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Abstract 9 

This paper presents the benefits of multiplying environmental indicators to better understand 10 

the impacts of past storm events on the environment. It aims to describe the methodological 11 

approaches used to reconstruct past extreme events from washover deposits, at the three main 12 

temporal scales used in scientific bibliography: i) the long timescale (Holocene, since 12 000 13 

years BP), ii) the meso timescale (for the last millenary) and iii) the short timescale 14 

(Anthropocene, for the last centuries). This methodology is based on a “multiproxy” analysis 15 

using sedimentology, geochemistry and various methods of isotope dating. Linking these 16 

methods with other disciplines such as history, archaeology and meteorology leads us to 17 

confirm with great certainty the existence of these extreme events, and to expose their impacts 18 

on the environment and on past coastal societies. These different approaches enable us to 19 

enhance and refine our knowledge of coastal hazards, but also to apprehend possible storm 20 

influences in the context of climate change. 21 

Keywords 22 

Storm event, climate change, sedimentology, historical archives, washover deposit 23 

Highlights  24 

- Washover detections use various techniques depending on the timescale used. 25 

- Three examples at the long, meso and short timescale are presented. 26 

- Historical data are necessary to attest the stormy origin of a marine deposit. 27 

  28 
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1. Introduction: from the coastal flooding to the washover deposit 29 

Marine flooding is nowadays densely studied as its damages are expected to increase in the 30 

future (Hinkel et al., 2014). The flooding risk of coastal areas may significantly be enhanced 31 

by the meaningful sea level rise expected by the IPCC (Pachauri et al., 2014), crossed with the 32 

evolution of meteorological hazards activity (e.g. Paciorek et al., 2002; Page et al., 2010; 33 

Ulbrich and Christoph, 1999) and the expected increase of worldwide coastal population 34 

(Lutz and Samir, 2010; Neumann et al., 2015). Marine flooding is induced by intense 35 

meteorological and oceanological parameters producing a significant morphogenic activity 36 

over coastal environments (Figure 1). A “storm surge” is produced when the air pressure falls 37 

down and the wind is significant (Doodson, 1924; Doodson and Warburg, 1942; Pugh, 1996), 38 

but also when the wave set-up and swash, producing the run-up altogether, are powerful 39 

(Cariolet, 2011a, 2011b; Stockdon et al., 2006). A significant storm surge can involve 40 

allochthonous deposits, called “washovers”, that come from the marine domain and go to a 41 

coastal depositional environment. Three different main mechanisms can produce 42 

“washovers” deposits from an “overwash” process (Donnelly et al., 2004) :  43 

i) The “overflowing” stays the rarest case because it requires an exceptional water level. The 44 

level has to be higher than the protecting barrier or dike (Figure 1). It is probably one of the 45 

most dangerous processes because after the retreat of the tide, the water remains blocked by 46 

the dike in the coastal low areas (Shimozono and Sato, 2016). ii) The “overtopping” by the 47 

action of the waves corresponds to the crossing of waves over dunes or dikes. They propel 48 

water over the structure or dune (Figure 1). The water level is not higher than the height of the 49 

protecting barrier. The significance of the crossing is mainly determined by the amplitude of 50 

the wave swash, but also by the direction and force of the wind influencing water projections 51 

(Leroy et al., 2015). iii) The breach of a protecting barrier (dune or dike) is the last marine 52 

submersion mechanism (Figure 1). It can be induced by the first two mechanisms presented 53 

above, and it is the one that can have the most human damages in coastal areas. It may be 54 

punctual, in sections or sometimes characterized by a complete rupture. Even if protective 55 

infrastructure serves to protect from the issues of the marine flooding hazards, peoples 56 

remains directly exposed during destruction (even partial) of these barriers (Kolen et al., 57 

2002). Breaches also induce a coarser marine deposit than overtopping and overflowing 58 

processes, with a grain size distribution from thicker to thinner sediment until the closing of 59 

the lagoon. Their standard sedimentological signature is exposed in Figure 2.  60 

To characterize an extreme event by sedimentology and to detect these washovers, three 61 

questions arise: i) How to identify a marine layer and differentiate it from traditional lagoon, 62 

marsh or lake facies? Thanks to sedimentological analyses, many indicators such as particle 63 

size and geochemistry are used to characterize the origin of sediments (Maanan et al., 2015). 64 

Marine deposits are then identified and underlined as allochthonous of the marsh (Pouzet et 65 

al., 2019). ii) When was the identified marine layer deposited in this coastal depositional 66 
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environment? After detecting the marine layers through sedimentological analyses, the 67 

sedimentary core is then dated to estimate their dates of deposit periods. This isotopic dating 68 

is done either by sediments from surface facies (e.g. Abrantes et al., 2008; Cuellar-Martinez et 69 

al., 2017), or by the organic elements present in the core (e.g. Bregy et al., 2018; Feal-Pérez et 70 

al., 2014). These methods can be used to estimate the precise age or period when the marine 71 

layers settled. iii) How can we ensure that the marine layer comes from a natural hazard? 72 

Once the marine layer has been dated, historical data can be used to accurately characterize 73 

the hazards that have induced the “overwash” process (Athimon and Maanan, 2018; Garnier 74 

et al., 2018; Liu et al., 2001). Direct estimation of return periods can lead to many reserves, 75 

especially on macrotidal coasts. Linking this method with a statistical study can, however, 76 

offer much stronger conclusions. As with the work of Mann et al. (2009), it can allow an 77 

estimation of recurrence intervals on a broader scale. Data on relative sea level and climatic 78 

variations are essential to build an accurate estimation of the return periods of extreme events 79 

(Goslin et al., 2018).  80 

This paper presents three different methodologies used to detect past storm or phases of high 81 

storminess at three different timescales (Pouzet, 2018) : the long term (at the Holocene scale), 82 

the mesoscale (corresponding to the last millennia), and the short term (the last centuries or 83 

decades). At these three timescales, a combination of methods is proposed to answer these 84 

three different questions, allowing the link between a marine deposit and a past storm or a 85 

phase of high storminess activity. Three distinct methodologies are detailed, including the 86 

choice of a relevant coastal depositional environment, of the fieldwork techniques according 87 

to the sediment type, the laboratories analyses and the potential discussion that can be set at 88 

the three timescales determined. Benefits and limits of each methodology are also exposed. 89 

They give a complete display of these three accurate combinations of methods discussed in 90 

this paper that scientist may use to detect past extreme storm event from sedimentological 91 

archives. 92 

2. State of art of methodological approaches to detect past storm deposits 93 

The first reconstructions of ancient tropical cyclones from the Gulf of Mexico, in a coastal 94 

lagoon in Alabama, were published by Liu and Fearn (1993). The sedimentological method 95 

was then synthesized in a second study in Florida (Liu and Fearn, 2000). It became widely 96 

recognized scientifically from the early 2000s, and was then largely expanded throughout the 97 

world. The method is based on the analysis of coastal marine sediment deposition transported 98 

by extreme events and deposited in a marsh, lagoon or coastal lake. Liu and Fearn (2000, 99 

1993) also discuss a relationship between the intensity of the past extreme event and its 100 

sedimentological signature. They suggest a direct relationship between the deposition 101 

structure and the intensity of the hazard. This link is still being discussed nowadays, as the 102 

size and extent of these deposits also appear to depend as much on hazard-related 103 
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meteorological parameters as on the geomorphological characteristics of the cored 104 

environment (Morton, 2002; Otvos, 2002; Sallenger, 2000). 105 

As mentioned in many recent reviews (Clarke and Rendell, 2009; Kaniewski et al., 2016; 106 

Oliva et al., 2017; Xiong et al., 2018), this method has grown considerably since the 2000s, 107 

and is still widely used worldwide today. The United States, along the North American coasts 108 

and the Caribbean Sea (e.g. Donnelly et al., 2001; J. P. Donnelly et al., 2004; Donnelly and 109 

Woodruff, 2007; Lambert et al., 2008; Noren et al., 2002; Parris et al., 2009; Scileppi and 110 

Donnelly, 2007; Scott et al., 2003) was the first place where this characteristic method 111 

significantly developed in the early 21st century. It was then expanded worldwide with some 112 

notable examples of works in Oceania (Hayne and Chappell, 2001; May et al., 2016, 2015; 113 

Nott et al., 2009; Nott and Hayne, 2001) ; Asia (Liu et al., 2001; Williams et al., 2015; 114 

Woodruff et al., 2009; Yu et al., 2009) ; Africa (Bozzano et al., 2002; Khalfaoui et al., 2019) ; 115 

in the North Sea (Chang et al., 2006; Jong et al., 2006) ; or in South America (Oliveira et al., 116 

2014; Ramírez-Herrera et al., 2012). In western Europe, several studies have analyzed “cliff 117 

top storm deposits” (e.g. Fichaut and Suanez, 2011; Hall et al., 2006; Hansom et al., 2008; 118 

Hansom and Hall, 2009; Suanez et al., 2009; Williams and Hall, 2004), Mediterranean 119 

lagoonal sequences (e.g. Abad et al., 2019; Degeai et al., 2015; Kaniewski et al., 2016; 120 

Sabatier et al., 2012, 2010) and only few works have been conducted on the French Atlantic 121 

coast (Baltzer et al., 2014; Poirier et al., 2017; Sorrel et al., 2009; Van Vliet Lanoe et al., 122 

2014). The British Isles (e.g. Devoy et al., 1996; Kylander et al., 2019; Oldfield et al., 2010; 123 

Orme et al., 2015; Wilson et al., 2004), Scandinavia (e.g. Björckl and Clemmensen, 2004; 124 

Bondevik et al., 2019; Jong et al., 2006), and Portugal (e.g. Andrade et al., 2004; Dawson et 125 

al., 1995; Hindson and Andrade, 1999) have also been deeply studied, mainly from 126 

sedimentological deposits.   127 

The first indicators of marine deposition mainly focused on changes in grain sizes. First works 128 

compared sandy marine deposits and lagoon continental clays/silts (Liu and Fearn, 1993). The 129 

range of indicators available has then grown rapidly over the years and published works 130 

(Clarke and Rendell, 2009; Kaniewski et al., 2016; Xiong et al., 2018). Organic matter (OM), 131 

geochemistry, radiography, pollen, foraminifera, colorimetry, magnetic susceptibility, clay 132 

minerals or several fauna assemblages are commonly used as evidence of a brutal 133 

environmental change in the stratigraphy of a coastal marsh.  134 

This method was also extended from the early 2000s to the analysis of tsunami deposits, as 135 

mentioned in the works conducted along the Portuguese coasts. The study of tsunami deposits 136 

was used there to detect the event of 1755 (e.g. Costa et al., 2012; Cunha et al., 2010; Oliveira 137 

et al., 2009). New Zealand’s coasts are also the subject of numerous studies of tsunami 138 

deposits from the 2000s onwards (e.g. Chagué-Goff et al., 2002; Goff et al., 2004, 2001). The 139 

method then extends across the entire Pacific Ocean coastline (e.g. Goto et al., 2012, 2010, 140 

2007; May et al., 2016; Nanayama et al., 2000; Pinegina and Bourgeois, 2001; Ramirez-141 
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Herrera et al., 2007; Scheffers and Kelletat, 2003). As a result of this extensive work, the 142 

geochemistry indicator has been popularized as a reliable indicator in sedimentological 143 

research tracing the extreme coastal paleoevents in the world (Chagué-Goff et al., 2017). This 144 

indicator is now also widely used in sedimentological studies of past cyclones (e.g. Das et al., 145 

2013; Oliva et al., 2017; Xiong et al., 2018). Distinction between stormy and tsunami deposits 146 

is a problem still strongly debated today as these two marine deposits stay similar (Davies and 147 

Haslett, 2000; Lario et al., 2010; Xiong et al., 2018). A presentation of the three timescales 148 

employed is exposed in the Figure 3. 149 

3. Methodology adapted to different temporal approaches 150 

3.1. Selection of the study sites 151 

The methodology used, detailed into Figure 4, is varied and combines different data collection 152 

and analysis techniques. The first step is to select the sampling area. The study areas are 153 

chosen according to three criteria: i) they must correspond to lowland coastal areas, as back 154 

barrier environment; ii) they mustn’t have been impacted by mankind iii) and these areas have 155 

to be located in spaces with tempestuous activities dating back to several centuries, according 156 

to local studies. 157 

We first selected several study sites using a century-long diachronic study from Geographic 158 

Information Systems (GIS). We were able to retrieve the Cassini’s maps from the end of the 159 

XVIII
th

 century, from the Etat-Major map (XIX
th

 century) and the first aerial photographs 160 

taken around 1950. These different data were imported, georeferenced and processed in a GIS 161 

according to the method extracted from Pouzet et al. (2015). These data allow us to better 162 

understand the recent evolution of the selected sites and to estimate the origin of potential 163 

human impacts. The second selection concerns the analysis of topo-bathymetric data. It 164 

allows us to analyse the topography and the precise bathymetry, in order to evaluate the 165 

current geomorphology of the selected sites. They especially enable us to obtain precisely the 166 

altitude of the protective sandy barriers and the protected lowlands cored. We were able to 167 

produce a few geomorphological sections to choose the most relevant sites to study extreme 168 

events deposits. Finally, we have affined our selection on lands that are regularly impacted by 169 

storms (Athimon and Maanan, 2018; Feuillet et al., 2012; Le Roy et al., 2015). After selecting 170 

the study areas, sampling stations have to be selected. Coring too close to the protecting 171 

barrier can induce a smaller recording of marine deposits. During the deposition process, the 172 

sandy barrier usually protects the lowlands located a few meters back according to Liu and 173 

Fearn (2000). As the sandy barrier is thicker nowadays than in the past, its protecting action is 174 

more important today than before. To detect millenary storms in lowland protected by a 175 

barrier which have been thickened, a coring close to the actual barrier may offer the detection 176 

of historical storms (Pouzet, 2018). 177 
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Two different coastal environments can be studied: i) back barriers lowlands areas and ii) 178 

ancient coastal marshes that are sealed today, as peat bog of coastal lakes. Back barriers 179 

coastal marshes records past storms that hit the region during the last decades or centuries, 180 

depending of their age and the sedimentation rate assessed (e.g. Donnelly et al., 2004; Kenney 181 

et al., 2016; May et al., 2015). This first type of coastal environment can be used to study past 182 

storms at a short or meso timescale. In sealed ancient coastal marshes, sedimentation rates are 183 

lower and can testify of an ancient lowland connected with the sea. They are used to assess 184 

Holocene storms or phases of high storm activity and can be used in the long term timescale 185 

analyses (e.g. Jong et al., 2006; Liu and Fearn, 1993; Orme et al., 2015; Stewart et al., 2017).  186 

3.2. Sampling methods 187 

Sedimentological cores allow us to study the vertical evolution of the sedimentary facies and 188 

to analyse paleoenvironmental dynamics. They can include impacts of land use change (e.g. 189 

Cuellar-Martinez et al., 2017; Maanan et al., 2014, 2018, 2015; Ning et al., 2018; Yim et al., 190 

2018), environmental changes such as sea level rise (e.g. Baltzer et al., 2015; Culver et al., 191 

2015; Fruergaard et al., 2015; Lambeck and Bard, 2000) and past storms detection (e.g. 192 

Bennington and Farmer, 2014; Parris et al., 2010; Parsons, 1998).  193 

Two coring methods are used depending on the type of environment and the time scale 194 

considered: i) The « Beeker » handled corer is used into wet foreshore sediments (e.g. 195 

Anderson et al., 1997; Fisher et al., 1992; Giuliani et al., 2015; Glew and Smol, 2016; Kanbar 196 

et al., 2017). It can be used for the short term storm analysis of back barrier marshes with high 197 

sedimentological dynamics (Figure 4). ii) The « vibracore » corer is used in sealed sediments 198 

and can reach more important depths due to the compact sediment (e.g. DeVries-Zimmerman 199 

et al., 2014; Francus et al., 2008; McGlue et al., 2015; Thompson and Baedke, 1995; Vance et 200 

al., 1992; Yuan et al., 2013). It can be used into back barrier environments which are less 201 

dynamics and wetter (natural salt marshes or “schorres”) into the mesoscale methodology. It 202 

can also be used in ancient peat bog or sealed marshes for the long term analysis and the 203 

detection of Holocene storms or phases of storminess increases (Figure 4). 204 

Cores are then longitudinally opened in the laboratory. The first half is analyzed and the 205 

second is archived and stored at 4°C to slow down deposit oxidation. A precise photograph is 206 

taken as soon as the cores are opened to preserve the colors of the different facies. A 207 

stratigraphic log is then constructed to describe the core (Figure 4). Sediments are 208 

characterized by a visual litho-microstratigraphic analysis, to identify major changes in 209 

granulometry, color, organic matter and to identify each macrofossil observed. 210 

3.3. Sedimentological analyses for past storm detection 211 
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A high-resolution sampling is conducted before sedimentological analyses: a half centimeter 212 

sampling is made for the geochemical signature determination and a centimeter sampling for 213 

others treatments. Samples from each core will be analyzed by several scientific devices 214 

(Figure 4). These analyses permit to characterize the physio-chemical and biological 215 

parameters of sediments and to identify their origin (marine, continental or coastal). The 216 

dating of the various sedimentary levels of cores is done using 
210

Pb and 
137

Cs for the last 217 

century (e.g. Abrantes et al., 2008; Keen et al., 2004), and radiocarbon (
14

C) for longer time 218 

scales (e.g. Liu and Fearn, 2000b; Parris et al., 2010; Sorrel et al., 2009). 219 

X-ray radiography by Scopix is used to provide images of the sedimentary structure of the 220 

cores, the bioturbation, density and heterogeneity of the sediments, as well as the general 221 

organization of the facies collected. This can also help identify fine sedimentological 222 

variations which would be otherwise difficult to pinpoint, or even fine elements located in the 223 

center of the core (shells, pebbles, remains of plants, etc.) when analyzing lithostratigraphy 224 

(e.g. Coor et al., 2009; Migeon et al., 1998; Scott et al., 2003). Statistical analyses can be used 225 

to select relevant indicators to characterize marine deposits made by storms (Pouzet et al., 226 

2019). Marine flooding is identified by a typical sedimentary sequence that alternates between 227 

a level of marine sand (the washover fan) and the lagoon layers surrounding composed of 228 

vases or silts with continental chemical influence. The marine sand can also be identified by 229 

its biology with a significant presence of marine species. 230 

3.3.1. The long scale analysis of Holocene periods of high storm activity 231 

After extracting a core from a sealed coastal marsh with a “vibracore” corer, samples with 232 

high carbon concentration or shell or plants remains are dated with the 
14

C isotope (Figure 4). 233 

The samples are burned at 500°C in a 1 L muffle furnace for four hours, in order to assess the 234 

organic matter content by the loss in the ignition process (Santisteban et al., 2004). OM 235 

proportion allows us to understand the paleoenvironmental changes of the study site, an 236 

important parameter in the long scale analysis. Grain size is measured with a Malvern 237 

Mastersizer 2000 © particle size analyzer, after a 5% sodium hexametaphosphate dispersion 238 

(Gee and Or, 2002). Sand, silt and clays proportion can be extracted according to the Blott 239 

and Pye (2001) classification, and a sand dominated content generally testify of the marine 240 

origin of the sediment. Sedimentological high-resolution elemental analyses are evaluated 241 

using an Avaatech© X-ray fluorescence (XRF) core scanner. Element intensities are 242 

normalized by the total intensity (Bouchard et al., 2011; Martin et al., 2014). Strontium (Sr) 243 

and Calcium (Ca) are the two elements which are mostly cited as marine (e.g. Chagué-Goff et 244 

al., 2017; Pouzet et al., 2019; Roy et al., 2010). Other possibilities of marine proxy are also 245 

mentioned in bibliography, including foraminifera (e.g. Alday et al., 2006; Hippensteel and 246 

Martin, 1999), molluscan assemblages, (e.g. Bettinelli et al., 2018), pollens (e.g. Jong et al., 247 

2006), or clay mineral (e.g. Sabatier et al., 2010) analyses. 248 
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Marine layers are then extracted after identifying the sediment origins of each facies. To 249 

prove that the marine layers have been deposited during a Holocene storm phase, a 250 

comparison with other geological works from the scientific bibliography is required (Figure 251 

3). At the Holocene scale, storm phases can be identified from several geological methods, 252 

such as other similar back barrier analyses (e.g. Liu and Fearn, 1993; May et al., 2016; 253 

Sabatier et al., 2012), “cliff top storm deposits” detection (e.g. Hall et al., 2006; Hansom and 254 

Hall, 2009; Williams and Hall, 2004), bay sedimentation (e.g. Baltzer et al., 2014; Poirier et 255 

al., 2017; Van Vliet Lanoe et al., 2014), dune evolution (e.g. Clarke and Rendell, 2006; 256 

Clemmensen et al., 2009; Jelgersma et al., 1995), beach ridges morphology (e.g. Nott et al., 257 

2009; Scheffers et al., 2012; Thompson and Baedke, 1995), coral distribution (e.g. Gardner et 258 

al., 2005; Hongo, 2018; Scoffin, 1993), and speleothems (e.g. Frappier et al., 2007; Zhu et al., 259 

2017), tree-ring (e.g. Cook and Kairiukstis, 2013; Lafon and Speer, 2002; Nicolussi et al., 260 

2005) or diatom (e.g. Nodine and Gaiser, 2015; Stager et al., 2017) production. The crossing 261 

of sedimentological deposits with all these methods can be made to assess Holocene storm 262 

activity in the same oceanic basin. 263 

The detection of storm phases at a large timescale gives us clues about Holocene storm 264 

activity, underlying periods of increasing and decreasing storminess over the last 12 000 265 

years.  These phases can be linked to climate change influenced mechanisms, such as 266 

atmospheric circulation patterns (e.g. Goslin et al., 2018; Poirier et al., 2017; Stewart et al., 267 

2017), temperature evolution (e.g. Sabatier et al., 2012; Sorrel et al., 2009; Van Vliet Lanoe et 268 

al., 2017) or ecstatic sea level variation (e.g. Baltzer et al., 2014; Spencer et al., 1998; Tisdall 269 

et al., 2013). As these different drivers can also be reconstructed in long timescales, they can 270 

show correlation with Holocene storm phases regionally detected in sedimentology. It may 271 

increase our understanding of atmospheric or oceanic storm influences.  272 

3.3.2. The mesoscale analysis of millenary extreme events  273 

A “vibracore” corer can be used to extract a core from less dynamic back barrier 274 

environments such as natural salt marshes or “schorres” (Figure 4). Radiocarbon content and 275 

upper sediments are then sampled to be dated with 
14

C, 
210

Pb and 
137

Cs. A crossing of the two 276 

dating methods gives important dating precision to the entire core. To increase precision of 277 

the OM estimation, a LECO © carbon analyzer estimates the CO
2
 percentage after a 1400°C 278 

dioxygen burning and a mineral decarbonizing with sulfuric acid solution (Andrews et al., 279 

2008; Michaelson G. J. et al., 2011). Grain size and elemental analyses are also measured 280 

with a Malvern Mastersizer 2000 © particle size analyzer, and a Avaatech© X-ray 281 

fluorescence (XRF) core scanner (Bouchard et al., 2011; Gee and Or, 2002; Martin et al., 282 

2014). Marine geochemical ratios, extracted from a statistical study, are used (Pouzet et al., 283 

2019). As a positive correlation between lightness and carbonate content has already been 284 

demonstrated (Mix et al., 1995), lightness is estimated by colorimetric analyses with a 285 
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Minolta© Cm-2600d spectrometer. The magnetic susceptibility, which has been previously 286 

used with success in other paleoenvironmental studies is measured with a MS2E-1© 287 

Bartington-type (Bloemendal and deMenocal, 1989; Wassmer et al., 2010). 288 

Once the marine layers are detected, they can be linked to extreme events or precise past 289 

storms thanks to historical archives (Figure 3) if the region has a dense historical 290 

documentation (Liu et al., 2001). Numerous types of documents, such as ancient maps, 291 

narrative sources (chronicles, diaries or memories) and documents preserved in libraries and 292 

in regional archives (books of accounts, records of repairs, surveys conducted after a disaster, 293 

barometric observations, newspapers for instance) can be used (Athimon and Maanan, 2018; 294 

Pouzet et al., 2019). They expose observational and descriptive data on past extreme weather 295 

hazards such as the descriptions of the storm and the damage caused, as well as impacts on 296 

societies and their reactions and adaptation (Garnier et al., 2018; Sarrazin, 2012; Sauzeau, 297 

2014). Before being used to reconstruct the history of storms and sea flooding over a 298 

relatively long period, documents have to be studied, analyzed and criticized (Athimon et al., 299 

2016). A precise date can be assessed from historical archives for storms that hit the region 300 

several centuries ago and that have been detected in sedimentology. 301 

Building a precise millennial storm chronology is a relevant tool to understand storm 302 

dynamics. Numerous synoptic oceano-climatological patterns such as the North Atlantic 303 

Oscillation (NAO) and the El Nino Southern Oscillation (ENSO) are mainly modelled into the 304 

last centuries, or in the late Holocene (e.g. Baker et al., 2015; D’Arrigo and Jacoby, 1991; 305 

Trouet et al., 2012). To understand the influence of these patterns in storm dynamics, a 306 

precise late Holocene storm chronology is required (e.g. Orme et al., 2016; Poirier et al., 307 

2017; Sorrel et al., 2009). In the Atlantic basin, this mesoscale sedimentological and historical 308 

coupling may also show storm activity variations between the three climatological main 309 

phases: the Medieval Warm Period (WMP), the Little Ice Age (LIA) and the Anthropogenic 310 

actual warming (e.g. Degeai et al., 2015; Orme et al., 2016; Van Vliet Lanoe et al., 2014). 311 

Understanding these evolutions is necessary to assess future stormy variations in this context 312 

of climate change. 313 

3.3.3. The short scale analysis of recent storms 314 

The wet foreshore of a back barrier environment is cored with a “Beeker” type corer, and the 315 

top of the core is sampled to be dated with 
210

Pb and 
137

Cs (Figure 4). As any 316 

paleoenvironmental evolution of the study site is assessed at this short timescale study, OM 317 

content is not analyzed. Grain size, elemental analyses, lightness and magnetic susceptibility 318 

are also measured with a Malvern Mastersizer 2000 © particle size analyzer, a Avaatech© X-319 

ray fluorescence (XRF) core scanner, a Minolta© Cm-2600d spectrometer and an MS2E-1© 320 

Bartington-type (Bouchard et al., 2011; Gee and Or, 2002; Mix et al., 1995; Wassmer et al., 321 
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2010). New statistical grain size proxies, as deciles or quartiles, can be tested. Microtextural 322 

characteristics of quartz grains can also be used as a proxy (e.g. P. Costa et al., 2012). 323 

To be sure that the observed marine layers are related to a recent storm, numerous historical 324 

data can be used (Figure 3). Local diaries offer interesting information about damages made 325 

by past extreme events (Athimon and Maanan, 2018). National weather service’s websites can 326 

also present dense information about historical marine floodings (Pouzet et al., 2019). In 327 

addition, sedimentological archives can also be linked to accurate meteorological data, such 328 

as wind speed and direction, air pressure or precipitations (Pouzet et al., 2018b). 329 

Meteorological reanalysis offers a dense dataset of meteorological parameters for the XIX
th

 330 

and the XX
th

 centuries (Weisse et al., 2009). As marine inputs testify about past marine 331 

flooding in lowland areas, tide parameters can also be estimated in area undergoing a 332 

significant tide gauge. It may assure that the past storm induced a temporally sea level rise, 333 

and can precisely give the hour when the storm surge occurred during high tides (Kolen et al., 334 

2002). Finally, recent studies showing models of wave parameters during storm surges can 335 

also offer additional information about the flooding which brought marine inputs in the 336 

coastal marsh (Bertin et al., 2012).  337 

Other biological correlations can be assessed to complement knowledge in recent storms. For 338 

instance, Pouzet et al. (2018b) showed that a dendrochronological approach can complement 339 

the sedimentological method to understand recent storm dynamics. Independently, 340 

sedimentological and dendrochronological data exhibit the dating of some particularly 341 

destructive storms in a specified area and their impacts on a back barrier coastal marsh and on 342 

trees. The sedimentological study shows some of the strongest marine flooding reported, and 343 

the tree-ring analysis offers an overview of the occurrence of the windiest storms at a forest 344 

scale. This coupled approach requires the presence of a dune stand near the back barrier 345 

environment cored. 346 

4. Three examples of storm detection from sedimentology at the three timescales 347 

4.1. Long timescale series: The stormy period detection at the Yeu island 348 

Stormy phases can be detected in several sites of a same area. The study of Pouzet et al. 349 

(2018a) has been conducted in Yeu island, a French island regularly impacted by storms 350 

(Athimon and Maanan, 2018). Three old sealed coastal marshes, which are separated from the 351 

sea by high dunes, have been cored (Figure 5). The lithostratigraphy of the first core extracted 352 

in the Marais de la Guerche is mainly composed of peat. Its main peaty layer is interrupted by 353 

a large 40 centimeter wide sandy sheet. A strong event has deeply impacted this lowland, with 354 

a marine sandy layer observed from centimeter 10 to 51. The marine occurrence is confirmed 355 

by the presence of Bittium Reticulatum marine shells, dated at 1800 cal y BP at centimeter 37, 356 
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and the high Ca and Sr values. The sharp contact between the lower peat and the marine layer 357 

testifies of the suddenness of the event. It was produced by two consecutive increases in sand, 358 

enhancing the mean grain size from 20 to 320 µm and decreasing the OM from 75 to 20% due 359 

to the high increase of marine sands (from 15 to 80%) and the disappearance of OM-reach 360 

peats. The onset of these two successive increases is estimated at 2070 and 1940 cal y BP. 361 

The Marais de La Croix is the second coastal lowland cored. At the bottom of the core, the 362 

environment is more energetic, with coarse sediments with low OM levels (10 to 20%), and 363 

slight geochemical variations until cm. 55. An important event disturbs the environment near 364 

2100 – 1950 cal y BP (50-55 cm). After this stormy period, there is a change in the 365 

environment with a lower energetic depositional marsh with marked increases in OM (30 to 366 

50%), notable mean grain size (20 to 10µm), and Sr (0.7 to 0.5) decreases, until the top of the 367 

core. The Coulee Verte is the last environment studied. Several storm incursions are reported 368 

in the entire core, including a disturbance starting near centimeter 100, increasing the OM rate 369 

from 40 to 60% from centimeter 100 to 90. This disturbance ends at centimeter 80, where a 370 

significant grain size increase is estimated from 10 to 30µm, and sandy (from 5 to 45 %) Ca 371 

(8 to 10) and Sr (from 1.1 to 1.4) peaks are detected. 372 

In Yeu Island, this significant storm phase which deeply disturbed the three cored marshes is 373 

estimated around Anno Domini (Figure 5). It has been assessed around 2100-1950 cal y BP 374 

thanks to the 
14

C dating results of the three different cores. This storm series may have opened 375 

a large breach in the Marais de la Guerche, which functioned as a permanent inlet for 1200 376 

years (Pouzet et al., 2018a). From the crossing with other geological storm-related studies, we 377 

can assess that the entire European coast underwent similar impacts near Anno Domini. 378 

Degeai et al., 2015 observed a high Mediterranean stormy period in southern France between 379 

2044 and 1993 cal y BP. A storm event was also reported in Brittany at 2060 cal y BP by Van 380 

Vliet Lanoe et al. (2014). Peaks of storminess have been reported from 2090 to 1970 cal y BP 381 

in western Wales (Orme et al., 2015). Lastly, the start of a transgressive dune building period 382 

at 2200 cal y BP is due to strong wind activity with sand invasion in central western Portugal 383 

(Clarke and Rendell, 2006). These bibliographic correlations prove the stormy origin of the 384 

perturbation observed in the three Yeu island cores. 385 

Overall, nine periods of storminess increases, called Yeu Stormy Periods (YSP), were 386 

extracted from the three investigated cores analyzed in Pouzet et al., (2018a). YSP have then 387 

been correlated with European paleo-environment studies from the scientific literature, in 388 

order to extract five European Atlantic Stormy Events (EASE). EASE are global phases of 389 

storm increase period at the scale of the European Atlantic coast, estimated around 600-300, 390 

1700-1100, 2900-2500, 3500-3300, 5500-5100 and 7700-7100 cal y BP. From the correlation 391 

with Holocene cold event estimated by Bond et al. (2001, 1997) from an ice rafted debris 392 

study (and then extended worldwide by Wanner et al. (2011)), EASE are linked to the 393 

Holocene cold climatic phases (Pouzet et al., 2018a). This hypothesis follows previous 394 

correlations already established between European storm activity and cold Holocene phases, 395 
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which were particularly conducted by Degeai et al. (2015), Sabatier et al. (2010), and Vallve 396 

and Martin-Vide (1998). Detection of Holocene storm phases from sedimentology can be a 397 

useful tool to apprehend possible climatological influences of historical storm activity. 398 

4.2. Meso-timescale series: an historical extreme event detected in Brittany clarified by 399 

ancient archives 400 

The Petite mer de Gâvres (PMG) is a French back barrier lagoon protected from the sea by a 401 

high sandy dune in Brittany (Figure 6). The PMG paleoenvironment can be divided into two 402 

different stages (Pouzet, 2018). The first one is at the base of the core (between cm. 115 and 403 

280: pre- 768 ±230 AD; section A). It testifies about a calmer environment than the upper 404 

centimeters of the core. A silty environment between cm. 180 and 280 is interrupted by 405 

several sandy EE. It characterizes the end of the protecting dune construction, with significant 406 

grain size and geochemical variations. The dune construction transits until a mudflat 407 

environment isolated from the sea once the littoral spit formed, between cm. 115 and 180. 408 

This environment is composed of dense clays, rich of continental elements. The second main 409 

stage characterizing the construction of this environment corresponds to the upper part of the 410 

core (cm. 0-115: post-768 ±230 AD period; section B). This section is more dynamic than 411 

section A, with a dominance of marine sediments. Salicornia vegetation testifies about a salt 412 

marsh environment undergoing tidal ranges. A succession of important extreme events 413 

deposits contributed to the formation of an important marine sandy deposit behind the 414 

protecting dune, including a 1445 ± 40 AD impacting event recorded at centimeter 79. It has 415 

been dated with the crossing of 
14

C and 
210

Pb/
137

Cs methods. This extreme event induced a 416 

significant mean grain size increase from 59 to 512 µm, a fall of CO
2
 from 7 to 1% due to the 417 

sandy input, and an increase of lightness from 44 to 68% depending on the brighter color of 418 

sands compared to clays and silts. As a 3cm wide diameter pebble has been detected in this 419 

layer, geochemical analyses and radiography have been interrupted. The pebble is the 420 

testament of about a highly impacting extreme event, producing significant oceanic dynamics, 421 

which have deeply perturbed this coastal environment. 422 

According to Athimon (2019) data, this significant impact can be linked to the storm that hit 423 

the French Atlantic coast during the 27
th

 – 28
th

 January 1469 (n.st) AD, during a high Spring 424 

tide assessed on January 28
th

. This storm induced significant damages into dikes and salt 425 

marshes of the Bouin town, a former island submerged during the night. After this event, 426 

historical records testify about the probable loss of 1 500 tons of salt, inducing major 427 

economic losses (Athimon and Maanan, 2018). Important breaches appeared, numerous 428 

ridges or roads were destroyed and several fertile lands became sterile (Athimon et al., 2016). 429 

The bell tower of Saint-Aubin fell down and numerous trees were uprooted near Angers 430 

(Athimon, 2019). Into the Retz region, the seigneurial taxes had to be reduced due to the 431 

important impact of the marine flooding (Athimon, 2019; Sarrazin, 2012, 2005). The 432 
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information extracted from historical archives offers important details about economical and 433 

societal impacts of storm, to complement environmental impacts detected in the 434 

sedimentological sequence. 435 

4.3. Short timescale series: a recent storm inducing marine flooding and tree ring 436 

disproportions in the Traicts du Croisic 437 

The Traicts du Croisic (TDC) is a French back barrier depositional environment located in 438 

Loire-Atlantique, western France (Figure 7). From the analysis of several core extracted from 439 

this environment, Pouzet et al. (2019) have identified twelve recent storms producing marine 440 

flooding. One of them has been detected in the center of the lagoon at cm. 9 of the core. Mean 441 

grain size increased from 80 to 175 µm, with a very slight increase of the tenth decile. 442 

Strontium/Iron (Sr/Fe) and Calcium/Titanium (Ca/Ti) respectively increased from 0.08 to 443 

0.15 and from 9 to 22. After the event, lightness started to increase from 40 to 50% and the 444 

magnetic susceptibility slightly decreased from 1 to 0. A significant impact is also visible in 445 

the radiography. With 
210

Pb and 
237

Cs dating, this marine layer has been deposited around 446 

1977 AD, with a few years of error margin.  447 

According to the recent historical documents, the two events of 2
th

 December 1976 AD and 448 

11
th

 January 1978 AD could have caused this marine deposit. However, the 1976 AD storm 449 

crossed a very low Neap tide, while a Spring tide occurred during the 1978 AD event. The 450 

second date of 11
th

 January 1978 AD is therefore used for this hypothesis. With a dozen 451 

reported deaths, this storm crossed a large part of France involving important damages 452 

reported from Dunkirk to the Gironde estuary. Numerous shipwrecks and marine flooding are 453 

mentioned in French sources (Le Marin 1595, Metmar 101), and English documents for 454 

British damages such as Steers et al. (1979). This Britannic source explains that “many 455 

houses were swept away by the waves” during the marine flooding that impacted England. 456 

Significant windy damages are mentioned in these various sources, including uprooted trees 457 

or devastated houses in several parts of the two countries. 130km/h winds are reported in 458 

England, and no maximum wind is documented in France (Pouzet, 2018). Precise information 459 

can be extracted from these recent data. They attest to the stormy origin of the deposit and to 460 

offers further information about the meteorological and oceanological parameters recorded 461 

during the storm. 462 

With an Index of Storm Disturbance estimated at 15 % during the 1977 – 1978 AD winter, 463 

Pouzet et al. (2018b) showed that this storm has also impacted the dune stand located a few 464 

kilometers north of the TDC. Based on tree ring growth disproportions, significant winds have 465 

induced the perturbation of 15% of the sampled living trees, attesting the power of the 466 

meteorological parameters during this storm. As both the dendrochronological and 467 

sedimentological methods underlined storm impacts during the 1977 – 1978 AD winter, it 468 
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confirms that this storm has induced significant winds coming from the south west and an 469 

important marine flooding near the TDC area. These hypotheses have also been confirmed by 470 

historical archives. The relation between sedimentological and dendrochronological archives 471 

has yet to be developed with further precision nowadays. 472 

5. Discussion and conclusions 473 

The three methodologies expose three different accurate combinations to detect past storm 474 

impacts from sedimentological archives. However, several choices can be discussed to 475 

improve the reliability of these results. At the Holocene timescale, the 
14

C dating of sealed 476 

coastal marshes or peat bogs reaches higher uncertainties than the 
210

Pb / 
137

Cs method used at 477 

the two other timescales. It remains, however, the most used and accurate dating method 478 

found in bibliography for Holocene sedimentological stratigraphy (e.g. Engel et al., 2012; 479 

May et al., 2016; Page et al., 2010). This higher uncertainty does not allow the detection of a 480 

precise past storm impact estimated to a day or a month. The detection of “storminess 481 

increasing phases” rather than “precise storm impacts” is preferred. For ancient 482 

reconstruction like the Holocene chronology, the only way to be certain of a past storm phase 483 

is the comparison with other storminess found in various environmental studies (Pouzet et al., 484 

2018a). Unlike the methodology presented for the two other timescales, historical archives 485 

cannot prove old events at a Holocene timescale. Caution must therefore always be applied 486 

when interpreting the paleostorm or paleotsunami marine deposits at this timescale. 487 

Furthermore, if several studies (mainly under a macrotidal regime) suggest a change in the 488 

frequency or intensity of storm events throughout time (e.g. Donnelly and Woodruff, 2007; 489 

Parris et al., 2010), the sedimentological study conducted must take the tide regime into 490 

account. For a macrotidal coast, it remains challenging to discuss storm frequency or intensity 491 

variations since a storm has to be crossed with a Spring tide to impact the coastal area. The 492 

marine deposits detected only prove that storms have more or less impacted the environment 493 

studied at a precise time. 494 

Even if the meso-timescale study reaches high dating precisions, the combination of 
14

C with 495 
210

Pb / 
137

Cs dating techniques can be discussed. If the two methods are accurate and give 496 

precise results, the stratigraphical layers that are concerned in the core by the crossing 497 

between the upper 
210

Pb / 
137

Cs and the lower 
14

C dating undergo high dating uncertainties. 498 

Sediment compaction over the time has been proved to interfere with isotope dating. The 499 

accumulation rate found can be different depending on the different dating methods used on a 500 

same core, increasing uncertainties (Brain et al., 2015; Davidson et al., 2004; Edwards, 2006). 501 

To avoid confusion in the determination of precise past storm dates, the crossing of the two 502 

dating techniques has to be conducted on a layer that is not concerned by marine inputs. The 503 

meso-timescale methodology also sets out the primary interest of historical archives. In 504 

addition to confirming ancient sedimentological hypotheses with a low uncertainty, it offers 505 

valuable understanding keys for finely characterizing the damage caused by the past events 506 
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detected. The socio-economic impacts of several centuries old storms are fully described and 507 

the comparison of several past events can assess the society resiliency evolution across the 508 

history (Athimon and Maanan, 2018).  509 

A high resolution of past storm impacts is conducted at the Anthropocene timescale. 510 

Meteorological data and recent newspaper articles gives the precise meteorological and 511 

oceanological parameters producing these recent storms. Even if geochemical ratios have 512 

become a common use into storm and tsunami sedimentological chronologies (Chagué-Goff 513 

et al., 2017), these proxies have to be used after a precise analysis of the sediment 514 

composition. The geochemical signature depends on the environment studied, and the ratios 515 

built can differ depending on the oceanic basin and the continental inputs. A statistical study 516 

with a Principal Component Analysis (PCA) and a dendrogram showing the main origin of 517 

each element can be conducted (Pouzet et al., 2019). The dendrochronological crossing with 518 

sedimentological impacts of storm can still be improved nowadays. These two methods 519 

cannot be strictly crossed because their impacts come from distinct parameters (wind activity 520 

for the dendrochronology and oceano/meteorological parameters for the sedimentology). Both 521 

approaches are however efficient in their own way and their combination helps our 522 

understanding of storm impact distribution in a specific area (Pouzet et al., 2018b).  523 

In conclusion, this paper exposes methodologies used at three different timescales to 524 

document sedimentological evidence of recent or ancient past storms, and Holocene storm 525 

phases. Various coring methods, dating techniques and sedimentological analyses are 526 

employed, depending on the main objectives of the paleostorm study conducted. They have 527 

been summarized in Figure 8, which illustrates the main points of all the methods exposed in 528 

this paper. We underline the necessity of proving the stormy origin of each marine deposit 529 

detected and dated in the different cores. To attest to their oceano-atmospherical origin, 530 

historical data study is essential. It proves that marine layers must come from natural coastal 531 

hazards. History can be used to date past event accurately, sometimes with a defined day or 532 

time. Depending on the timescale used, it can be scientific bibliography, written sources or 533 

modern meteorological data such as reanalysis. It provides important information on the 534 

impacts identified, characterizing the general magnitude of past events, offering precise 535 

complements on societal and economic damages recorded, and the society reaction evolution 536 

across the history. Based on these historical data, the three methodologies presented expose 537 

accurate combinations of multidisciplinary methods discussed in this paper, used to detect 538 

past extreme storm events extracted from sedimentological archives. 539 
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