
HAL Id: hal-02422403
https://hal.science/hal-02422403

Submitted on 22 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proximal approaches for matrix optimization problems:
Application to robust precision matrix estimation
Alessandro Benfenati, Emilie Chouzenoux, Jean-Christophe Pesquet

To cite this version:
Alessandro Benfenati, Emilie Chouzenoux, Jean-Christophe Pesquet. Proximal approaches for matrix
optimization problems: Application to robust precision matrix estimation. Signal Processing, 2020,
169, �10.1016/j.sigpro.2019.107417�. �hal-02422403�

https://hal.science/hal-02422403
https://hal.archives-ouvertes.fr


Proximal Approaches for Matrix Optimization Problems: Application to
Robust Precision Matrix Estimation?

A. Benfenatia,∗, E. Chouzenouxb, J.–C. Pesquetb

aDipartimento di Scienze e Politiche Ambientali, Universitá degli studi di Milano, Via Celoria 2, 20133, Milano, Italy
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Abstract

In recent years, there has been a growing interest in mathematical models leading to the minimization,

in a symmetric matrix space, of a Bregman divergence coupled with a regularization term. We address

problems of this type within a general framework where the regularization term is split into two parts,

one being a spectral function while the other is arbitrary. A Douglas–Rachford approach is proposed

to address such problems, and a list of proximity operators is provided allowing us to consider various

choices for the fit–to–data functional and for the regularization term. Based on our theoretical results,

two novel approaches are proposed for the noisy graphical lasso problem, where a covariance or precision

matrix has to be statistically estimated in the presence of noise. The Douglas–Rachford approach directly

applies to the estimation of the covariance matrix. When the precision matrix is sought, we solve a non-

convex optimization problem. More precisely, we propose a majorization–minimization approach building

a sequence of convex surrogates and solving the inner optimization subproblems via the aforementioned

Douglas–Rachford procedure. We establish conditions for the convergence of this iterative scheme. We

illustrate the good numerical performance of the proposed approaches with respect to state–of–the–art

approaches on synthetic and real-world datasets.

Keywords: Covariance estimation; graphical lasso; matrix optimization; Douglas-Rachford method;
majorization-minimization; Bregman divergence

1. Introduction

In recent years, various applications such as shape classification models [1], gene expression [2], model

selection [3, 4], computer vision [5], inverse covariance estimation [6, 7, 8, 9, 10, 11, 12], graph estimation
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[13, 14, 15, 16], social network and corporate inter-relationships analysis [17], or brain network analysis [18]

have led to matrix variational formulations of the form:

minimize
C∈Sn

f(C)− trace (TC) + g(C), (1)

where Sn is the set of real symmetric matrices of dimension n× n, T is a given n× n real matrix (without

loss of generality, it will be assumed to be symmetric), and f : Sn →] −∞,+∞] and g : Sn →] −∞,+∞]

are lower-semicontinuous functions which are proper, in the sense that they are finite at least in one point.

It is worth noticing that the notion of Bregman divergence [19] gives a particular insight into Problem (1).

Indeed, suppose that f is a convex function differentiable on the interior of its domain int(dom f) 6= ∅. Let

us recall that, in Sn endowed with the Frobenius norm, the f -Bregman divergence between C ∈ Sn and

Y ∈ int(dom f) is

Df (C,Y) = f(C)− f(Y)− trace (T(C−Y)) , (2)

where T = ∇f(Y) is the gradient of f at Y. Hence, the original problem (1) is equivalently expressed as

minimize
C∈Sn

g(C) +Df (C,Y). (3)

Solving Problem (3) amounts to computing the proximity operator of g at Y with respect to the divergence

Df [20, 21] in the space Sn. In the vector case, such kind of proximity operator has been found to be useful

in a number of recent works regarding, for example, image restoration [22, 23, 24], image reconstruction

[25], and compressive sensing problems [26, 27].

In this paper, it will be assumed that f belongs to the class of spectral functions [28, Chapter 5, Section 2],

i.e., for every permutation matrix Σ ∈ Rn×n,

(∀C ∈ Sn) f(C) = ϕ(Σd), (4)

where ϕ : Rn →]−∞,+∞] is a proper lower semi-continuous convex function and d is a vector of eigenvalues

of C.

Due to the nature of the problems, in many of the aforementioned applications, g is a regularization function

promoting the sparsity of C. We consider here a more generic class of regularization functions obtained by

decomposing g as g0 + g1, where g0 is a spectral function, i.e., for every permutation matrix Σ ∈ Rn×n,

(∀C ∈ Sn) g0(C) = ψ(Σd), (5)

with ψ : Rn →]−∞,+∞] a proper lower semi–continuous function, d still denoting a vector of the eigenvalues

of C, while g1 : Sn →]−∞,+∞] is a proper lower semi–continuous function which cannot be expressed under

a spectral form.

A very popular and useful example encompassed by our framework is the graphical lasso (GLASSO)

problem, where f is the minus log-determinant function, g1 is a component–wise `1 norm (of the matrix
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elements), and g0 ≡ 0. Various algorithms have been proposed to solve Problem (1) in this context, including

the popular GLASSO algorithm [6] and some of its recent variants [29]. We can also mention the dual block

coordinate ascent method from [3], the SPICE algorithm [30], the gradient projection method in [1], the

Refitted CLIME algorithm [31], various algorithms [8] based on Nesterov’s smooth gradient approach [32],

ADMM approaches [33], an inexact Newton method [34], and interior point methods [15, 35]. A related model

is addressed in [2, 4], with the additional assumption that the sought solution can be split as C1 +C2, where

C1 is sparse and C2 is low–rank. The computation of a sparse+low–rank solution is adressed in [36, 37, 38].

Finally, let us mention the ADMM algorithm from [39], and the incremental proximal gradient approach

from [40], both addressing Problem (1) when f is the squared Frobenius norm, g0 is a nuclear norm, and g1

is an element–wise `1 norm.

The main goal of this paper is to propose numerical approaches for solving Problem (1). Two settings

will be investigated, namely (i) g1 ≡ 0, i.e. the whole cost function is a spectral one, (ii) g1 6≡ 0. In the

former case, some general results concerning the Df -proximity operator of g0 are provided. In the latter

case, a Douglas–Rachford (DR) optimization method is proposed, which leads us to calculate the proxim-

ity operators of several spectral functions of interest. We then consider applications of our results to the

estimation of (possibly low-rank) covariance or precision matrices from noisy observations of multivariate

Gaussian random variables. The novelty of our formulation lies in the fact that information on the noise

is incorporated into the objective function, while preserving the desirable sparsity properties of the sought

matrix. Two variational approaches are proposed for estimating either the covariance matrix or its inverse,

depending on the prior assumptions made on the problem. The cost function arising from the first formula-

tion is minimized through our proposed DR procedure under mild assumptions on the involved regularization

functions. This procedure represents a valid alternative to other algorithms from the literature (see [40, 39]).

In turn, the proposed objective function involved in the second formulation is proved to non–convex. Up to

the best of our knowledge, no method is available in the literature to solve this problem. We thus introduce

a novel majorization-minimization (MM) algorithm where the inner subproblems are solved by employing

the aforementioned DR procedure, and establish convergence guarantees for this method.

The paper is organized as follows. Section 2 briefly discusses the solution of the particular instance of

Problem (1) corresponding to g1 ≡ 0. Section 3 describes a proximal DR minimization algorithm allowing

us to address the problem when g1 6≡ 0. Its implementation is discussed for a bunch of useful choices for

the involved functionals. Section 4 presents two matrix minimization problems arising when estimating

covariance/precision matrices from noisy realizations of a multivariate Gaussian distribution. While the

first one can be solved directly with the DR approach introduced in Section 3, the second non-convex

problem is addressed thanks to a novel MM scheme, with inner steps solved with our DR method. In

Section 5, a performance comparison of the DR approach for precision matrix estimation with state-of-

the-art algorithms is performed. The second part of this section is devoted to numerical experiments that
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illustrate the applicability of our MM method and its good performance on synthetic and real–world datasets.

Notation: Greek letters usually designate real numbers, bold letters designate vectors in a Euclidean

space, capital bold letters indicate matrices. The i–th element of the vector d is denoted by di. Diag(d)

denotes the diagonal matrix whose diagonal elements are the components of d. Dn is the cone of vectors

d ∈ Rn whose components are ordered by decreasing values. The symbol vect(C) denotes the vector

resulting from a column–wise ordering of the elements of matrix C. The product A⊗B denotes the classical

Kronecker product of matrices A and B, while A�B denotes the Hadamard component–wise product. Let

H be a real Hilbert space endowed with an inner product 〈·, ·〉 and a norm ‖ · ‖, the domain of a function

f : H →]−∞,+∞] is dom f = {x ∈ H | f(x) < +∞}. f is coercive if lim
‖x‖→+∞

f(x) = +∞ and supercoercive

if lim
‖x‖→+∞

f(x)/‖x‖ = +∞. The Moreau subdifferential of f at x ∈ H is ∂f(x) = {t ∈ H | (∀y ∈ H)f(y) ≥

f(x) + 〈t, y− x〉}. Γ0(H) denotes the class of lower-semicontinuous convex functions from H to ]−∞,+∞]

with a nonempty domain (proper). If f ∈ Γ0(H) is (Gâteaux) differentiable at x ∈ H, then ∂f(x) = {∇f(x)}

where ∇f(x) is the gradient of f at x. If a function f : H →] −∞,+∞] possesses a unique minimizer on

a set E ⊂ H, it will be denoted by argmin
x∈E

f(x). If there are possibly several minimizers, their set will be

denoted by Argmin
x∈E

f(x). Given a set E, int(E) designates the interior of E and ιE denotes the indicator

function of the set, which is equal to 0 over this set and +∞ otherwise. In the remainder of the paper, the

underlying Hilbert space will be Sn, the set of real symmetric matrices equipped with the Frobenius norm,

denoted by ‖ · ‖F. The matrix spectral norm is denoted by ‖ · ‖S, the `1 norm of a matrix A = (Ai,j)i,j is

‖A‖1 =
∑
i,j |Ai,j |. For every p ∈ [1,+∞[, Rp (A) denotes the Schatten p–norm of A, the nuclear norm

being obtained when p = 1. On denotes the set of orthogonal matrices of dimension n with real elements; S+n
and S++

n denote the set of real symmetric positive semidefinite, and symmetric positive definite matrices,

respectively, of dimension n. Id denotes the identity matrix whose dimension will be understood from

the context. The soft thresholding operator softµ and the hard thresholding operator hardµ of parameter

µ ∈ [0,+∞[ are given by (∀ξ ∈ R) softµ(ξ) = sign(ξ) max{|ξ|−µ, 0} and hardµ(ξ) = ξι{|ξ|>µ}, respectively.

2. Spectral Approach

In this section, we show that, in the particular case when g1 ≡ 0, Problem (1) reduces to the optimization

of a function defined on Rn. Indeed, the problem then reads:

minimize
C∈Sn

f(C)− trace (TC) + g0(C), (6)

where the spectral forms of f and g0 allow us to take advantage of the eigendecompositions of C and T

in order to simplify the optimization problem, as stated below. Since the results in this section are direct

extension of existing ones, the proofs will be skipped. The reader can find more details in the extended

version of the paper [41].
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Theorem 1. Let t ∈ Rn be a vector of eigenvalues of T and let UT ∈ On be such that T = UT Diag(t)U>T .

Let f and g0 be functions satisfying (4) and (5), respectively, where ϕ and ψ are lower-semicontinuous

functions. Assume that domϕ∩domψ 6= ∅ and that the function d 7→ ϕ(d)−d>t +ψ(d) is coercive. Then

a solution to Problem (6) exists, which is given by

Ĉ = UT Diag(d̂)U>T (7)

where d̂ is any solution to the following problem:

minimize
d∈Rn

ϕ(d)− d>t + ψ(d). (8)

Before deriving a main consequence of Theorem 1, we need to recall some definitions from convex analysis

[42, Chapter 26] [20, Section 3.4]:

Definition 1. Let H be a finite dimensional real Hilbert space with norm ‖ · ‖ and scalar product 〈·, ·〉. Let

h : H →]−∞,+∞] be a proper convex function.

• h is essentially smooth if h is differentiable on int(domh) 6= ∅ and

limn→+∞ ‖∇h(xn)‖ = +∞ for every sequence (xn)n∈N of int(domh) converging to a point on the

boundary of domh.

• h is essentially strictly convex if h is strictly convex on every convex subset of the domain of its

subdifferential.

• h is a Legendre function if it is both essentially smooth and essentially strictly convex.

• If h is differentiable on int(domh) 6= ∅, the h-Bregman divergence is the function Dh defined on H2

as

(∀(x, y) ∈ H2)

Dh(x, y) =

h(x)− h(y)− 〈∇h(y), x− y〉 if y ∈ int(dom f)

+∞ otherwise.

(9)

• Assume that h is a lower-semicontinuous convex Legendre function and that ` is a lower-semicontinuous

convex function such that int(domh) ∩ dom ` 6= ∅ and either ` is bounded from below or h + ` is

supercoercive. Then, the Dh-proximity operator of ` is

proxh` : int(domh)→ int(domh) ∩ dom ` (10)

y 7→ argmin
x∈H

`(x) +Dh(x, y).
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In this definition, when h = ‖ · ‖2/2, we recover the classical definition of the proximity operator in [43],

which is defined over H, for every function ` ∈ Γ0(H), and that will be simply denoted by prox`.

As an offspring of Theorem 1, we then get:

Corollary 1. Let f and g0 be functions satisfying (4) and (5), respectively, where ϕ ∈ Γ0(Rn) is a Legendre

function, ψ ∈ Γ0(Rn), int(domϕ)∩domψ 6= ∅, and either ψ is bounded from below or ϕ+ψ is supercoercive.

Then, the Df -proximity operator of g0 is defined at every Y ∈ Sn such that Y = UY Diag(y)U>Y with

UY ∈ On and y ∈ int(domϕ), and it is expressed as

proxfg0(Y) = UY Diag(proxϕψ(y))U>Y. (11)

Remark 1. Corollary 1 extends known results concerning the case when f =

‖ · ‖F/2 [44]. A rigorous derivation of the proximity operator of spectral functions in Γ0(Sn) for the stan-

dard Frobenius metric can be found in [45, Corollary 24.65]. We recover a similar result by adopting a

more general approach. In particular, it is worth noticing that Theorem 1 does not require any convexity

assumption.

3. Proximal Iterative Approach

Let us now turn our attention to the more general case of the resolution of Problem (1) when f ∈ Γ0(Sn)

and g1 6≡ 0. Proximal splitting approaches for finding a minimizer of a sum of non-necessarily smooth

functions have attracted a large interest in the last years [46, 47, 48, 49]. In these methods, the functions

can be dealt with either via their gradient or their proximity operator depending on their differentiability

properties. In this section, we first list a number of proximity operators of scaled versions of f−trace (T ·)+g0,

where f and g0, satisfying (4) and (5), are chosen among several options that can be useful in a wide range of

practical scenarios. Based on these results, we then propose a proximal splitting Douglas-Rachford algorithm

to solve Problem (1).

3.1. Proximity Operators

By definition, computing the proximity operator of γ (f − trace (T ·) + g0) with γ ∈]0,+∞[ at C ∈ Sn
amounts to find a minimizer of the function

C 7→ f(C)− trace (TC) + g0(C) +
1

2γ
‖C−C‖2F (12)

over Sn. The (possibly empty) set of such minimizers is denoted by

Proxγ(f−trace(T ·)+g0)(C). As pointed out in Section 2, if f + g0 ∈ Γ0(Sn) then this set is the singleton

{proxγ(f−trace(T ·)+g0)(C)}. We have the following characterization of this proximity operator:
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Theorem 2. Let γ ∈]0,+∞[ and C ∈ Sn. Let f and g0 be functions satisfying (4) and (5), respectively,

where ϕ ∈ Γ0(Rn) and ψ is a lower-semicontinuous function such that domϕ∩domψ 6= ∅. Let λ ∈ Rn and

U ∈ On be such that C + γT = U Diag(λ)U>.

(i) If ψ is lower bounded by an affine function then Proxγ(ϕ+ψ) (λ) 6= ∅ and, for every λ̂ ∈ Proxγ(ϕ+ψ) (λ),

U Diag(λ̂)U> ∈ Proxγ(f−trace(T ·)+g0)(C). (13)

(ii) If ψ is convex, then

proxγ(f−trace(T ·)+g0)(C) = U Diag
(

proxγ(ϕ+ψ) (λ)
)
U>. (14)

Proof. See Appendix A.

We will next focus on the use of Theorem 2 for three choices for f , namely the classical squared Frobenius

norm, the minus log det functional, and the Von Neumann entropy, each choice being coupled with various

possible choices for g0.

3.1.1. First Example: Squared Frobenius Norm

A suitable choice in Problem (1) is f = ‖ ·‖2F/2 [39, 40, 50]. The squared Froebenius norm is the spectral

function associated with the function ϕ = ‖ · ‖2/2. It is worth mentioning that this choice for f allows us

to rewrite the original Problem (1) under the form (3), where

(
∀(C,Y) ∈ S2n

)
Df (C,Y) =

1

2
‖C−Y‖2F. (15)

We have thus re-expressed Problem (1) as the determination of a proximal point of function g at T in

the Frobenius metric. Table 1 presents several examples of spectral functions g0 and the expression of the

proximity operator of γ(ϕ+ψ) with γ ∈]0,+∞[. These expressions were established by using the properties

of proximity operators of functions defined on Rn (see [51, Example 4.4] and [46, Tables 10.1 and 10.2]).

Remark 2. Another option for g0 is to choose it equal to µ‖ · ‖S where µ ∈]0,+∞[. For every γ ∈]0,+∞[,

we have then

(∀λ ∈ Rn) proxγ(ϕ+ψ) (λ) = prox µγ
1+γ ‖·‖+∞

(
λ

1 + γ

)
, (16)

where ‖ · ‖+∞ is the infinity norm of Rn. By noticing that ‖ · ‖+∞ is the conjugate function of the indicator

function of B`1 , the unit `1 ball centered at 0 of Rn, and using Moreau’s decomposition formula, [45,

Proposition 24.8(ix)] yields

(∀λ ∈ Rn) proxγ(ϕ+ψ) (λ) =
1

1 + γ

(
λ− µγ projB`1

(
λ

µγ

))
. (17)

The required projection onto B`1 can be computed through efficient algorithms [52, 53].
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Table 1: Proximity operators of γ( 1
2
‖ · ‖2F + g0) with γ > 0 evaluated at symmetric matrix with vector of eigenvalues

λ = (λi)1≤i≤n. For the inverse Schatten penalty, the function is set to +∞ when the argument C is not positive definite.
E1 denotes the set of matrices in Sn with Frobenius norm less than or equal to α and E2 the set of matrices in Sn with
eigenvalues between α and β. In the last line, the i-th component of the proximity operator is obtained by searching among
the nonnegative roots of a third order polynomial those minimizing λ′i 7→

1
2

(λ′i − |λi|)2 + γ
(
1
2

(λ′i)
2 + µ log((λ′i)

2 + ε)
)
.

g0(C), µ > 0 proxγ(ϕ+ψ)(λ)

Nuclear norm
(

soft µγ
γ+1

(
λi
γ+1

))
1≤i≤nµR1(C)

Frobenius norm (
1− γµ

‖λ‖

)
λ

1+γ if ‖λ‖ > γµ and 0 otherwise
µ‖C‖F

Squared Frobenius norm λ

1 + γ (1 + 2µ)µ‖C‖2F
Schatten 3–penalty

(6γµ)−1
(

sign (λi)
√

(γ + 1)2 + 12|λi|γµ− γ − 1
)
1≤i≤nµR3

3(C)

Schatten 4–penalty
(8γµ)−1/3

(
3

√
λi +

√
λ2i + ζ +

3

√
λi −

√
λ2i + ζ

)
1≤i≤n

with ζ = (γ+1)3

27γµµR4
4(C)

Schatten 4/3–penalty 1
1+γ

(
λi + 4γµ

3 3
√

2(1+γ)

(
3

√√
λ2i + ζ − λi − 3

√√
λ2i + ζ + λi

))
1≤i≤n

µR4/3
4/3(C) with ζ = 256(γµ)3

729(1+γ)

Schatten 3/2–penalty
1

1+γ

(
λi + 9γ2µ2

8(1+γ) sign(λi)
(

1−
√

1 + 16(1+γ)
9γ2µ2 |λi|

))
1≤i≤nµR3/2

3/2(C)

Schatten p–penalty
(

sign(λi)di
)
1≤i≤n

µRpp(C), p ≥ 1 with (∀i ∈ {1, . . . , n}) di ≥ 0 and µγpdp−1i + (γ + 1)di = λi

Inverse Schatten p–penalty
(
di
)
1≤i≤n

µRpp(C−1), p > 0 with (∀i ∈ {1, . . . , n}) di > 0 and (γ + 1)dp+2
i − λidp+1

i = µγp

Bound on the Frobenius norm
α

λ

‖λ‖
if ‖λ‖ > α(1 + γ) and

λ

1 + γ
otherwise, α ∈ [0,+∞[

ιE1
(C)

Bounds on eigenvalues
(min(max(λi/(γ + 1), α), β))1≤i≤n, [α, β] ⊂ [−∞,+∞]

ιE2(C)

Rank
(

hard√
2µγ
1+γ

(
λi

1 + γ

))
1≤i≤nµ rank(C)

Cauchy ∈
{

(sign(λi)di)1≤i≤n | (∀i ∈ {1, . . . , n}) di ≥ 0 and
µ log det(C2 + εId), ε > 0 (γ + 1)d3i − |λi|d2i +

(
2γµ+ ε(γ + 1)

)
di = |λi|ε

}
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3.1.2. Second Example: Logdet Function

Another popular choice for f is the negative logarithmic determinant function [1, 33, 2, 13, 3, 6, 15, 4],

which is defined as follows

(∀C ∈ Sn) f(C) =

− log det(C) if C ∈ S++
n

+∞ otherwise.

(18)

The above function satisfies property (5) with

(
∀λ = (λi)1≤i≤n ∈ Rn

)
ϕ(λ) =


−

n∑
i=1

log(λi) if λ ∈]0,+∞[n

+∞ otherwise.

(19)

Actually, for a given positive definite matrix, the value of function (18) simply reduces to the Burg entropy

of its eigenvalues. Here again, if Y ∈ S++
n and T = −Y−1, we can rewrite Problem (1) under the form

(3), so that it becomes equivalent to the computation of the proximity operator of g with respect to the

Bregman divergence given by

(∀C ∈ Sn) Df (C,Y) =


log
(det(Y)

det(C)

)
+ trace

(
Y−1C

)
− n if C ∈ S++

n

+∞ otherwise.

(20)

In Table 2, we list some particular choices for g0, and provide the associated closed form expression of the

proximity operator proxγ(ϕ+ψ) for γ ∈]0,+∞[, where ϕ is defined in (19). These expressions were derived

from [46, Table 10.2].

Remark 3. Let g0 be any of the convex spectral functions listed in Table 2. Let W be an invertible matrix in

Rn×n, and let C ∈ Sn From the above results, one can deduce the minimizer of C 7→ γ(f(C)+g0(WCW>))+

1
2‖WCW> −C‖2F where γ ∈]0,+∞[. Indeed, by making a change of variable and by using basic properties

of the log det function, this minimizer is equal to W−1 proxγ(f+g0)(C)(W−1)>.

3.1.3. Third Example: Von Neumann Entropy

Our third example is the negative Von Neumann entropy, which appears to be useful in some quantum

mechanics problems [54]. It is defined as

(∀C ∈ Sn) f(C) =

trace (C log(C)) if C ∈ S+n

+∞ otherwise.

(21)

In the above expression, if C = U Diag(λ)U> with λ = (λi)1≤i≤n ∈]0,+∞[n and U ∈ On, then log(C) =

U Diag
(
(log λi)1≤i≤n

)
U>. The logarithm of a symmetric definite positive matrix is uniquely defined and

9



Table 2: Proximity operators of γ(f + g0) with γ > 0 and f given by (18), evaluated at a symmetric matrix with vector
of eigenvalues λ = (λi)1≤i≤n. For the inverse Schatten penalty, the function is set to +∞ when the argument C is not
positive definite. E2 denotes the set of matrices in Sn with eigenvalues between α and β. In the last line, the i-th component
of the proximity operator is obtained by searching among the positive roots of a fourth order polynomial those minimizing
λ′i 7→

1
2

(λ′i − λi)2 + γ
(
µ log((λ′i)

2 + ε)− log λ′i
)
.

g0(C), µ > 0 proxγ(ϕ+ψ)(λ)

Nuclear norm 1
2

(
λi − γµ+

√
(λi − γµ)2 + 4γ

)
1≤i≤nµR1(C)

Squared Frobenius norm 1

2(2γµ+ 1)

(
λi +

√
λ2i + 4γ(2γµ+ 1)

)
1≤i≤nµ‖C‖2F

Schatten p–penalty
(
di
)
1≤i≤n

µRpp(C), p ≥ 1 with (∀i ∈ {1, . . . , n}) di > 0 and µγpdpi + d2i − λidi = γ

Inverse Schatten p–penalty
(
di
)
1≤i≤n

µRpp(C−1), p > 0 with (∀i ∈ {1, . . . , n}) di > 0 and dp+2
i − λidp+1

i − γdpi = µγp

Bounds on eigenvalues
(

min
(

max
(

1
2

(
λi +

√
λ2i + 4γ

)
, α
)
, β
))

1≤i≤n
, [α, β] ⊂ [0,+∞]

ιE2(C)

Cauchy ∈
{

(di)1≤i≤n | (∀i ∈ {1, . . . , n}) di > 0 and
µ log det(C2 + εId), ε > 0 d4i − λd3i +

(
ε+ γ(2µ− 1)

)
d2i − ελidi = γε

}
the function C 7→ C log(C) can be extended by continuity on S+n similarly to the case when n = 1. Thus,

f is the spectral function associated with

(
∀λ = (λi)1≤i≤n ∈ Rn

)
ϕ(λ) =


n∑
i=1

λi log(λi) if λ ∈ [0,+∞[n

+∞ otherwise.

(22)

Note that the Von Neumann entropy defined for symmetric matrices is simply equal to the well–known

Shannon entropy [55] of the input eigenvalues. With this choice for function f , by setting T = log(Y) + Id

where Y ∈ S++
n , Problem (1) can be recast under the form (3), so that it becomes equivalent to the

computation of the proximity operator of g with respect to the Bregman divergence associated with the Von

Neumann entropy:

(∀C ∈ Sn) Df (C,Y) = trace (C log(C)−Y log(Y)− (log(Y) + Id) (C−Y)) if C ∈ S+n

+∞ otherwise.

We provide in Table 3 a list of closed form expressions of the proximity operator of γ(f + g0) for several

choices of the spectral function g0.

10



Table 3: Proximity operators of γ(f + g0) with γ > 0 and f given by (21), evaluated at a symmetric matrix with vector
of eigenvalues λ = (λi)1≤i≤n. E2 denotes the set of matrices in Sn with eigenvalues between α and β. W(·) denotes the
W-Lambert function [56].

g0(C), µ > 0 proxγ(ϕ+ψ)(λ)

Nuclear norm
γ
(

W
(

1
γ exp

(
λi
γ − µ− 1

)))
1≤i≤nµR1(C)

Squared Frobenius norm γ
2µγ+1

(
W
(

2µγ+1
γ exp

(
λi
γ − 1

)))
1≤i≤nµ‖C‖2F

Schatten p–penalty
(
di
)
1≤i≤n

µRpp(C), p ≥ 1 with (∀i ∈ {1, . . . , n}) di > 0 and pµγdp−1i + di + γ log di + γ = λi

Bounds on eigenvalues
(

min
(

max
(
γW

(
1
γ exp

(
λi
γ − 1

))
, α
)
, β
))

1≤i≤n
, [α, β] ⊂ [0,+∞]

ιE2(C)

Rank (di)1≤i≤n with

µ rank(C) (∀i ∈ {1, . . . , n}) di =


ρi if ρi > χ

0 or ρi if ρi = χ

0 otherwise

and

{
χ =

√
γ(γ + 2µ)− γ,

ρi = γW
(

1
γ exp

(
λi
γ − 1

))

3.2. Douglas-Rachford Algorithm

We now propose a Douglas-Rachford (DR) approach ([57, 46, 58]) for numerically solving Problem (1).

We point out that the DR algorithm is directly related to the Alternating Direction Method of Multipliers

(ADMM), since the latter can be viewed as a version of the former applied to a dual formulation of the

problem. The DR method minimizes the sum of f − trace (T·) + g0 and g1 by alternately computing

proximity operators of each of these functions. Proposition 2 allows us to calculate the proximity operator

of γ(f − trace (T·) + g0) with γ ∈]0,+∞[, by possibly using the expressions listed in Tables 1, 2, and 3.

Since g1 is not a spectral function, proxγg1 has to be derived from other expressions of proximity operators.

For instance, if g1 is a separable sum of functions of its elements, e.g. g = ‖ · ‖1, standard expressions for

the proximity operator of vector functions can be employed [51, 46].1

The computations to be performed are summarized in Algorithm 1. We state a convergence theorem in

the matrix framework, which is an offspring of existing results in arbitrary Hilbert spaces (see, for example,

[46] and [59, Proposition 3.5]).

Theorem 3. Let f and g0 be functions satisfying (4) and (5), respectively, where ϕ ∈ Γ0(Rn) and ψ ∈

Γ0(Rn). Let g1 ∈ Γ0(Sn) be such that f − trace (T·) + g0 + g1 is coercive. Assume that the intersection of

the relative interiors of the domains of f + g0 and g1 is non empty. Let (α(k))k≥0 be a sequence in [0, 2]

such that
∑+∞
k=0 α

(k)(2−α(k)) = +∞. Then, the sequences (C(k+ 1
2 ))k≥0 and

(
proxγg1(2C(k+ 1

2 )−C(k))
)
k≥0

generated by Algorithm 1 converge to a solution to Problem (1) where g = g0 + g1.

1See also http://proximity-operator.net.
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Algorithm 1 Douglas–Rachford Algorithm for solving Problem (1)

1: Let T be a given matrix in Sn, set γ > 0 and C(0) ∈ Sn.
2: for k = 0, 1, . . . do
3: Diagonalize C(k) + γT, i.e. find U(k) ∈ On and λ(k) ∈ Rn such that

C(k) + γT = U(k) Diag(λ(k))(U(k))>

4: d(k+ 1
2 ) ∈ Proxγ(ϕ+ψ)

(
λ(k)

)
5: C(k+ 1

2 ) = U(k) Diag(d(k+ 1
2 ))(U(k))>

6: Choose α(k) ∈ [0, 2]

7: C(k+1) ∈ C(k) + α(k)
(

Proxγg1(2C(k+ 1
2 ) −C(k))−C(k+ 1

2 )
)

.

8: end for

We have restricted the above convergence analysis to the convex case. Note however that recent convergence

results for the DR algorithm in a non-convex setting are available in [60, 61] for specific choices of the involved

functionals.

3.3. Positive Semi-Definite Constraint

Instead of solving Problem (1), one may be interested in:

minimize
C∈S+

n

f(C)− trace (CT) + g(C), (23)

when dom f ∩dom g 6⊂ S+n . This problem can be recast as minimizing over Sn f − trace (·T) + g̃0 + g1 where

g̃0 = g0 + ιS+
n

. We are thus coming back to the original formulation where g̃0 has been substituted for g0.

In order to solve this problem with the proposed proximal approach, a useful result is stated below.

Theorem 4. Let γ ∈]0,+∞[ and C ∈ Sn. Let f and g0 be functions satisfying (4) and (5), respectively,

where ϕ ∈ Γ0(Rn) and ψ ∈ Γ0(Rn). Assume that

(
∀λ′ = (λ′i)1≤i≤n ∈ Rn

)
ϕ(λ′) + ψ(λ′) =

n∑
i=1

ρi(λ
′
i) (24)

where, for every i ∈ {1, . . . , n}, ρi : R→]−∞,+∞] is such that dom ρi∩[0,+∞[6= ∅. Let λ = (λi)1≤i≤n ∈ Rn

and U ∈ On be such that C + γT = U Diag(λ)U>. Then

proxγ(f−trace(T ·)+g̃0)(C) = U Diag
((

max(0,proxγρi(λi))
)
1≤i≤n

)
U>. (25)

Proof. Expression (25) readily follows from Theorem 2(ii) and [62, Proposition 2.2]. �

4. Robust Estimation in Gaussian Graphical Models

Estimating the covariance matrix of a random vector is a key problem in statistics, signal processing,

and machine learning [17, 18, 8, 6, 63]. A related problem can be found in graphical modeling: in this case,
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the problem consists of estimating the graph adjacency matrix, which is modeled as the precision matrix

(i.e., the inverse of covariance matrix) of the random Gaussian vector associated with the nodes of the

graph. Nonetheless, in existing techniques devoted to solve the aforementioned problems, little attention

is usually paid to the presence of noise corrupting the available observations. We develop in this section

two novel formulations which account for noise information. Firstly, we address the problem of covariance

matrix estimation. The chosen objective function consists of a squared Frobenius norm term coupled with

regularization functions driven by the targeted application, and it can be minimized efficiently by using our

DR method. The second problem is the estimation of the precision matrix under sparsity constraints. To

the best of our knowledge, no method is available in the literature to solve the non-convex problem arising

in this case. Here, we propose to resort to a majorization-minimization (MM) strategy, combined with the

previously described DR procedure. Note that a different MM formulation for estimating sparse covariance

matrices was proposed in the seminal work in [9].

4.1. Models and Proposed Approaches

Let S ∈ S+n be a sample estimate of a covariance matrix Σ which is assumed to be decomposed as

Σ = Y∗ + σ2Id (26)

where σ ∈ [0,+∞[ and Y∗ ∈ S+n may have a low-rank structure. We focus on the problem of searching an

estimate of Y∗ from S by assuming that σ is known. More specifically, we consider the following observation

model [64]:

(∀i ∈ {1, . . . , N}) x(i) = As(i) + e(i) (27)

where A ∈ Rn×m with m ≤ n and, for every i ∈ {1, . . . , N}, s(i) ∈ Rm and e(i) ∈ Rn are realizations of

mutually independent identically distributed Gaussian multivalued random variables with zero mean and

covariance matrices P ∈ S++
m and σ2Id, respectively. The latter model has been employed for instance in

[65, 66] in the context of the “Relevant Vector Machine problem”. The covariance matrix Σ of the noisy

input data
(
x(i)
)
1≤i≤N takes the form (26) with Y∗ = APA>. A rough estimate of Σ from the observed

data
(
x(i)
)
1≤i≤N can be obtained through the empirical covariance:

S =
1

N

N∑
i=1

x(i)
(
x(i)
)>
. (28)

In the following, we propose two alternative variational approaches for the estimation of Σ given the noisy

input data
(
x(i)
)
1≤i≤N .

Covariance-based model. Our first formulation yields an estimate Ŷ of Y∗ given by

Ŷ = argmin
Y∈S+

n

1

2
‖Y −

(
S + σ2Id

)
‖2F + g0(Y) + g1(Y), (29)

13



where S is the empirical covariance matrix, g0 satisfies (5) with ψ ∈ Γ0(Rn), g1 ∈ Γ0(Sn), and the intersection

of the relative interiors of the domains of g0 and g1 is assumed to be non empty. A particular instance of

this model with σ = 0, g0 = µ0R1, g1 = µ1‖ · ‖1, and (µ0, µ1) ∈ [0,+∞[2 was investigated in [39] and

[40] for estimating sparse low-rank covariance matrices. In the latter reference, an application to real data

processing arising from protein interaction and social network analysis was presented. One can observe that

Problem (29) takes the form (23) by setting f = 1
2‖ · ‖

2
F and T = S − σ2Id. This allows us to solve (29)

with Algorithm 1. Since g0 is assumed to satisfy (5), the proximity step on f + g0 + ιS+
n

can be performed

by employing Theorem 4 and formulas from Table 1. The resulting DR procedure can thus be viewed as

an alternative to the methods developed in [40] and [39]. Let us emphasize that these two algorithms were

devised to solve an instance of (29) corresponding to the aforementioned specific choices for g0 and g1, while

our approach leaves more freedom in the choice of the regularization functions. A comparison of the three

algorithms will be performed in Section 5.

Precision-based model. Our second strategy focuses on the estimation of the inverse of the covariance matrix,

i.e. the precision matrix C∗ = (Y∗)−1 by assuming that Y∗ ∈ S++
n but may have very small eigenvalues in

order to model a possible low-rank structure. Tackling the problem from this viewpoint leads us to propose

the following penalized negative log-likelihood cost function:

(∀C ∈ Sn) F(C) = f(C) + TS (C) + g0(C) + g1(C) (30)

where

(∀C ∈ Sn) f(C) =

log det
(
C−1 + σ2Id

)
if C ∈ S++

n

+∞ otherwise,

(31)

(∀C ∈ Sn) TS(C) =

trace
((

Id + σ2C
)−1

CS
)

if C ∈ S+n

+∞ otherwise,

(32)

g0 ∈ Γ0(Sn) satisfies (5) with ψ ∈ Γ0(Rn), and g1 ∈ Γ0(Sn). Typical choices of interest for the latter two

functions are

(∀C ∈ Sn) g0(C) =

µ0R1(C−1) if C ∈ S++
n

+∞ otherwise,

(33)

and g1 = µ1‖ · ‖1 with (µ0, µ1) ∈ [0,+∞[2. The first function serves to promote a desired low-rank property

by penalizing small eigenvalues of the precision matrix, whereas the second one enforces the sparsity of this

matrix as it is usual in graph inference problems. Note that the standard graphical lasso framework [6]

is then recovered by setting σ = 0 and µ0 = 0. The advantage of our formulation is that it allows us to

consider more flexible variational models while accounting for the presence of noise corrupting the observed
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data. The main difficulty however is that Algorithm 1 (or its dual counterpart ADMM) cannot be directly

applied to minimize the non-convex cost F . In Section 4.2, we study in more details the properties of the

latter cost function. This leads us to derive a novel optimization algorithm based on the MM principle,

making use of our previously developed Douglas-Rachford scheme for its inner steps

4.2. Study of Objective Function F

The following lemma will reveal useful in our subsequent analysis.

Lemma 1. Let σ ∈]0,+∞[. Let h : ]0, σ−2[→ R be a twice differentiable function and let

u : [0,+∞[→ R : λ 7→ λ

1 + σ2λ
. (34)

The composition h ◦ u is convex on ]0,+∞[ if and only if

(∀υ ∈]0, σ−2[) ḧ(υ)(1− σ2υ)− 2σ2ḣ(υ) ≥ 0, (35)

where ḣ (resp. ḧ) denotes the first (resp. second) derivative of h.

Proof. The result directly follows from the calculation of the second-order derivative of h ◦ u. �

Let us now note that f is a spectral function fulfilling (4) with

(
∀λ = (λi)1≤i≤n ∈ Rn

)
ϕ(λ) =


−

n∑
i=1

log
(
u(λi)

)
if λ ∈]0,+∞[n

+∞ otherwise,

(36)

where u is defined by (34). According to Lemma 1 (with h = − log), f ∈ Γ0(Sn). Thus, the assumptions

made on g0 and g1, allow us to deduce that f + g0 + g1 is convex and lower-semicontinuous on Sn.

Let us now focus on the properties of the second term in (30).

Lemma 2. Let S ∈ S+n . The function TS in (32) is concave on S+n .

Proof. See Appendix B.

As a last worth mentioning property, TS is bounded on S++
n . So, if dom f ∩ dom g0 ∩ dom g1 6= ∅ and

f +g0 +g1 is coercive, then there exists a minimizer of F . Because of the form of f , the coercivity condition

is satisfied if g0 + g1 is lower bounded and limC∈S+
n ,‖C‖→+∞ g0(C) + g1(C) = +∞.

4.3. Minimization Algorithm for F

In order to find a minimizer of F , we propose a Majorize–Minimize (MM) approach, following the ideas

in [67, 64, 68, 69, 70, 71]. At each iteration of an MM algorithm, one constructs a tangent function that

majorizes the given cost function and is equal to it at the current iterate. The next iterate is obtained by
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minimizing this tangent majorant function, resulting in a sequence of iterates that reduces the cost function

value monotonically. According to the results stated in the previous section, our objective function reads as

a difference of convex terms. We propose to build a majorizing approximation of function TS at C′ ∈ S++
n

by exploiting Lemma 2 and the classical concavity inequality on TS :

(∀C ∈ S++
n ) TS (C) ≤ TS (C′) + trace (∇TS(C′) (C−C′)) . (37)

As f is finite only on S++
n , a tangent majorant of the cost function (30) at C′ reads:

(∀C ∈ Sn) G(C | C′) = f (C) + TS (C′) + trace (∇TS(C′) (C−C′)) + g0(C) + g1(C).

This leads to the general MM scheme:

(∀` ∈ N) C(`+1) ∈ Argmin
C∈Sn

f(C) + trace
(
∇TS(C(`))C

)
+ g0(C) + g1(C) (38)

with C(0) ∈ S++
n . At each iteration of the MM algorithm, we have then to solve a convex optimization

problem of the form (1). In the case when g1 ≡ 0, we can employ the procedure described in Section 2

to perform this task in a direct manner. The presence of a regularization term g1 6≡ 0 usually prevents us

to have an explicit solution to the inner minimization problem involved in the MM procedure. We then

propose in Algorithm 2 to resort to the Douglas–Rachford approach in Section 3 to solve it iteratively. A

convergence result is next stated, which is inspired from [72] (itself relying on [73, p. 6]), but does not require

the differentiability of g0 + g1.

Algorithm 2 MM algorithm with DR inner steps

1: Let S ∈ S+n be the data matrix. Let ϕ be as in (36), let ψ ∈ Γ0(Rn) be associated with g0. Let (γ`)`∈N
be a sequence in ]0,+∞[. Set C(0,0) = C(0) ∈ S++

n .
2: for ` = 0, 1, . . . do
3: for k = 0, 1, . . . do
4: Compute U(`,k) ∈ On and λ(`,k) ∈ Rn such that

C(`,k) − γ`∇TS(C(`)) = U(`,k) Diag(λ(`,k))
(
U(`,k)

)>
5: d(`,k+ 1

2 ) = proxγ`(ϕ+ψ)
(
λ(`,k)

)
6: C(`,k+ 1

2 ) = U(`,k) Diag
(
d(`,k+ 1

2 )
) (

U(`,k)
)>

7: if Convergence of MM sub-iteration is reached then
8: C(`+1) = C(`,k+ 1

2 )

9: C(`+1,0) = C(`,k)

10: exit inner loop
11: end if
12: Choose α`,k ∈]0, 2[

13: C(`,k+1) = C(`,k) + α`,k

(
proxγ`g1

(
2C(`,k+ 1

2 ) −C(`,k)
)
−C(`,k+ 1

2 )
)

14: end for
15: end for
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Theorem 5. Let (C(`))`≥0 be a sequence generated by (38). Assume that

dom f ∩ dom g0 ∩ dom g1 6= ∅, f + g0 + g1 is coercive, and E = {C ∈ Sn | F(C) ≤ F(C(0))} is a

subset of the relative interior of dom g0 ∩ dom g1. Then, the following properties hold:

(i)
(
F(C(`))

)
`≥0 is a decaying sequence converging to F̂ ∈ R.

(ii) (C(`))`≥0 has a cluster point.

(iii) Every cluster point Ĉ of (C(`))`≥0 is such that F(Ĉ) = F̂ and it is a critical point of F , i.e. −∇f(Ĉ)−

∇TS(Ĉ) ∈ ∂(g0 + g1)(Ĉ).

Proof. See Appendix C.

5. Numerical Experiments

This section presents some numerical tests illustrating the validity of the proposed algorithms. All the

tests were ran on a Hewlett–Packard Notebook with 16GB or RAM, INTEL i5 CPU (1.6GHz) equipped

with MatLab R2019a. All the numerical tests are reproducible, using the code we made available at http:

//www-syscom.univ-mlv.fr/~benfenat/Software.html.

5.1. Application to Sparse Covariance Matrix Estimation

We first consider the application of the DR algorithm from Section 3 to the sparse covariance matrix

estimation problem introduced in [40]. As we have shown in Section 4.1, a solution to this problem can be

obtained by solving the penalized least-squares problem (29), where S is the empirical covariance matrix

defined in (28), and the regularization terms are g0 = µ0R1 and g1 = µ1‖ · ‖1. We propose to compare the

performance of the DR approach from Section 3.2, with the IPD algorithm [40] and the ADMM procedure

[39], for solving this convex optimization problem. The synthetic data are generated using a procedure

similar to the one in [40]. A block-diagonal covariance matrix Y∗ is considered, composed of r blocks with

dimensions (rj)1≤j≤r, so that n =

r∑
j=1

rj . The j-th diagonal block of Y∗ reads as a product aja
>
j , where

the components of aj ∈ Rrj are randomly drawn on [−1, 1]. The number of observations N is set equal to

n with n ∈ {100, 300, 500, 1000} and, for each dimension n, we consider 10 noise realizations with standard

deviation σ = 0.1. The three tested algorithms are initialized with S + Id, and stopped as soon as a relative

decrease criterion on the objective function is met, i.e. when |Fk+1 − F| ≤ ε|Fk|, ε > 0 being a given

tolerance and Fk denoting the objective function value at iteration k. The maximum number of iterations

is set to 3000. The gradient stepsize for IPD is set to k−1. In Algorithm 1, αk is set to 1.5. In ADMM, the

initial Lagrange multiplier is set to a matrix with all entries equal to one, and the parameter of the proximal

step is set to 1.

Fig. 1 illustrates the quality of the recovered covariance matrices (for n = 100 or 500) when setting

ε = 10−10 and for one out of ten noise realizations. Three different indicators for estimation quality are
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Figure 1: Original matrix and reconstruction results for DR, ADMM and IPD algorithms, for n = 100 (top) and n = 300
(bottom).

provided, namely the true positive rate (tpr), i.e. the correctly recognized non–zero entries, the false positive

rate (fpr), i.e. the entries erroneously added to the support of the matrix, and the relative mean square error

(rmse), computed as ‖Yrec −Y∗‖2F/‖Y∗‖2F, where Yrec is the recovered matrix. The penalty parameters

µ1 and µ0 are chosen empirically so as to minimize rmse on a single noise realization. Note that the two

first measurements are employed when the main interest lies in the recovery of the matrix support. A visual

inspection shows that the three methods provide similar results in terms of matrix support estimation. The

numerical values of the 3 indicators are depicted in Table 4 showing that the three methods achieve similar

quantitative scores.

Table 4: Numerical results for ε = 10−10, averaged over 10 different noise realizations. All the algorithms provide similar
results, in terms of rmse, fpr and tpr, for each test case.

n DR ADMM IPD n DR ADMM IPD

100

rmse 0.3715 0.3715 0.3778

500

rmse 0.2654 0.2825 0.2691

tpr 72.29% 73.27% 75.14% tpr 74.97% 74.85% 76.98%

fpr 1.65% 1.55% 1.54% fpr 0.21% 0.25% 0.26%

300

rmse 0.1849 0.1852 0.1828

1000

rmse 0.1707 0.1735 0.1799

tpr 80.81% 81.17% 82.78% tpr 83.77% 84.04% 84.87%

fpr 0.78% 0.68% 0.84% tpr 0.14% 0.21% 0.24%
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Table 5 allows us to compare the algorithms in terms of computation time (in seconds) and iteration

number (averaged on 8 noise realizations, where the shortest and the longest times among the 10 runs were

discarded), for the four scenarios corresponding to distinct problem sizes and block distributions. It can

be observed that the behaviors of ADMM and DR are similar, while IPD requires many more iterations

and time to reach the same precision. Furthermore, the latter fails to reach a high precision in the allowed

maximum number of iterations, for all the four examples. The main source of computational cost of each

procedure lies in the eigenvalue decomposition of a matrix, hence one iteration of any procedure among

DR, ADMM and IPD takes approximately the same amount of time, which mainly depends on the matrix

dimension. Furthermore, Table 5 shows that the DR approach often requires less iterations to achieve the

same precision level, hence reaching a lower computational cost with respect to the other two procedures.

Table 5: Comparison in terms of convergence time between DR, ADMM and IPD procedures. The enlighten times refer to
the shortest ones. Among the 10 realization, the shortest and the longest timings were discarded in the computation of the
arithmetic mean.

n = 100, µ0 = 0.2, µ1 = 0.15, r = 5 n = 300, µ0 = 0.1, µ1 = 0.1

{rj} = {20, 14, 10, 15, 41} r = 10, {rj} = {49, 25, 58, 29, 7, 42, 26, 9, 15, 40}

DR ADMM IPD DR ADMM IPD

ε Time (iter) Time (iter) Time (iter) Time(iter) Time (iter) Time (iter)

10−6 0.01 (19) 0.01 (16) 0.12 (179) 0.10 (16) 0.08 (16) 0.87 (151)
10−7 00.02 (32) 0.04 (60) 0.37 (581) 0.19 (31) 0.30 (48) 3.01 (484)
10−8 00.07 (78) 0.12 (132) 1.66 (1867) 0.30 (47) 0.76 (114) 10.02 (1542)
10−9 00.13 (146) 0.26 (281) 2.62 (3000) 0.78 (124) 1.44 (228) 19.22 (3000)
10−10 00.29 (314) 0.45 (489) 2.63 (3000) 1.52 (238) 2.37 (371) 18.92 (3000)

n = 500, µ0 = 0.1, µ1 = 0.06, r = 9 n = 1000, µ0 = 0.05, µ1 = 0.06, r = 12

{rj} = {132, 112, 72, 3, 24, 1, 43, 30, 83} {rj} = {189, 171, 59, 58, 7, 120, 64, 34, 19, 86, 60, 133}

10−6 0.34 (18) 0.30 (15) 2.59 (138) 1.32 (12) 1.74 (15) 12.98 (112)
10−7 1.06 (51) 1.60 (77) 8.90 (446) 3.15 (24) 6.11 (45) 44.21 (362)
10−8 2.04 (99) 3.83 (180) 28.12 (1431) 6.66 (54) 11.01 (90) 139.43 (1141)
10−9 4.47 (208) 9.13 (411) 60.93 (3000) 9.95 (78) 22.59 (184) 380.36 (3000)
10−10 8.95 (418) 16.70 (766) 61.66 (3000) 18.56 (139) 48.91 (357) 387.83 (3000)

5.2. Application to Robust Graphical Lasso

Let us now apply the MM approach presented in Section 4.3 to the problem of precision matrix estimation

introduced in (30) on synthetic and real–world datasets.

Precision matrix estimation. A sparse precision matrix C∗ of dimension n×n is randomly created, where the

number of non–zero entries is chosen as a proportion p ∈]0, 1[ of the total number n2. Then, N realizations

(x(i))1≤i≤N of a Gaussian multivalued random variable with zero mean and covariance Y∗ = (C∗)−1 are

generated. Gaussian noise with zero mean and covariance σ2Id, σ > 0, is finally added to the x(i)’s, so

that the covariance matrix Σ associated with the input data reads as in (26) with A = Id. As explained
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Figure 2: Estimation results for different noise levels in terms of rmse (upper panel) and fpr (lower panel) for MM, GLASSO
and DR approaches. The MM procedure has a stable behaviour wrt to increasing noise, while DR and GLASSO strongly suffer
from the presence of noise.

in Section 4.1, the estimation of C∗ can be performed by using the MM algorithm from Section 4.3 based

on the minimization of the nonconvex cost (30) with regularization functions g1 = µ1‖ · ‖1, µ1 > 0, and

(∀C ∈ S++
n ) g0(C) = µ0R1

(
C−1

)
, µ0 > 0. The computation of proxγ(ϕ+ψ) with γ ∈]0,+∞[ related to this

particular choice for g0 and function ϕ given by (36) and (34) leads to the search of the only positive root

of a polynomial of degree 4.

A synthetic dataset of size n = 100 is created, where matrix C∗ has 20 off-diagonal non-zero entries (i.e.,

p = 10−3) and the corresponding covariance matrix has condition number 0.125. N = 1000 realizations

are used to compute the empirical covariance matrix S. In our MM algorithm, the inner stopping criterion

(line 7 in Algorithm 2) is based on the relative difference of majorant function values with a tolerance

of 10−10, while the outer cycle is stopped when the relative difference of the objective function values

falls below 10−8. The DR algorithm is used to solve the inner subproblems, by using parameters (∀`)

γ` = 1, (∀k) α`,k = 1 (see Algorithm 2, lines 4–13). The allowed maximum inner (resp. outer) iteration

number is 2000 (resp. 20). The quality of the results is quantified in terms of fpr (false positive rate)

on the precision matrix and rmse (relative mean square error) with respect to the true covariance matrix.

The parameters µ1 and µ0 are set in order to obtain the best reconstruction in terms of rmse. For eight

values of the noise standard deviation σ, Fig. 2 illustrates the reconstruction quality (averaged on 20 noise

realizations) obtained with our method, as well as two convex minimization approaches that do not take

into account the noise in their formulation, namely the classical GLASSO approach from [74], code available

at http://stanford.edu/~boyd/papers/admm/covsel/covsel example.html, which amounts to solve (1)

with f = − log det, g = µ1‖ · ‖1, and the DR approach described in Section 3, in the formulation given by
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Figure 3: Evolution of the objective functions of each tested method when σ = 0.5. The GLASSO approach has the fastest
rate, but on the other hand it provides no reliable results. The major cost of the MM procedure lies in the first iteration, while
the other iterations are fast.

(1) with f = − log det, (∀C ∈ S++
n ) g(C) = µ0R1

(
C−1

)
+ µ1‖C‖1. For the DR approach, proxγ(ϕ+ψ) with

γ ∈]0,+∞[ is given by the fourth line of Table 2 (when p = 1).

As expected, as the noise variance increases the reconstruction quality deteriorates. The GLASSO

procedure is strongly impacted by the presence of noise, whereas the MM approach achieves better results,

also when compared with DR algorithm. Moreover, the MM algorithm significantly outperforms both other

methods in terms of support reconstruction, revealing itself very robust with respect to an increasing level

of noise. Fig. 3 depicts the behavior of the objective function of each of the three compared methods, for

the problem instance when σ = 0.5, as a function of the computational time.

Molène Dataset. We now consider a real dataset consisting of weather information collected by 55 stations

of Radome type located in a French region between 47°N and 49°N, and 2°W and 6°W. The data refer to

the Archipel Molène project and they were collected from 1st Jan 2014 to 31st Jan 2014. They contain

hourly information about rain (precipitation in kg/m2), temperature (value, maximal temperature of air,

minimal temperature of air) and wind (speed [10’ mean], max speed [10’ mean], max speed [m/s]; direction

[10’ mean], max direction [10’ mean], max direction [angle]): this dataset is freely available2, a visualization

of four snapshots of these data is shown in Fig. 4. In this experiment the focus is on speed and direction

of the wind: the collected data are stored in two matrices Wd and Ws both belonging to R31×744, i.e.

the hourly registrations (744 = 24 × 31) were taken by 31 (over 55) weather stations. The interest lies

in finding connections between the different spots. The time interval considered in the whole dataset is

quite large, it covers an entire month and then it can masquerade some interactions, so that only a subset

referring to the first 3 days is retained. We also discarded the records from the weather station with code

name PLOUDALMEZEAU as there were presenting erroneous and/or missing values. This pre-processing

2https://www.data.gouv.fr/fr/datasets/donnees-horaires-des-55-stations-terrestres-de-la-zone-large-molene-
sur-un-mois/
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Figure 4: Visualization of some snapshots of Molène Dataset. Each point represents a weather station (see ?? for stations’
names). The blue arrows represent wind direction and their length is proportional to wind speed. The color of each station
refers to the recorded temperature (in °C). The map shows the French region between 47°N and 49°N and 2°W and 6°W and
was downloaded from openstreetmap.org.

procedure leads to smaller matrices (Wd,Ws) ∈ (R30×72)2, i.e. n = 30 and N = 72. We propose to consider

the wind data regarding both speed and direction in a coupled manner: a new data matrix Wds = Wd�Ws

is considered. In this way, the direction of the wind is modulated by its speed. Matrix S in Algorithm 2

is taken as S = D � S1, S ∈ R30×30, where S1 is the empirical covariance of the rows in Wds and D

is a symmetric matrix which encodes the relative distances in kilometers between the weather stations:

di,j = (0.1)
ri,j , where ri,j is the distance between the i–th and the j–th stations, and ri,i = 0 for every i.

We apply the proposed MMDR algorithm for minimizing (30) with g0 = µ0R1

(
(·)−1

)
and g1 = µ1‖ · ‖1.

The noise level σ is set to the standard deviation of the elements in Wds. Further setting of Algorithm 2 are:

µ0 = 1, µ1 = 0.1, γ` ≡ 10, α(`,k) ≡ 1, inner loop tolerance 10−5 (maximum 3000 iterations) and outer loop
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tolerance εo = 10−4 (maximum 20 iterations). The results are depicted in Fig. 5. Within these settings,

the graph is sparse, easy to interpret (cf. Fig. 5). Moreover, a three–subgraphs structure arises: the bigger

subgraph is located in the west part, connected to the eastern one by the nodes 19 and 23. In the north a

group of 5 stations (3, 5, 7, 20 and 28) depicts a subgraph which shares edges with the other twos. Finally,

three isolated stations are connected in the north–east part of the map.
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Figure 5: Recovered graph from wind direction–speed data. Three main subgraphs are present, in the west, in the north and in
the south–east. A small group of three stations is connected in the far north. The red arrows represent medium wind direction
modulated by the medium speed in the considered time interval.

We now perform comparisons with respect to the classical GLASSO approach, and to the case when

σ is assumed to be 0. We apply Douglas-Rachford algorithm for minimizing Eq. (1) with f = − log det,

(∀C ∈ S++
n ) g(C) = µ0R1

(
C−1

)
+µ1‖C‖1. Two settings are considered for the parameters (µ0, µ1), namely

(0 , 5 × 10−6) corresponding to GLASSO and (µ0, µ1) = (6 × 10−3 , 10−4). The algorithm parameters are

γ` ≡ 4, α(`,k) ≡ 1.8, and the stopping criterion tolerance is 10−6 with a maximum number of 4 × 104

iterations. The recovered graphs are depicted in Fig. 6. The GLASSO graph seems to provide no useful

information, since the degree of the nodes stays rather high. For the second setting of parameters, here-

again, the graph does not show any particular structure. Those comparisons illustrate the advantage of our

MMDR method, both accounting for the presence of noise and introducing a spectral penalization.
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(a) (µ0, µ1) = (0 , 5× 10−6). (b) (µ0, µ1) = (6× 10−3 , 10−4).

Figure 6: DR algorithm for minimizing (1) with f = − log det and (∀C ∈ S++
n ) g(C) = µ0R1

(
C−1

)
+ µ1‖C‖1, for two

different settings of regularization parameters.

6. Conclusions

In this work, various proximal tools have been introduced to deal with optimization problems involving

real symmetric matrices. We have focused on the variational framework (1) which is closely related to the

computation of a proximity operator with respect to a Bregman divergence. It has been assumed that f in

(3) is a convex spectral function, and g reads as g0 + g1, where g0 is a spectral function. We have provided a

fully spectral solution in Section 2 when g1 ≡ 0, and, in particular, Corollary 1 could be useful for developing

algorithms involving proximity operators in other metrics than the Frobenius one. When g1 6≡ 0, a proximal

iterative approach has been presented, which is grounded on the use of the Douglas–Rachford procedure.

As illustrated by the lists of proximity operators provided for a wide range of choices for f and g0, the main

advantage of the proposed algorithm is its great flexibility. Numerical experiments show its superiority in

terms of convergence speed with respect to two state–of–art algorithms solving the same problem. The

proposed matrix estimation framework has also allowed us to introduce a nonconvex formulation of the

precision matrix estimation problem arising in the context of noisy graphical lasso. The nonconvexity of the

obtained objective function has been circumvented through an MM approach, each step of which consists of

solving a convex problem by a Douglas-Rachford sub-iteration. Comparisons with state–of–the–art solutions

have demonstrated the robustness of the proposed method. The proposed model and the MM procedure

devoted to the minimization of the non–convex functional also reveals to be useful for analyzing real–world

multivariate time series from meteorology. It is worth mentioning that all the results presented in this paper

could be easily extended to complex Hermitian matrices. It would also be interesting to perform a deeper

statistical analysis of the performance of the robust GLASSO approach proposed in this paper.
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Appendix A.

Proof of Theorem 2. (i) Since it has been assumed that f and g0 are spectral functions, we have

(∀C ∈ Sn) f(C) + g0(C) = ϕ(d) + ψ(d), (A.1)

where d ∈ Rn is a vector of the eigenvalues of C. It can be noticed that minimizing (12) is obviously

equivalent to minimize f̃ − γ−1 trace
(
(C + γT

)
·) + g0 where f̃ = f + ‖ · ‖2F/(2γ). Then

f̃(C) = ϕ̃(d), (A.2)

where ϕ̃ = ϕ+ ‖ · ‖2/(2γ). Since we have assumed that ϕ ∈ Γ0(Rn), ϕ̃ is proper, lower-semicontinuous, and

strongly convex. As ψ is lower bounded by an affine function, it follows that

d 7→ ϕ̃(d)− γ−1λ>d + ψ(d) (A.3)

is lower bounded by a strongly convex function and it is thus coercive. In addition, dom ϕ̃ = domϕ, hence

dom ϕ̃ ∩ domψ 6= ∅. Let us now apply Theorem 1. Let λ̂ be a minimizer of (A.3). It can be claimed that

Ĉ = U Diag(λ̂)U> is a minimizer of (12). On the other hand, minimizing (A.3) is equivalent to minimize

γ(ϕ+ ψ) + 1
2‖ · −λ‖

2, which shows that λ̂ ∈ Proxγ(ϕ+ψ) (λ).

(ii) If ψ ∈ Γ0(Rn), then it is lower bounded by an affine function [45, Theorem 9.20]. Furthermore,

ϕ+ ψ ∈ Γ0(Rn) and the proximity operator of γ (ϕ+ ψ) is thus single valued. On the other hand, we also

have γ (f − trace (T ·) +g0) ∈ Γ0(Sn) [75, Corollary 2.7], and the proximity operator of this function is

single valued too. The result directly follows from (i). �

Appendix B.

Proof of Lemma 2. By using differential calculus rules in [76], we will show that the Hessian of −TS
evaluated at any matrix in S++

n is a positive semidefinite operator. In order to lighten our notation, for

every invertible matrix C, let us define M = C−1 + σ2Id. Then, the first-order differential of TS at every

C ∈ S++
n is

d trace (TS(C)) = trace
((

d M−1)S
)

= trace
(
−M−1(d M)M−1S

)
= trace

((
C−1 + σ2Id

)−1
S
(
C−1 + σ2Id

)−1
C−1(d C)C−1

)
= trace

((
Id + σ2C

)−1
S
(
Id + σ2C

)−1
(d C)

)
. (B.1)

We have used the expression of the differential of the inverse [76, Chapter 8, Theorem 3] and the invariance

of the trace with respect to cyclic permutations. It follows from (B.1) that the gradient of TS reads

(∀C ∈ S++
n ) ∇TS(C) =

(
Id + σ2C

)−1
S
(
Id + σ2C

)−1
. (B.2)
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In order to calculate the Hessian H of TS, we calculate the differential of ∇TS. Again, in order to simplify

our notation, for every matrix C, we define

N = Id + σ2C ⇒ d N = σ2 d C. (B.3)

The differential of ∇TS at every C ∈ S++
n then reads

d vect (∇TS(C)) = vect
(
d(N−1SN−1)

)
= vect

(
(d N−1)SN−1 + N−1(d SN−1)

)
= − vect(N−1(d N)N−1SN−1)− vect

(
N−1SN−1(d N)N−1

)
= −

((
N−1SN−1

)> ⊗N−1
)

vect(d N) +

−
((

N−1
)> ⊗N−1SN−1

)
d vect(N)

= −
( (

N−1SN−1
)
⊗N−1 + N−1 ⊗

(
N−1SN−1

) )
vect(d N)

= H(C) d vect(C)

with

H(C) = −σ2
(
∇TS (C)⊗

(
Id + σ2C

)−1
+
(
Id + σ2C

)−1 ⊗∇TS (C)
)
. (B.4)

To derive the above expression, we have used the facts that, for every A ∈ Rn×m, X ∈ Rm×p, and B ∈ Rp×q,

vect (AXB) =
(
B> ⊗A

)
vect X [76, Chapter 2,Theorem 2] and that matrices N and S are symmetric.

Let us now check that, for every C ∈ S++
n , H(C) is negative semidefinite. It follows from expression

(B.2), the symmetry of C, and the positive semidefiniteness of S that ∇TS(C) belongs to S+n . Since(
∇TS (C)⊗

(
Id + σ2C

)−1)>
=
(
∇TS (C)

)> ⊗ ((Id + σ2C
)−1)>

= ∇TS (C)⊗
(
Id + σ2C

)−1
,

∇TS (C) ⊗
(
Id + σ2C

)−1
is symmetric. Let us denote by (γi)1≤i≤n ∈ [0,+∞[n the eigenvalues of ∇TS (C)

and by (ζi)1≤i≤n ∈ [0,+∞[n those of C. According to [76, Chapter 2, Theorem 1], the eigenvalues of

∇TS (C) ⊗
(
Id + σ2C

)−1
are

(
γi/(1 + σ2ζj)

)
1≤i,j≤n and they are therefore nonnegative. This allows us to

claim that ∇TS (C) ⊗
(
Id + σ2C

)−1
belongs to S+n2 . For similar reasons,

(
Id + σ2C

)−1 ⊗ ∇TS (C) ∈ S+n2 ,

which allows us to conclude that −H(C) ∈ S+n2 . Hence, we have proved that TS is concave on S++
n . By

continuity of TS relative to S+n , the concavity property extends on S+n . �

Appendix C.

Proof of Theorem 5. First note that (C(`))`≥0 is properly defined by (38) since, for every C ∈ S++
n ,

G(· | C) is a coercive lower-semicontinuous function. It indeed majorizes F which is coercive, since f+g0+g1

has been assumed coercive.
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(i) As a known property of MM strategies,
(
F(C(`))

)
`≥0 is a decaying sequence [69]. Under our assumptions,

we have already seen that F has a minimizer. We deduce that
(
F(C(`))

)
`≥0 is lower bounded, hence

convergent.

(ii) Since
(
F(C(`))

)
`≥0 is a decaying sequence, (∀` ≥ 0) C(`) ∈ E. Since F is proper, lower-semicontinuous,

and coercive, E is a nonempty compact set and (C(`))`≥0 admits a cluster point in E.

(iii) If Ĉ is a cluster point of (C(`))`≥0, then there exists a subsequence (C(`k))k≥0 converging to Ĉ. Since E

is a nonempty subset of the relative interior of dom g0 ∩ dom g1 and g0 + g1 ∈ Γ0(Sn), g0 + g1 is continuous

relative to E [45, Corollary 8.41]. As f + TS is continuous on dom f ∩ dom TS = S++
n , F is continuous

relative to E. Hence, F̂ = limk→+∞ F(C(`k)) = F(Ĉ). On the other hand, by similar arguments applied

to sequence (C(`k+1))k≥0, there exists a subsequence (C(`kq+1))q≥0 converging to some Ĉ′ ∈ E such that

F̂ = F(Ĉ′). In addition, thanks to (38), we have

(∀C ∈ Sn)(∀q ∈ N) G(C(`kq+1) | C(`kq )) ≤ G(C | C(`kq )). (C.1)

By continuity of f and ∇TS on S++
n and by continuity of g0 + g1 relative to E,

(∀C ∈ Sn) G(Ĉ′ | Ĉ) ≤ G(C | Ĉ). (C.2)

Let us now suppose that Ĉ is not a critical point of F . Since the subdifferential of G(· | Ĉ) at Ĉ is ∇f(Ĉ) +

∇TS(Ĉ) + ∂(g0 + g1)(Ĉ) [45, Corollary 16.48(ii)], the null matrix does not belong to this subdifferential,

which means that Ĉ is not a minimizer of G(· | Ĉ) [45, Theorem 16.3]. It follows from (C.2) and standard

MM properties that F(Ĉ′) ≤ G(Ĉ′ | Ĉ) < G(Ĉ | Ĉ) = F(Ĉ). The resulting strict inequality contradicts the

already established fact that F(Ĉ′) = F(Ĉ). �
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