)−µ?

duration(n)|
σi

p
(
ω?(n)|l = Distancei(n)

)
compares the distance of training node’s trained codebooks V and the test451

node’s computed descriptor histogram H.452

p
(

ω?(n)|l = Distancei(n)
)
=

{
1 i f Distance(H, V)?(n) = min(Distancei(n)
0 otherwise

(22)

It should be noted that the Distance information is only available at root level l = 0 (only for DAs).
The recursion stops when it traverses all the leaves (exact inference). Once we computed p(ω?|Ω)

for all model assignments, using MAP estimation, the activity model i that maximizes the likelihood
function p(ωi|ω?) votes for the final recognized activity label [Eq.23].

î = arg max
i

p̃ (ω?|ωi) (23)

4. Experiments and Discussion453

4.1. Datasets454

The performance of the proposed framework is evaluated on two public and one private daily455

living activity datasets.456

4.1.1. GAADRD Dataset457

The GAADRD [84] activity dataset consists of 25 people with dementia and mild cognitive458

impairment who perform ADLs in an environment similar to a nursing home. The GAADRD dataset is459

public and was recorded under the EU FP7 Dem@Care Project2 in a clinic in Thessaloniki, Greece. The460

camera monitors a whole room where a person performs directed ADLs. The observed ADLs include:461

"Answer the Phone", "Establish Account Balance", "Prepare Drink", "Prepare Drug Box", "Water Plant",462

"Read Article", "Turn On Radio". A sample of images for each activity is presented in Figure 7 (top463

row). Each person is recorded using an RGBD camera of 640×480 pixels of resolution. Each video lasts464

approximately 10-15 minutes. We randomly selected 2/3 of the videos for training and the remaining465

for testing.466

4.1.2. CHU Dataset467

This dataset is recorded in the Centre Hospitalier Universitaire de Nice (CHU) in Nice, France.468

It contains videos from patients performing everyday activities in a hospital observation room.469

The activities recorded for this dataset are "Prepare Drink", "Answer the Phone", "Reading Article",470

2 http://www.demcare.eu/results/datasets
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(a) Prep. drug box (b) Prep. drink (c) Turn on radio (d) Watering Plant

(e) Prep. drink (f) Prep. drug box (g) Talking on phone (h) Reading

(i) Cleaning (j) Cooking (k) Eating (l) Working

Figure 7. Instances of daily activities provided in GAADRD (figures a-d), CHU (figures e-h) and
DAHLIA (figures i-l) datasets.

"Watering Plant", "Prepare Drug Box" and "Checking Bus Map". A sample of images for each activity471

is illustrated in Figure 7 (middle row). Each person is recorded using an RGBD Kinect camera with472

640× 480 pixels of resolution, mounted on the top corner of the room. The hospital dataset is recorded473

under the EU FP7 DemCare project3 and it contains 27 videos. For each person, the video recording474

lasts approximately 15 minutes. Domain experts annotated each video regarding the ADLs. Similar to475

GAADRD, for this dataset, we randomly chose 2/3 of the videos for training and the rest for testing.476

4.1.3. DAHLIA Dataset477

The DAHLIA dataset [85] consists of a total of 153 long-term videos of daily living activities (51478

videos recorded from 3 different views) from 44 people. The average duration of the videos is 39479

minutes containing 7 different actions (and a Neutral class). The considered ADLs are: "Cooking",480

"Laying Table", "Eating", "Clearing Table", "Washing Dishes", "Housework" and "Working" (figure 7481

bottom row). To evaluate this dataset, we followed a cross-subject protocol in order to compare our482

results with existing literature.483

4.2. Evaluation Metrics484

We use various evaluation metrics on each dataset to evaluate our results and compare it with other485

approaches. For the GAADRD and CHU datasets, we use Precision and recall metrics. True Positive486

Rate (TPR) or recall is the proportion of actual positives which are identified correctly: TPR = TP
TP+FN .487

The higher the value of this metric, the better is the performance. Similarly, Positive Predictive Value488

(PPV) or precision is defined as: PPV = TP
TP+FP . We also use F-score in our comparisons. The detected489

intervals are compared against the ground-truth intervals and an overlap higher than 80% of the490

ground-truth interval is considered as a True Positive detection of that activity.491

For evaluation of the unsupervised framework, as the recognized activities are not labeled, there492

is no matching ground-truth activity label for them. The recognized activities are labeled such as493

3 https://team.inria.fr/stars/demcare-chu-dataset/
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32 64 128 256 512
Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score

Angle 57.6 33.2 0.42 61.2 36.1 0.45 46.9 30.2 0.36 28.1 22.4 0.24 26.7 19.8 0.22
Distance 12.9 9.7 0.11 18.2 14.9 0.16 20.7 16.1 0.18 14.7 12.1 0.13 14.7 15.2 0.14
HOG 81.4 75.2 0.78 84.7 79.6 0.825 77.5 74.3 0.75 82.7 77.6 0.80 84.7 79.8 0.82
HOF 64.6 61.9 0.63 64.9 67.7 0.66 66.1 68.1 0.67 65.4 67.9 0.66 57.4 62.1 0.59
MBHX 71.3 77.2 0.74 74.8 78.2 0.76 79.8 76.1 0.77 67.6 72.1 0.69 69.4 72.8 0.71
MBHY 71.5 68.4 0.69 78.8 76.1 0.77 82.7 84.9 0.83 83.1 85.7 0.84 80.2 79.4 0.79
TDD Spatial 74.5 72.9 0.73 72.8 71.2 0.71 77.5 74.3 0.75 77.5 76.9 0.77 76.4 73.5 0.74
TDD Temporal 73.4 69.1 0.71 73.9 70.6 0.72 72.5 69.9 0.71 79.4 76.2 0.77 81.9 76.9 0.79

Table 1. Results related to the unsupervised framework with different feature types on GAADRD
dataset.

"Activity 2 in Zone 1". In order to evaluate the recognition performance, first, we map the recognized494

activity intervals on the labeled ground-truth ranges. Next, we evaluate the one-to-one correspondence495

between a recognized activity and a ground-truth label. For example, we check which ground-truth496

activity label co-occurs the most with "Activity 2 in Zone 1". We observe that in 80% of the time, this497

activity coincides with "Prepare Drink" label in the ground-truth. We, therefore, infer that "Activity 2498

in Zone 1" represents "Prepare Drink" activity. For this purpose, we create a correspondence matrix for499

each activity which is defined as a square matrix where its rows are the recognized activities and the500

columns are ground-truth labels. Each element of the matrix shows the number of co-occurrences of501

that recognized activity with the related ground-truth label in that column:502

COR(RA, GT) =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

an1 an2 an3 . . . ann


aij ∈ Z+ shows the correspondence between activity instance i and ground-truth label j. RA is the503

set of recognized activity instances and GT shows the set of ground-truth labels. We evaluate the504

performance of the framework based on the inferred labels. These labels are used for calculating the505

Precision, Recall and F-Score metrics.506

In order to evaluate the DAHLIA dataset, we use metrics based on frame level accuracy. For each507

class c in the dataset, we assume TPc, FPc, TNc and FNc as the number of True Positive, False Positive,508

True Negative and False Negative frames, respectively. Therefore, Frame-wise accuracy is defined509

as: FA1 = ∑c∈C TPc

∑c∈C Nc
where Nc is the number of correctly labeled frames compared to the ground-truth.510

F-Score is defined as: F− Score = 2
|C| ∑c∈C

Pc×Rc

Pc+Rc where Pc and Rc are precision and recall metrics of511

class c, respectively. We also define Intersection over Union (IoU) metric as:512

IoU =
1
|C| ∑

c∈C

TPc

TPc + FPc + FNc (24)

C is the total number of action classes.513

4.3. Results and Discussion514

First, the results and evaluations of the three datasets are reported and then compared with515

state-of-the-art methods. Different codebook sizes are examined for the Fisher vector dictionaries: 16,516

32, 64, 128, 256 and 512. Table 1 and figure 8 show the accuracy of activity detection based on Precision517

and Recall metrics using the feature type with the highest accuracy. In the case of GAADRD dataset,518

the best result achieved with incorporated Motion Boundaries Histogram in Y axis (MBHY) descriptor519

in the activity models with codebook size set to 256.520

Based on the obtained results, there is no special trend regarding the codebook size. For some521

features (MBHY and TDD spatial), the performance increases with an increase in the codebook size and522

drops when the codebook size becomes much bigger. For TDD temporal feature, performance increases523

linearly with the codebook size. For the geometrical features, particularly for the Angle feature, there is524
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Figure 8. Shows F-Score values of the unsupervised framework w.r.t. codebook size on GAADRD
dataset.

32 64 128 256 512
Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score Prec. [%] Rec. [%] F-Score

Angle 58.4 49.7 0.53 60.7 57.8 0.59 58.6 55.2 0.56 50.3 45.9 0.47 41.7 44.1 0.42
Distance 23.9 19.2 0.21 22.7 19.5 0.20 27.8 21.7 0.24 29.2 31.9 0.30 28.8 27.1 0.27
HOG 77.7 71.9 0.74 85.7 82.9 0.84 80.8 74.9 0.77 81.9 76.3 0.79 84.9 79.8 0.82
HOF 68.2 69.8 0.68 73.9 76.4 0.75 77.1 79.1 0.78 68.4 71.9 0.70 73.4 74.9 0.74
MBHX 73.4 72.1 0.72 81.3 80.4 0.80 78.6 79.2 0.78 75.2 78.3 0.76 73.4 76.2 0.74
MBHY 80.5 77.9 0.79 84.3 79.9 0.82 83.9 79.3 0.81 88.6 83.6 0.866 87.4 83.1 0.85
TDD Spatial 65.8 58.4 0.61 71.9 64.7 0.68 67.2 60.9 0.63 65.9 60.1 0.62 60.0 55.9 0.57
TDD Temporal 67.7 65.7 0.66 69.7 66.1 0.68 79.2 76.1 0.77 74.4 73.5 0.73 61.8 62.1 0.61

Table 2. Results regarding the unsupervised framework with different feature types on CHU dataset.

a big drop of performance with bigger codebook sizes. For others (HOG, HOF), medium-size codebook525

performs the best. Finding an optimal codebook size is challenging. Small datasets usually work better526

with smaller codebook size and as the datasets’ size grows, codebook performs better. Regardless of527

the codebook size, MBHY descriptor performs better than other features in this dataset. The MBH528

descriptor is composed of X (MBHX) and Y (MBHY) components. As the activities involve many529

vertical motions, MBHY descriptor is able to model the activities better compared to the other dense530

trajectory descriptors and even deep features. It can be noticed that the performance of temporal deep531

features gets better as the codebook size gets bigger. Also, motion features (TDD temporal, MBHY)532

perform better than appearance features and temporal deep features perform better than spatial TDDs.533

The reason for the lower performance of appearance features might be due to the activities performed534

in a hospital environment. Hereupon, the background does not contain discriminative information535

which can be encoded in activity models. It is clear that the Geometrical features perform poorly.536

Daily living activities are comprised of many sub-activities with similar motion patterns related to537

object interactions. It seems that geometrical features do not contain sufficient information to ensure538

encoding these interactions which result in poor detection. Furthermore, the confusion matrix in figure539

10 indicates that the activities with similar motion in their sub-activities are confused with each other540

the most.541

On CHU dataset, the unsupervised framework achieves promising results (Table 2 and figure542

9). Similar to the GAADRD dataset, the effect of codebook size is different for different descriptor543

types. For MBHY descriptor, the accuracy increases as codebook size grow, whilst, it has the opposite544

effect on TDD appearance features. Differently, the accuracy increases and then decreases for TDD545

temporal feature. It can be observed that a bigger codebook size results in better performance. This546

trend is different from GAADRD dataset and the reason might be because of the larger size of this547

dataset. TDD temporal features demonstrate a better performance than deep appearance features548
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Figure 9. Shows F-Score values of the unsupervised framework w.r.t. codebook size on CHU dataset.

(TDD spatial). Similarly, due to the similar background of the activities, temporal information shows549

better results. MBHY achieves the best performance on this dataset. The abundance of vertical motions550

in the performed activities helps the MBH descriptors to reach better recognition performance. Among551

appearance features, HOG descriptor shows a better performance since it can encode the appearance552

information efficiently, where it even outperforms deep appearance features. Detailed analysis (figure553

10) indicates that the framework has difficulty in recognition of "Watering Plant" activity. It confuses554

this activity with all the other activities. The short duration of this activity leads to insufficient capture555

of local dynamic information resulting in recognition issues. The reason for the confusion of the other556

activities lies mainly on similar motion patterns of the sub-activities. Moreover, this dataset consists of557

activities recorded from subjects lateral view which makes recognition of those classes of activities558

challenging.559

Figure 10. Confusion matrices regarding the best configuration of the unsupervised framework on
GAADRD and CHU datasets (with MBHY descriptor). The values show mean accuracy (%).

4.4. Comparisons560

This section summarizes the evaluations and comparisons conducted on GAADRD 4.5, CHU 4.6561

and DAHLIA 4.7 datasets.562

The results obtained from our proposed framework on GAADRD and CHU datasets are compared563

with the supervised approach in [75], where videos are manually clipped. Another comparison is made564
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Supervised (Manual Clipping)
with HOG, Dict sz=512 [75] Online Version of [75]

Classification by Detection
SSBD [88] Unsupervised Using Only Global Motion [86] Hybrid [87] Unsupervised (Proposed Method)

Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score
Establish Account 92.2 84.3 0.88 29.1 100 0.45 41.67 41.67 0.41 86.2 100 0.92 92.3 100 0.95 86.2 100 0.92
Prepare Drink 92.1 100 0.95 69.4 100 0.81 80.0 96.2 0.87 100 78.1 0.87 100 92.1 0.95 100 100 1.0
Prepare DrugBox 94.9 85.5 0.89 20.2 11.7 0.14 51.28 86.96 0.64 100 33.34 0.50 78.5 91.3 0.84 100 33.1 0.49
Reading Article 96.2 96.2 0.96 37.8 88.6 0.52 31.88 100 0.48 100 100 1.0 100 100 1.0 100 100 1.0
Answer the Phone 88.5 100 0.93 70.1 100 0.82 34.29 96.0 0.50 100 100 1.0 100 91.2 0.95 100 100 1.0
Turn On Radio 89.4 86.7 0.88 75.1 100 0.85 19.86 96.55 0.32 89.0 89.0 0.89 89.1 93.4 0.91 89.1 89.3 0.89
Watering Plant 84.8 72.6 0.78 0 0 0 44.45 86.36 0.58 57.1 44.45 0.49 79.9 86.1 0.82 100 44.2 0.61
Average 91.16 89.33 0.90 43.1 71.4 0.51 43.34 86.24 0.54 90.32 77.84 0.81 91.4 93.44 0.92 96.47 80.94 0.84

Table 3. Comparison of different recognition frameworks with ours on the GAADRD dataset. The
diagram shows the class-wise accuracy of each method with respect to their F-Score values. The best
results in each section are indicated in bold.

Supervised (Manual Clipping)
with HOG, Dict sz=256 [75] Online Version of [75] Unsupervised Using Only Global Motion [86] Hybrid Unsupervised (Proposed Method)

Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score Precision [%] Recall [%] F-Score
Checking BusMap 100 97.1 0.98 50.1 100 0.66 54.54 100 0.70 96.1 100 0.98 80.5 86.2 0.83
Prepare DrugBox 100 92.3 0.95 43.2 100 0.60 100 90.1 0.94 100 100 1.0 88.2 92.7 0.90
Prepare Drink 93.1 97.4 0.95 38.1 76.1 0.50 80.0 84.21 0.82 88.9 96.3 0.92 94.2 88.5 0.91
Answer the Phone 92.2 100 0.95 86.7 100 0.92 60.1 100 0.75 100 100 1.0 92.4 100 0.96
Reading Article 97.5 94.1 0.95 36.4 92.0 0.52 100 81.82 0.90 100 100 1.0 93.2 87.4 0.90
Watering Plant 100 88.3 0.93 33.9 76.9 0.47 53.9 68.9 0.60 77.0 96.3 0.85 77.4 61.2 0.68
Average 97.13 94.87 0.95 48.06 90.83 0.61 74.75 87.50 0.78 93.66 98.76 0.96 87.65 86.00 0.86

Table 4. Comparison of different recognition frameworks with ours on the CHU dataset. The table
below shows the detailed results of each method with respect to each class in the dataset. The best
results in each section are indicated in bold.

with an online supervised approach that follows [75] using a sliding window scheme. The activity565

models are evaluated with another version of the models [86] that does not embed local dynamic566

information (in this version, the score of the local descriptor attribute is omitted and not considered567

in the final score). A further comparison is performed with a Hybrid framework [87] that combines568

supervised and unsupervised information in the HAM models. We additionally compare GAADRD569

dataset with the produced results of another detection algorithm in [88].570

4.5. GAADRD Dataset571

Table 3 represents the comparison of our results with the reported performance on GAADRD572

dataset. In all approaches that use body motion and appearance features, the feature types with the573

best performances are selected. It can be noticed that using models equipped with both global and574

local motion features, the unsupervised obtains high sensitivity and precision rates. Compared to575

the online version of [75], thanks to the learned zones and discovered activities, we obtain better576

activity localization, thereby a better precision. Using only dense trajectories (not global motion)577

this online method fails to localize activities. For the "Watering Plant" this method can not detect578

any instances of this activity in the test set, hence the Precision, Recall, and F-Score rates are zero.579

Compared to the unsupervised approach that either uses global motion features or body motion580

features, we can see that, by combining both features, our approach achieves more discriminative and581

precise models and improves both sensitivity and precision rates. Although the supervised approach582

in [75] outperforms the unsupervised framework in recall and F-Score metrics, it actually does not583

perform activity detection. It uses ground-truth intervals provided by manual clipping and performs584

offline activity recognition which is a much simpler task. As our approach learns the scene regions, we585

automatically discover the places where the activities occur, thereby we achieve precise and accurate586

spatiotemporal localization with a lower cost. As scene region information is missing in the supervised587

approach, it detects "Turning On Radio" while the person is inside the "Preparing Drink" region. On588

this dataset, the unsupervised method always performs better than the "Online Supervised" approach589

and significantly outperforms the sequential statistical boundary detection (SSBD) method. It also590

outperforms another unsupervised version of the framework while no descriptor information is used591

in the activity models. Only the supervised methods surpass our unsupervised models. The reason is592

that the supervised method works with pre-clipped activity videos and overlooks the challenging task593

of temporal segmentation of activity samples from the original video flow.594
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4.6. CHU Dataset595

Table 4 shows the results of evaluated approaches and their comparison with our results on CHU596

Nice Hospital dataset. In this dataset, as people tend to perform some of the activities in various597

regions (e.g. preparing the drink at the phone desk), it is difficult to obtain high precision rates.598

However, compared to the online version of the supervised method in [75], our approach detects all599

activities and achieves a much better precision rate. The online version of [75] again fails to detect600

activities accurately and misses some of the "Prepare Drink" and "Reading Article" activities and601

produces lots of false positives for all other activities. It cannot handle the transition states in the602

boundary of the activity regions (e.g. walking from telephone desk to DrugBox is detected as "Answer603

the Phone" activity). For this reason, a random label is assigned for transition states by the classifier,604

which consequently increases the rate of false positives. Compared to the Online Supervised method,605

we have increased the average precision rate from 48.06% to 87.65%. Compared to the unsupervised606

method without embedded descriptor information, we have decreased the false positive rates and607

increased the precision rates significantly. The highest improvements are on "Answering Phone"608

from 60% to 92%, "Checking BusMap" from 54.54% to 80.5%, "Prepare Drink" from 80% to 94% and609

"Watering Plant" from 53% to 77%. For "Reading Article" activity, there is a small increase in false610

positive rates, causing an incremental decrease in precision rates. This might be because of the lack611

of local motion information caused by staying still in a sitting posture for a long time. Since the612

motion representation of [86] contains only global information, it fails to distinguish activities inside613

the regions precisely. For instance, passing by the phone zone and answering the phone in the phone614

zone are considered as the same activity in their models. Hence, their unsupervised approach results615

in high false positive rates. In addition, we can observe that the proposed approach improves the true616

positive rates and increased sensitivity rates for most of the activities when it is compared to the "Only617

Global Motion" method.618

4.7. DAHLIA Dataset619

Different from the two other datasets, the results on the DAHLIA dataset are compared with620

all the previous evaluations we could find in the literature. [89] exploits gesturelets extracted from621

skeleton data to compute geometrical features and detect the activities. The proposed method in [90]622

takes a graphical approach and poses the activity detection task as a maximum-weight connected623

sub-graph problem. Inspired by the Hough transformation that is successfully applied in object624

detection, [91] proposes a method with discriminative features to globally optimize the parameters of625

Hough transform and utilize it for activity segmentation in videos. Finally, our results are compared626

with [92] that is a supervised method with a semi-supervised component to discover sub-activities.627

Table 5 demonstrates our results on the DAHLIA dataset. Different metrics are used for evaluation628

of this dataset to enable comparison with other methods. The table presents the best results that are629

produced by the generated models embedded with MBHY descriptors. It can be noticed that in this630

dataset, we significantly outperform [89] and [90] in all the categories. Efficient Linear Search (ELS)631

uses geometrical features and produces poor results that are only comparable with our framework632

when geometrical descriptors are used in the generated models. Despite being an efficient approach,633

[90] demonstrates poor detection performance on Dahlia dataset. Additionally, this method only634

works in offline mode. [91] is another supervised method that uses both skeleton and dense trajectory635

descriptors and outperforms our framework only on camera view 3 while using the F-score metric. The636

closest performance to ours is [92] which is a supervised method and utilizes person-centered CNN637

features (PC-CNN) to detect sub-activities. Moreover, it has an additional post-processing step to refine638

the sub-activity proposals in the activity boundaries. Although our framework is totally unsupervised,639

we outperform this method in camera view 2 using all evaluation metrics. Similar results are obtained640

using different camera angles underlying the robustness of our proposed framework to viewpoint641

variations and different types of occlusion. This indicates that an efficient multi-view fusion method642

can remarkably improve the results.643
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ELS [89] Max Subgraph Search [90] DOHT (HOG) [91] Sub Activity [92] Unsupervised (proposed method)
FA_1 F_score IoU FA_1 F_score IoU FA_1 F_score IoU FA_1 F_score IoU FA_1 F_score IoU

View 1 0.18 0.18 0.11 - 0.25 0.15 0.80 0.77 0.64 0.85 0.81 0.73 0.84 0.79 0.70
View 2 0.27 0.26 0.16 - 0.18 0.10 0.81 0.79 0.66 0.87 0.82 0.75 0.88 0.83 0.77
View 3 0.52 0.55 0.39 - 0.44 0.31 0.80 0.77 0.65 0.82 0.76 0.69 0.79 0.73 0.69

Table 5. The activity detection results obtained on the DAHLIA. Values in bold represent the best
performance.

In overall, although our unsupervised framework does not utilize any supervised information, it644

achieved promising recognition performances. Compared to the fully supervised hybrid method [87],645

the unsupervised framework obtains acceptable and competitive results in the detection of most of646

the activities. However, the high performance of the hybrid method comes with the cost of human647

supervision. In the hybrid method, a supervised Support Vector Machine (SVM) classifier is trained648

with the ground-truth annotation provided by a human. The main benefits of the unsupervised649

method are automatic online clipping and detection of activities as well as unsupervised modeling and650

recognition. With all these benefits, the marginal difference in the recognition rate of the unsupervised651

method relative to supervised counterparts is admissible.652

5. Conclusions653

An online unsupervised framework is proposed for detection of daily living activities, particularly654

for elderly monitoring. To create the activity models, we benefited from the superiority of unsupervised655

approaches on representing global motion patterns. Then, discriminative local motion features were656

employed in order to generate a more accurate model of activity dynamics. Thanks to the proposed657

scene model, online recognition of activities can be performed with reduced user interaction for658

clipping and labeling a huge amount of short-term actions which are essential for most of the previously659

proposed methods. Our extensive evaluations on three datasets revealed that our proposed framework660

is capable of detecting and recognizing activities in challenging scenarios. The evaluations were661

intentionally conducted on the datasets recorded in nursing homes, hospitals and smart homes to662

examine the implication of the method on ambient surveillance in such environments. Further work663

will investigate how to generate generic models that can detect activities in any environment with664

minimum modification of the models. Our goal is to use the developed framework in the evaluation of665

long-term video recordings in nursing homes and to assess the performance of the subjects to impose666

early interventions which will result in early diagnosis of cognitive disorders, especially Alzheimer’s667

disease.668
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ADL Activities of Daily Living
CNN Convolutional Neural Networks
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
C3D Convolution3D
TCN Temporal Convolutional Network
HDP Hierarchical Dirichlet Process
HOG Histogram of Oriented Gradients
HOF Histogram of Optical Flow
MBH Motion Boundaries Histogram
MBHX Motion Boundaries Histogram in X axis
MBHY Motion Boundaries Histogram in Y axis
TSD Trajectory Shape Descriptor
TDD Trajectory-Pooled Deep-Convolutional Descriptors
BIC Bayesian Information Criterion
SR Scene Region
PE Primitive Event
DA Discovered Activity
FV Fisher Vector
HAM Hierarchical Activity Model
MAP Maximum A Posteriori
TP True Positive
FP False Positive
TN True Negative
FN False Negative
TPR True Positive Rate
PPV Positive Predictive Value
IoU Intersection over Union
SSBD Sequential statistical boundary detection
ELS Efficient Linear Search
PC-CNN Person-Centered CNN
SVM Support Vector Machine
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