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Abstract. The estimate of individual wave run-up is especially important for tsunami warning and risk assessment as it 

allows to evaluate the inundation area. Here as a model of tsunami we use the long single wave of positive polarity. The 

period of such wave is rather long which makes it different from the famous Korteweg-de Vries soliton. This wave 

nonlinearly deforms during its propagation in the ocean, what results in a steep wave front formation. Situations, when 

waves approach the coast with a steep front are often observed during large tsunamis, e.g. 2004 Indian Ocean and 2011 15 

Tohoku tsunamis. Here we study the nonlinear deformation and run-up of long single waves of positive polarity in the 

conjoined water basin, which consists of the constant depth section and a plane beach. The work is performed numerically 

and analytically in the framework of the nonlinear shallow water theory. Analytically, wave propagation along the constant 

depth section and its run-up on a beach are considered independently without taking into account wave interaction with the 

toe of the bottom slope. The propagation along the bottom of constant depth is described by Riemann wave, while the wave 20 

run-up on a plane beach is calculated using rigorous analytical solutions of the nonlinear shallow water theory following the 

Carrier-Greenspan approach. Numerically, we use the finite volume method with the second order UNO2 reconstruction in 

space and the third order Runge-Kutta scheme with locally adaptive time steps. During wave propagation along the constant 

depth section, the wave becomes asymmetric with a steep wave front. Shown, that the maximum run-up height depends on 

the front steepness of the incoming wave approaching the toe of the bottom slope. The corresponding formula for maximum 25 

run-up height, which takes into account the wave front steepness, is proposed.  

1. Introduction  

Evaluation of wave run-up characteristics is one of the most important tasks in coastal oceanography especially when 

estimating tsunami hazard. This knowledge is required as for planning coastal structures and protection works, as for short-

term tsunami forecast and tsunami warning. Its importance is also confirmed by a number of scientific papers, e.g. see recent 30 

works (Tang et al. 2017; Touhami and Khellaf 2017; Zainali et al. 2017; Raz et al. 2018; Yao et al. 2018). 
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The general solution of the nonlinear shallow water equations on a plane beach was found by Carrier and Greenspan (1958) 

using the hodograph transformation. Later on many other authors found specific solutions for different types of waves 

climbing the beach, see, for instance, (Pedersen and Gjevik 1983; Synolakis 1987; Synolakis et al. 1988; Mazova et al. 1991; 

Pelinovsky and Mazova 1992; Tadepalli and Synolakis 1994; Brocchini and Gentile 2001; Carrier et al. 2003; Kânoglu 35 

2004; Tinti and Tonini 2005; Kânoglu and Synolakis 2006; Madsen and Fuhrman 2008; Didenkulova et al. 2007; 

Didenkulova 2009; Madsen and Schaffer 2010).  

Many of these analytical formulas have been validated experimentally in laboratory tanks (Synolakis 1987, Li and Raichlen 

2002; Lin et al. 2009; Didenkulova et al. 2013). For most of them, the solitary waves have been used. The soliton is rather 

easy to generate in the flume, therefore, laboratory studies of run-up of solitons are the most popular. However, (Madsen et 40 

al. 2008) pointed out that the solitons are inappropriate to describe the real tsunami and proposed to use waves of longer 

duration than solitons and downscaled records of real tsunami. Schimmels et al. (2016) and Sriram et al. (2016) generated 

such long waves in the Large Wave Flume of Hannover (GWK FZK) using the piston type of wave maker while McGovern 

et al. (2018) did it using the pneumatic wave generator.  

It should be mentioned that the shape of tsunami varies a lot depending on its origin and the propagation path. One of the 45 

best examples of tsunami wave shape variability is given in Shuto (1985) for the 1983 Japan Sea tsunami, where the same 

tsunami event resulted in very different tsunami approaches in different locations along Japanese coast. These wave shapes 

included: single positive pulses, undergoing both surging and spilling breaking scenarios, breaking bores, periodic wave 

trains, surging and breaking as well, a sequence of two or three waves and undular bores. This is why there is no such term 

as “typical tsunami wave shape”, and therefore in the papers on wave run-up cited above many different wave shapes, such 50 

as single pulses, N-waves, periodic symmetric and asymmetric wave trains, are considered. In this paper, we focus on the 

nonlinear deformation and run-up of long single pulses of positive polarity on a plane beach.  

A similar study was performed for periodic sine waves (Didenkulova et al. 2007; Didenkulova 2009). It was shown that the 

run-up height increases with an increase in the wave asymmetry (wave front steepness) which is a result of nonlinear wave 

deformation during its propagation in a basin of constant depth. It was found analytically that the run-up height of this 55 

nonlinearly deformed sine wave is proportional to the square root of the wave front steepness. Later on, this result was also 

confirmed experimentally (Didenkulova et al. 2013).  

It should be noted that these analytical finding also match tsunami observations. Steep tsunami waves are often witnessed 

and reported during large tsunami events, such as 2004 Indian Ocean and 2011 Tohoku tsunamis. Sometimes the wave, 

which approaches the coast, represents a “wall of water” or a bore, which is demonstrated by numerous photos and videos of 60 

these events. 

The nonlinear steepening of the long single waves of positive polarity has also been observed experimentally in (Sriram et al. 

2016), but its effect on wave run-up has not been studied yet. In this paper, we study this effect both analytically and 

numerically. Analytically, we apply the methodology developed in (Didenkulova 2009; Didenkulova et al. 2014), where we 

consider the processes of wave propagation in the basin of constant depth and the following wave run-up on a plane beach 65 
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independently, not taking into account the point of merging of these two bathymetries. Numerically, we solve the nonlinear 

shallow water equations.  

The paper is organized as follows. In Section 2, we give the main formulas and briefly describe the analytical solution. The 

numerical model is described and validated in Section 3. The nonlinear deformation and run-up of the long single wave of 

positive polarity is described in Section 4. The main results are summarized in Section 5. 70 

 

2. Analytical solution 

We solve the nonlinear shallow water equations for the bathymetry shown in Fig. 1: 

0
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Here (x, t) is the vertical displacement of the water surface with respect to the still water level, u(x,t) – depth-averaged 

water flow, h(x) – unperturbed water depth, g is the gravitational acceleration, x is the coordinate directed onshore, and t is 

time. The system of Eqs.(1),(2) is solved independently for the two bathymetries shown in Fig. 1: a basin of constant depth 

h0 and length X0 and a plane beach, where the water depth h(x) = - x tan.   

Eqs. (1),(2) can be solved exactly for a few specific cases. In the case of constant depth, the solution is described by the 80 

Riemann wave (Stoker 1957). Its adaptation for the boundary problem can be found in Zahibo et al. (2008). In the case of a 

plane beach, the corresponding solution was found by Carrier and Greenspan (1958). Both solutions are well-known and 

widely used and we do not reproduce them here, but just provide some key formulas.  

As already mentioned, during its propagation along the basin of constant depth h0, the wave transforms as a Riemann wave 

(Zahibo et al. 2008): 85 
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where 0 0( , )x L X t     is the water displacement at the left boundary. After the propagation over the section of constant 

depth h0, the incident wave has the following shape: 
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4 

 

Following the methodology developed in Didenkulova (2008), we let this nonlinearly deformed wave described by Eq. (5) 

run-up on a plane beach, characterized by the water depth h(x) = – x tan. This approach does not take into account the 

merging point of the two bathymetries and, therefore, does not account for reflection from the toe of the slope and wave 

interaction with the reflected wave.   

 95 

 

Figure 1: Bathymetry sketch. The wavy curve at the toe of the slope regards analytical solution, which does not take 

into account merging between the constant depth and sloping beach sections. 

 

To do this we represent the input wave 0X  as a Fourier integral:   100 
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Its complex spectrum B(ω) can be found in an explicit form in terms of the inverse Fourier transform: 
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Eq. (7) can be re-written in terms of the water displacement, produced by the wave maker at the left boundary (Zahibo et al. 

2008):  105 
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In this study we consider long single pulses of positive polarity: 
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where A is the input wave height and T is the effective wave period at the location with the water depth h0. The wave 

described by Eq. (9) has an arbitrary height and period and, therefore, does not satisfy properties of the soliton, but just has a 110 

sech
2
 shape. Substituting Eq. (9) into Eq. (8), we can calculate the complex spectrum B(ω). 

Wave run-up oscillations at the coast r(t) and the velocity of the moving shoreline u(t) can be found from (Didenkulova et al. 

2008): 
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where 
02 /L gh   is a travel time to the coast.  

This solution we also compare with the run-up of a single wave of positive polarity described by Eq. (9) (without nonlinear 

deformation). The maximum run-up height Rmax of such wave (9) can be found from (Didenkulova et al. 2008; Sriram et al. 120 

2016): 

1/4
2
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0

21
2.8312 cot
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R h

A gh T
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  
      

                                                                                                                                  (14) 

If the initial wave is soliton, Eq. (14) coincides with the famous Synolakis formula (Synolakis, 1987). 

3. Numerical model 

Numerically, we solve the nonlinear shallow water equations Eqs. (1),(2) written in a conservative form for a total water 125 

depth. We include the effect of the varying bathymetry (in space) and neglect all friction effects. However, the resulting 

numerical model will take into account for some dissipation thanks to the numerical scheme dissipation, which is necessary 

for the stability of the scheme and should not influence much run-up characteristics. Namely, we employ the natural 

numerical method, which was developed especially for conservation laws - the finite volume schemes. 

The numerical scheme is based on the second order in space UNO2 reconstruction, which is briefly described in (Dutykh et 130 

al. 2011b). In time we employ the third order Runge-Kutta scheme with locally adaptive time steps in order to satisfy the 

CFL stability condition. The numerical technique to simulate the wave run-up was described previously in (Dutykh et al. 
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2011a). The bathymetry source term is discretized using the hydrostatic reconstruction technique, which implies the well-

balanced property of the numerical scheme (Gosse, 2013).  

 135 

Figure 2: Water elevations along the 251 m long constant depth section of the Large Wave Flume (GWK), h0 = 3.5 m, 

A = 0.1 m, T = 20 s, tanα = 1:6: results of numerical simulations are shown by the red line, and experimental data are 

shown by the blue line.   

The numerical scheme is validated against experimental data of wave propagation and run-up in the Large Wave Flume 

(GWK), Hannover, Germany. The experiments were set with a flat bottom with constant depth h0 = 3.5 m and length  140 

[a, b] = 251 m, and a plane beach with a slope tan α = 1:6 (see Fig. 1). The flume had 16 wave gauges along the constant 

depth section and a run-up gauge on the slope. The incident wave had amplitude, A = 0.1 m, and period, T = 20 s. The 

detailed description of the experiments can be found in Didenkulova et al (2013). The results of numerical simulations are in 

a good agreement with the laboratory experiments as along the constant depth section (see Fig. 2) as also on the beach 

(Fig. 3). The comparison of run-up height calculated numerically and analytically using the approach described in Section 2 145 

with the experimental record in shown in Fig. 3. It can be seen that the experimentally recorded wave is slightly smaller 

which may be caused by the bottom friction and especially on the slope. Both numerical and analytical models describe the 

first wave of positive polarity rather well. The numerical prediction of run-up height is slightly higher than the analytical 

one. This additional increase in the run-up height in numerical model may be explained by the nonlinear interaction with the 

reflected wave, which is not taken into account in the analytical model. The wave of negative polarity is much more sensitive 150 

to all the effects mentioned above than the wave of positive polarity and, therefore, looks different for all three lines in 

Fig. 3. By introducing additional dissipation in numerical model one can easily reach perfect agreement between the 

numerical simulations and experimental data. However, we do not do so, since below we are focusing on the analysis of 

analytical results and for clarity would like to avoid additional parameters in the numerical model. Also, we focus on the 

maximum run-up height and, therefore, expect small differences between the results of analytical and numerical models.  155 
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Figure 3: Run-up height of the long single wave with A = 0.1 m and T = 20 s on a beach slope with tan α = 1:6, the 

numerical solution is shown by the red dotted line, analytical solution is shown by the blue dashed line and the 

experimental record is shown by the black solid line. 

4. Results of numerical and analytical calculations 160 

It is reported in (Didenkulova et al 2007; Didenkulova 2009) for a periodic sine wave, that the extreme run-up height 

increases proportionally to the square root of the wave front steepness. In this section, we study the nonlinear deformation 

and steepening of waves described by Eq. (9) and its effect on the extreme wave run-up height. The corresponding 

bathymetry used in analytical and numerical calculations is normalized on the water depth in the section of constant depth h0, 

and is shown in Fig. 1. The input wave parameters such as wave amplitude, A/h0, and effective wave length, λ/X0, where 165 

0T gh  , are changed. The beach slope is taken tan α = 1:20 for all simulations.  

We underline that in order to have analytical solution, the criterion of no wave breaking should be satisfied. Therefore, all 

analytical and numerical calculations below are chosen for non-breaking waves. 

Fig. 4 shows the dimensionless maximum run-up height, Rmax/A as a function of the initial wave amplitude, A/h0. The 

incident wave propagates over different distances to the bottom slope, X0/λ = 1.7, 3.4, 5.1, 6.8; kh0 = 0.38. Analytical 170 

solution described in Section 2 is shown with lines, and numerical solution described in Section 3 is shown with symbols 

(diamonds, triangles, squares and circles). It can be seen that in most cases and especially for small values of X0/λ = 1.7 and 

3.4, numerical simulations give larger run-up heights than analytical predictions. These differences can be explained by the 

effects of wave interaction with the toe of the underwater beach slope, which are not taken into account in the analytical 

solution. For larger distances X0/λ = 6.8, both analytical and numerical solutions give similar results, supported by the 175 

numerical scheme dissipation described in Section 3, which can be considered a “numerical error”. It should be mentioned 

that we use zero physical dissipation rate for these simulations, however, small dissipation for stability of the numerical 
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scheme is still needed and this may become noticeable at large distances. For the sech
2
-shaped wave (A/h0 = 0.03, λ/X0 = 

0.12) propagation, the reduction of initial wave amplitude constitutes ~2 %. 

It is worth mentioning, that for small initial wave amplitudes all run-up heights are close to each other and are close to the 180 

thick black line, which corresponds to Eq. (14) for wave run-up on a beach without constant depth section. This means that 

the effects we are talking about are important only for nonlinear waves and irrelevant for weakly nonlinear or almost linear 

waves.  

The same effects can be seen in Fig. 5, which shows the maximum run-up height, Rmax/A as a function of distance to the 

slope, X0/λ, for different amplitudes of the initial wave, A/h0. The distance X0/λ changes from 0.8 to 9.4; kh0 = 0.38. The 185 

analytical solution is shown with lines while the numerical solution is shown with symbols (triangles, squares and circles). It 

can be seen in Fig. 5, for smaller values of X0/λ < 6 numerical predictions provide relatively larger run-up values, as 

compared with analytical predictions, while for higher values of X0/λ > 6 the differences are significantly reduced. A 

relevant change of this behaviour is given for A/h0 = 0.06. We can observe that numerical predictions for this amplitude 

become smaller than analytical predictions for X0/λ > 8. As stated above, we believe that this can be a result of interplay of 190 

two effects: interaction with the underwater bottom slope, which is not taken into account in the analytical prediction and the 

numerical scheme dissipation (“numerical error”), which affects the numerical results. 

 

 

Figure 4: Maximum run-up height, Rmax/A, as a function of initial wave amplitude, A/h0, for different distances to the 195 

slope, X0/λ. Analytical solution described in Section 2 is shown by lines and numerical solution described in Section 3 

is shown by symbols (diamonds, triangles, squares and circles) with matching colours. The thick black line 

corresponds to Eq. (14) for wave run-up on a beach without constant depth section, kh0 = 0.38. 
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Figure 5: Maximum run-up height, Rmax/A, as a function of distance to the slope, X0/λ for different amplitudes of the 200 

initial wave, A/h0. Analytical solution described in Section 2 is shown by lines and numerical solution described in 

Section 3 is shown by symbols (triangles, squares and circles) with matching colours, kh0 = 0.38.  

 

The dependence of maximum run-up height, Rmax/A on kh0 is shown in Fig. 6 for A/h0 = 0.03. It can be seen that the 

difference between numerical and analytical results decreases with an increase in kh0. We relate this effect with the wave 205 

interaction with the slope, which is not properly accounted in our analytical approach. As one can see in Fig. 7, this 

difference for a milder beach slope tan α = 1:50 is reduced. 

 

Figure 6: Maximum run-up height, Rmax/A as a function of kh0 for different distances to the slope, X0/λ. Analytical 

solution described in Section 2 is shown by lines and numerical solution described in Section 3 is shown by symbols 210 

(diamonds, triangles, squares and circles) with matching colours. The thick black line corresponds to Eq. (14) for 

wave run-up on a beach without constant depth section, A/h0 = 0.03.  
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The next Fig. 8 supports all the conclusions drawn above. It also shows that difference between analytical and numerical 

results increases with an increase in wave period. As pointed out before for small wave periods the numerical solution may 215 

coincide with the analytical one or even become smaller as it happens for kh0 = 0.38 for X0 /λ > 8.  

 

Figure 7: Maximum run-up height, Rmax/A as a function of initial effective wave length, λ/X0 (blue axes), and kh0 

(black axes). Analytical solutions for tan α = 1:20 and tan α = 1:50 are shown by dotted and dashed lines respectively, 

while numerical simulations for tan α = 1:20 and tan α = 1:50 are shown by circles and crosses respectively, 220 

A/h0 = 0.03.  

 

Important, that both analytical and numerical results in Fig. 5 and Fig. 8 demonstrate an increase in maximum run-up height 

with an increase in the distance X0 /λ. This result is in agreement with the conclusions of (Didenkulova et al 2007; 

Didenkulova, 2009) for sinusoidal waves. In order to be consistent with the results of (Didenkulova et al 2007; Didenkulova, 225 

2009), we connect the distance X0 /λ with the incident wave front steepness in the beginning of the bottom slope. The wave 

front steepness s is defined as maximum of the time derivative of water displacement, ( / ) ( / )d A d t T , and is studied in 

relation with the initial wave front steepness, s0, where: 

 max ( , )
( )

/

d x t dt
s x

A T


 ,            

 
0

max ( , )

/

d x a t dt
s

A T

 
 .                                                                                               (15) 

In order to calculate the incident wave front steepness in the beginning of the bottom slope from results of numerical 230 

simulations we should separate the incident wave and the wave reflected from the bottom slope. At the same time, the wave 

steepening along the basin of constant depth is very well described analytically as demonstrated in Fig. 9.  
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It can be seen that the wave transformation described by the analytical model is in a good agreement with numerical 

simulations. Therefore, below we reference to the analytically defined wave front steepness having in mind that it well 

coincides with the numerical one. Having said this, we approach the main result of this paper, which is shown in Fig. 10. The 235 

red solid line gives the analytical prediction. It is universal for single waves of positive polarity for different amplitudes A/h0 

and kh0 and can be well approximated by the power fit (coefficient of determination R-squared = 0.99):          

 
0.42

max 0 0R R s s ,                                                                                                                                                                (16) 

where Rmax/A is the maximum run-up height in the conjoined basin (with a section of constant depth), R0/A is the 

corresponding maximum run-up height on a plane beach (without a section of constant depth).  240 

 

Figure 8: Maximum run-up height, Rmax/A as a function of the distance to the slope, X0/λ for different kh0. Analytical 

solution described in Section 2 is shown by lines and numerical solution described in Section 3 is shown by symbols 

(triangles, squares and circles) with matching colours; A/h0 = 0.03. 

 245 

The fit is shown in Fig. 10 by the black dashed line. For comparison, the dependence of the maximum run-up height on the 

wave front steepness obtained using the same method for a sine wave is stronger than for a single wave of positive polarity 

(Didenkulova et al. 2007) and is proportional to the square root of the wave front steepness. This is logical as sinusoidal 

wave has a sign-variable form and, therefore, excites a higher run-up. For possible mechanisms, see discussion on N-waves 

in (Tadepalli and Synolakis 1994).  250 
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Figure 9: Wave evolution at different locations x/λ = 0, 0.85, 1.71, 2.56, 3.41, 4.27 and 5.12 along the section of 

constant depth for a basin with X0/λ = 5.12 and tan α = 1:20. Numerical results are shown by solid lines, while the 

analytical predictions are given by the black dotted lines. The parameters of the wave: A/h0 = 0.03, kh0 = 0.19.  

 255 

 
Figure 10: The ratio of maximum run-up height in the conjoined basin, Rmax/A and the maximum run-up height on a 

plane beach, R0/A versus the wave front steepness, s/s0 for A/h0 = 0.057, kh0 = 0.38 (brown points), A/h0 = 0.086, 

kh0 = 0.38 (red plus signs), A/h0 = 0.057, kh0 = 0.29 (blue points), A/h0 = 0.086, kh0 = 0.29 (turquoise plus signs), 

A/h0 = 0.057, kh0 = 0.22 (violet points), A/h0 = 0.086, kh0 = 0.22 (pink plus signs), A/h0 = 0.057, kh0 = 0.19 (dark green 260 

points), A/h0 = 0.086, kh0 = 0.19 (light green plus signs). All markers correspond to the results of numerical 

simulations, while the asymptotic analytical predictions are given by the red solid line. Black dashed line corresponds 

to the power fit of the analytical results Eq. (16). 

 

The results of numerical simulations are shown in Fig. 10 with different markers. It can be seen that numerical data for the 265 

same period, but different amplitudes follow the same curve. The run-up is higher for waves with smaller kh0. In our opinion, 
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this dependence on kh0 is a result of merging plane beach with a flat bottom. This effect can be parameterized with the factor 

(L/λ)
1/4

. The result of this parameterization is shown in Fig. 11. Here we can see that for smaller face front wave steepness, 

s/s0 < 1.5, the run-up height is proportional to the analytically estimated curve shown by Eq. (16), while for larger face front 

wave steepness, s/s0 > 1.5, the dependence on s/s0 is weaker. This dependence for all numerical run-up height data, presented 270 

in Fig. 11, can be approximated by the power fit (coefficient of determination R-squared = 0.85): 

   
1/4 1/4

max 0 01.17R R L s s .                                                                                                                                            (17) 

 
Figure 11: The normalized maximum run-up height Rmax/R0 (L/λ)

1/4
 calculated numerically versus the wave front 

steepness, s/s0 for the same values of A/h0 and kh0 as in Figure 10. Red solid line is proportional to the “analytically 275 

estimated” Eq. (16), while black solid line corresponds to Eq. (17).  

5. Conclusions and Discussion 

In this paper, we study the nonlinear deformation and run-up of tsunami waves, represented by single waves of positive 

polarity. We consider the conjoined water basin, which consists of a section of constant depth and a plane beach. While 

propagating in such basin, the wave shape changes forming a steep front. Tsunamis often approach the coast with a steep 280 

wave front, as it was observed during large tsunami events, e.g. 2004 Indian Ocean Tsunami and 2011 Tohoku tsunami. 

The study is performed both analytically and numerically in the framework of the nonlinear shallow water theory. The 

analytical solution considers nonlinear wave steepening in the constant depth section and wave run-up on a plane beach 

independently and, therefore, does not take into account wave interaction with the toe of the bottom slope. The propagation 

along the bottom of constant depth is described by Riemann wave, while the wave run-up on a plane beach is calculated 285 

using rigorous analytical solutions of the nonlinear shallow water theory following the Carrier-Greenspan approach. The 

numerical scheme does not have this limitation. It employs the finite volume method and is based on the second order UNO2 
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reconstruction in space and the third order Runge-Kutta scheme with locally adaptive time steps. The model is validated 

against experimental data. 

The main conclusions of the paper are the following. 290 

 Found analytically, that maximum tsunami run-up height on a beach depends on the wave front steepness at the toe 

of the bottom slope. This dependence is general for single waves of different amplitudes and periods and can be 

approximated by the power fit:  
0.42

max 0 0/ /R R s s . 

 This dependence is slightly weaker than the corresponding dependence for a sine wave, proportional to the square 

root of the wave front steepness (Didenkulova et al. 2007). The stronger dependence of a sine wave run-up on the 295 

wave front steepness is consistent with the philosophy of N-waves (Tadepalli and Synolakis 1994).  

 Numerical simulations in general support this analytical finding. For smaller face front wave steepness (s/s0 < 1.5) 

numerical curves of maximum tsunami run-up height are parallel to the analytical one, while for larger face front 

wave steepness (s/s0 > 1.5), this dependence is milder. The latter may be a result of numerical dissipation (error), 

which is larger for a longer wave propagation and, consequently, larger wave steepness. The suggested formula, 300 

which gives the best fit with the data of numerical simulations in general is    
1/4 1/4

max 0 01.17R R L s s .  

 These results can also be used in tsunami forecast. Sometimes, in order to save time for tsunami forecast, especially 

for long distance wave propagation, the tsunami run-up height is not simulated directly, but estimated using 

analytical or empirical formulas (Glimsdal et al. 2019; Løvholt et al. 2012). In these cases we recommend using 

formulas, which take into account the face front wave steepness. The face front steepness of the approaching 305 

tsunami wave can be estimated from the data of the virtual (computed) or real tide-gauge stations and then be used 

to estimate tsunami maximum run-up height on a beach. 

The nonlinear shallow water equations which are used in this study and commonly utilized for tsunami modelling, are also 

known as to neglect dispersive effects. In this context, it is important to mention the recent work of Larsen and Fuhrman 

(2019). They used RANS equations and k-ω model for turbulence closure to simulate propagation and run-up of positive 310 

single waves, including full resolution of dispersive short waves (and their breaking) that can develop near a positive 

tsunami front. They similarly showed that this effect depends on the propagation distance prior to the slope, if a simple toe 

with a slope type of bathymetry is utilized. This work shows that these short waves have little effect on the overall run-up, 

and hence give additional credence to the use of shallow water equations. These results largely confirm what was previously 

hypothesized by Madsen et al. (2008), that these short waves would have little effect on the overall run-up and inundation of 315 

tsunamis (though they found that they could significantly increase the maximum flow velocities). 
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