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Approximate controllability of the linearized Boussinesq system in a two dimensional channel

In this paper, we prove an approximate controllability result for the linearized Boussinesq system around a fluid at rest, in a two dimensional channel, when the control acts only on the temperature, through the upper boundary. This result can be seen as a first step to obtain an open loop stabilization result of the nonlinear Boussinesq system, in the spirit of the article [CE19] by Chowdhury, Ervedoza concerning the Navier Stokes equations. The proof relies on the well-known Fattorini criterion, i.e. we show an unique continuation property for the adjoint system, by expanding the solution in Fourier series and using ordinary differential equations arguments. More precisely, we prove that the spectrum of the adjoint operator splits into two parts corresponding respectively to the Stokes eigenvalues and the Dirichlet Laplacian eigenvalues. Whereas the second part can be treated easily thanks to the wellknown form of the eigenfunctions, the first part requires to show that a matrix of size three, depending analytically of the parameters of the problem, is "generically" invertible.

Introduction

Let Ω = T×(0, L), where T is the one-dimensional torus, identified with the interval (0, 2π) with periodic boundary conditions in the x 1 variable, and L ∈ (0, +∞). In this setting, we consider an incompressible fluid, with velocity field u = u(t, x 1 , x 2 ) = (u 1 (t, x 1 , x 2 ), u 2 (t, x 1 , x 2 )) ∈ R 2 and pressure p = p(t, x 1 , x 2 ) ∈ R, satisfying the Navier-Stokes equation coupled through a source Figure 1: Two-dimensional channel Ω term with the temperature θ = θ(t, x 1 , x 2 ) ∈ R, satisfying a heat equation with a convection term. This corresponds to the Boussinesq approximation

               ∂ t u + (u • ∇)u -ν∆u + ∇p = θe 2
in (0, ∞) × Ω, div u = 0 in (0, ∞) × Ω, u(t, x 1 , 0) = u(t, x 1 , L) = 0 on (0, ∞) × T, ∂ t θ -α∆θ + u • ∇θ = 0 in (0, ∞) × Ω, θ(t, x 1 , 0) = 0, θ(t, x 1 , L) = h(t, x 1 ) on (0, ∞) × T, (u, θ)(0, •) = (u 0 , θ 0 )

in Ω.

(1)

Here, we have used the notation e 2 , for the second vector of the canonical basis of R 2 , i.e. e 2 = (0, 1) T . Moreover, we assume that the viscosity coefficient ν of the fluid and the diffusion coefficient α of the temperature belong to (0, +∞). In the control system (1), at time t ∈ (0, +∞), (u(t, •), p(t, •), θ(t, •)) is the state and h(t, •) is the boundary control, acting only on the component θ through the upper boundary.

Let us remark that a particular stationary solution of (1) is (u, p, θ, h) = 0, which corresponds to a fluid at rest. The linearization around 0 of (1) gives the following linear control system

              
∂ t u -ν∆u + ∇p = θe 2 in (0, ∞) × Ω, div u = 0 in (0, ∞) × Ω, u(t, x 1 , 0) = u(t, x 1 , L) = 0 on (0, ∞) × T, ∂ t θ -α∆θ = 0 in (0, ∞) × Ω, θ(t, x 1 , 0) = 0, θ(t, x 1 , L) = h(t, x 1 ) on (0, ∞) × T, (u, θ)(0, •) = (u 0 , θ 0 ) in Ω.

(2)

We remark that the system (2) couples a Stokes equation with a heat equation.

If we expand u into Fourier series, u = k∈Z u k (t, x 2 )e ikx 1 , then the 0-mode u 0 defined by

u 0 (t, x 2 ) = T u(t, x 1 , x 2 )dx 1 = u 0 1 (t, x 2 ) u 0 2 (t, x 2 ) , (3) 
satisfies the uncontrolled equation

       ∂ t u 0 1 -ν∂ 22 u 0 1 = 0 in (0, ∞) × Ω, u 0 1 (t, 0) = u 0 1 (t, L) = 0 in (0, ∞), u 0 1 (0, x 2 ) = T u 0 1 (x 1 , x 2 )dx 1 in (0, L), u 0 2 (t, x 2 ) = 0 in (0, ∞) × Ω. (4) 
Then, the goal of this article is to prove an approximate controllability result for the system (2) for solutions, without 0-mode, see Theorem 2.1 below.

Roughly speaking, (2) is approximately controllable because it is a cascade system. Indeed, the control h acts on the component θ, through the upper boundary, then θ indirectly controls the component u 2 thanks to the coupling term θe 2 then u 2 indirectly controls the component u 1 thanks to the incompressibility conditions

∂ 1 u 1 = -∂ 2 u 2 .

Main result

Functional framework

In this part, we recall some basic facts on the linearized system (2) and give a modal description adapted to our setting. We will often deal with functions u defined in Ω, taking values in R 2 , hence belonging to functional spaces of the form L 2 (Ω) 2 , or H 1 (Ω) 2 . To simplify notations, we will simply denote by L 2 (Ω) and H 1 (Ω) the spaces L 2 (Ω) 2 and H 1 (Ω) 2 respectively.

Recall that Ω = T × (0, L). For convenience, we define Γ 0 = {(x 1 , 0) ; x 1 ∈ T}, Γ 1 = {(x 1 , L) ; x 1 ∈ T} the lower and upper boundaries, and Γ = Γ 0 ∪ Γ 1 , see Figure 1. We introduce the spaces

V 0 (Ω) = {u = (u 1 , u 2 ) ∈ L 2 (Ω) ; div u = 0, u • n, 1 H -1/2 (Γ),H 1/2 (Γ) = 0}, (5) 
V 0 n (Ω) = {u ∈ V 0 (Ω) ; u • n = 0 on Γ}, (6) 
X = V 0 n (Ω) × L 2 (Ω), (7) 
V 1 (Ω) = {u = (u 1 , u 2 ) ∈ H 1 (Ω) ; div u = 0 in Ω}, (8) 
V 1 0 (Ω) = {u ∈ V 1 (Ω) ; u(x 1 , 0) = u(x 1 , L) = 0 for x 1 ∈ T}. (9) 
The definitions of ( 5) and ( 6) are justified in [BF13, Chapter IV, Section 3.2]. We also introduce the Leray operator P as the orthogonal projection operator from L 2 (Ω) onto V 0 n (Ω), see [BF13, Chapter IV, Section 3.3]. The Boussinesq operator is then given by

A = A 0 + A 1 = νP∆ (0) (0) α∆ +   0 0 0 0 0 1 0 0 0   = A S A C (0) A L , (10) 
with domain

D(A) = H 2 (Ω) 3 ∩ V 1 0 (Ω) × H 1 0 (Ω) on X. (11) 
Indeed, the domain of the Stokes operator A S = νP∆ is given in [BF13, Chapter IV, Section 5.2, Proposition IV.5.9], the domain of the Dirichlet Laplacian operator A L = α∆ is given in [Bre11, Section 9.6, Theorem 9.25] and A C θ = (0, θ) T is a bounded operator, A C ∈ L(L 2 (Ω); L 2 (Ω)).

We now briefly describe the functional setting adapted to the linearized equations (2). To put the system in an abstract from, we introduce the Dirichlet operator D ∈ L(L 2 (T); H 1 (Ω)) defined by

Dh = w, with    -α∆w = 0 in Ω, w = 0 on Γ 0 , w = h on Γ 1 . (12) 
Then the linearized equations of (2) can be rewritten in the following abstract form

       Pu = ÃS Pu + A C θ for t > 0, (I -P)u = 0 for t ≥ 0, θ = ÃL θ + (-ÃL )Dh for t > 0, (Pu, θ)(0) = (Pu 0 , θ 0 ), ( 13 
)
where ÃS is the extension to the space (D(A S )) of the unbounded operator A S with domain D( ÃS ) = V 0 n (Ω) and ÃL is the extension to the space (D(A L )) of the unbounded operator A L with domain D( ÃL ) = H 1 (Ω), defined by the extrapolation method, see [TW09, Chapter 10], [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]. Therefore, the control operator in (13) is admissible in the sense of [TW09, Chapter 4, Section 4.2] and reads as

B : L 2 (T) -→ D(A) (14) h -→ (0, 0, (-ÃL )Dh). ( 15 
)
The study of the Cauchy problem for (13) is done in Section 3.1. For every (u 0 , θ 0 ) ∈ X and h ∈ L 2 (0, T ; L 2 (T)), equation (13) admits a unique weak solution in C([0, T ]; X).

Approximate controllability of the linearized system

The goal of this section is to state our main result. As we have remarked in (4), we cannot expect to control the 0-mode of the solution. Therefore, we will work in the functional spaces

V0 n (Ω) = u ∈ V 0 n (Ω) ; T u(x 1 , x 2 )dx 1 = 0, ∀x 2 ∈ (0, L) , (16) 
L2 (Ω) = θ ∈ L 2 (Ω) ; T θ(x 1 , x 2 )dx 1 = 0, ∀x 2 ∈ (0, L) . ( 17 
)
Our main result is the following one.

Theorem 2.1. Let ν ∈ (0, +∞). There exists a countable subset N of (0, ν) such that for every diffusion coefficient α ∈ (0, ν) \ N , for any positive time

T > 0, ε > 0, initial data (u 0 , θ 0 ) ∈ V0 n (Ω) × L2 (Ω) and target (u 1 , θ 1 ) ∈ V0 n (Ω) × L2 (Ω), there exists a control h ∈ L 2 (0, T ; L 2 (T)) such that the associated solution (u, θ) of (2) satisfies (u, θ)(T, •) -(u 1 , θ 1 ) V 0 n (Ω)×L 2 (Ω) ≤ ε. ( 18 
)
Remark 2.2. Let us make some comments about Theorem 2.1.

• We can give an explicit description of the subset N , see the proof of Proposition 3.4, (46).

• We do not know if the condition α ∈ (0, ν) \ N is a necessary condition for obtaining Theorem 2.1. On the one hand, we conjecture that α < ν is not necessary and is purely technical, see Remark 3.5 below. On the other hand, we are convinced that for some diffusion coefficient α, the unique continuation property proved in Proposition 3.4, see below, can be violated. Indeed, such a phenomenon already appeared in the context of controllability of linear 2 × 2 parabolic systems, when the control only acts on a part of the boundary for one component, see [START_REF] Fernández-Cara | Boundary controllability of parabolic coupled equations[END_REF] or [AKBGBdT11, Section 4, Proposition 1 and Remark 11].

• By adding another control on the lower boundary for the temperature, i.e. by replacing the fifth equation of (2), by

θ(t, x 1 , 0) = h 1 (t, x 1 ), θ(t, x 1 , L) = h 2 (t, x 1 ) on (0, +∞) × T,
of course Theorem 2.1 still holds. The fact that we can drop or not the same restriction on the diffusion coefficient α and preserves the approximate controllability is an interesting open question.

• The approximate controllability of (2) holds with two controls u 2 (t, x 1 , L) = h 1 (t, x 1 ) and θ(t, x 1 , L) = h 2 (t, x 1 ) on (0, +∞) × T without restriction on the diffusion coefficient α ∈ (0, +∞), see Remark 3.7 below.

From a physical point of view, Theorem 2.1 says that one is able to control the velocity and the temperature by acting only on the temperature though the upper boundary, i.e. by heating or cooling, to get closed to any state. As a consequence, this result is encouraging and is a first step to have practical applications in the near future to regulate the temperature in a room for instance.

3 Proof of the approximate controllability

Hypotheses on the abstract control system

The goal of this section is to prove that the abstract control system (13) is well-posed and more precisely satisfies the hypotheses (H1), (H2), (H3), (H4), (H5) required by [START_REF] Badra | On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems[END_REF]. In the following proposition, we use the notations of [START_REF] Badra | On the Fattorini criterion for approximate controllability and stabilizability of parabolic systems[END_REF].

Proposition 3.1. Let A, B be defined by (10) and (15) respectively.

The spectrum of A consists of isolated eigenvalues (λ j ) with finite algebraic multiplicity. (i)

The family of root vectors of A is complete in X.

(ii)

The operator A = A 0 + A 1 generates an analytic semigroup on X.

(iii)

The interpolation inequalities are satisfied D((µ

0 -A) α ) = [X, D(A)] α , ∀α ∈ [0, 1]. (iv) The operator B is in L(L 2 (T); X -1/2 ), (v) 
For any

(u 0 , θ 0 ) ∈ X, any h ∈ L 2 (0, T ; L 2 (T)), there exists a unique solution (u, θ) of (2) such that (u, θ) ∈ H 1 (0, T ; X -1/2 ) ∩ L 2 (0, T ; V 1 0 (Ω) × H 1 (Ω)) ∩ C([0, T ]; X). (19) 
Proof. We see that A, defined in (10), is a bounded perturbation on X of the self-adjoint operator A 0 , which has compact resolvent. Then, we readily deduce that A has also compact resolvent, so (i) holds, see [Bre11, Section 6.3, Theorem 6.8] Moreover, according to Keldy's Theorem, see [BT14, Remark 2.2], we have that (ii) holds. Indeed, A is a bounded perturbation of the self-adjoint operator A 0 , whose spectrum (µ j ) is exactly given by the spectrum of the Stokes operator and the Dirichlet Laplacian operator. So, we can easily check that

j∈N 1 |µ j | < +∞, see [CMR18, Lemma 2.2, Lemma 2.3]
to get the asymptotic of the eigenvalues of the Stokes operator, see Proposition 3.2 below to get to get the asymptotic of the eigenvalues of the Dirichlet Laplacian operator. By using the well-known fact that A 0 generates an analytic semigroup on X and A 1 is a bounded operator on X, we deduce from [Paz83, Section 3.2, Theorem 2.1] that (iii) holds.

By taking µ 0 > sup j∈N Re(λ j ), it is easy to see that (iv) holds because A is a bounded perturbation of a negative self-adjoint operator, see [BDPDM07, Section II.1.6].

It is also classical to prove that (v) holds, see [TW09, Section 10.7, Proposition 10.7.1]. By the hypotheses (i), (ii), (iii), (iv) and (v) and applying classical results on parabolic systems (see for instance [TW09, Section 4.2, Proposition 4.2.5]), we deduce the well-posedness result of Proposition 3.1.

Spectral analysis of the linearized Boussinesq operator

The goal of this section is to give some spectral properties associated to the adjoint of the linearized Boussinesq operator. In this part, we only make the assumption α = ν.

Proposition 3.2. The spectrum of A * consists of isolated real eigenvalues with finite algebraic multiplicity. More precisely, we have

Sp(A * ) = Sp S ∪ Sp L , (20) 
where

Sp S := ∪ k∈Z ∪ j∈N {λ k j }, such that µ k j := k 2 - λ k j ν = i μk j satisfies (21) 
-sinh(kL) sinh( μk j L) μk j 2 +2k(1-cosh(kL) cosh( μk j L)) μk j +k 2 sinh(kL) sinh( μk j L) = 0, (22

)
and

Sp L := ∪ k∈Z ∪ j∈N -αk 2 - j 2 π 2 L 2 . ( 23 
)
The eigenfunctions associated to the k-mode satisfy the following ordinary differential equation

-ξ (6) k + λ α + λ ν + 3k 2 ξ (4) k - λ ν + 2k 2 λ α + k 2 + k 2 λ ν + k 2 ξ k + k 2 λ ν + k 2 λ α + k 2 ξ k = 0 in (0, L), (24) 
with boundary values

ξ k (0) = ξ k (L) = ξ k (0) = ξ k (L) = ξ k (0) - λ α + k 2 ξ k (0) = ξ k (L) - λ α + k 2 = 0. (25)
Moreover, the eigenfunctions associated to Sp L are given by

(ψ 1,k j , ψ 2,k j , q k j , ξ k j )(x 1 , x 2 ) = 0, 0, 0, sin jπ L x 2 e ikx 1 . (26) 
Remark 3.3. Proposition 3.2 essentially says that the spectrum of A * splits into two parts, corresponding respectively to the Stokes eigenvalues and the Dirichlet Laplacian eigenvalues. The Stokes eigenvalues are actually given by the eigenvalues of the operator A S defined in (10).

Let us mention that this spectrum has already been computed in [CMR18, Lemma 2.2, Item 4].

Proof. Let λ ∈ C, the equation A * Φ = λΦ rewrites in its partial differential equation form

           λψ -ν∆ψ + ∇q = 0 in Ω, div ψ = 0 in Ω, ψ = 0 in Γ, λξ -α∆ξ = ψ 2 in Ω, ξ(t, x 1 , 0) = ξ(t, x 1 , L) = 0 on T. ( 27 
)
We expand (Φ, q) = (ψ 1 , ψ 2 , ξ, q) into Fourier series in the x 1 -variable

(Φ, q) = (ψ 1 , ψ 2 , θ, q) with        ψ 1 (x 1 , x 2 ) = k∈Z ψ 1,k (x 2 )e ikx 1 , (x 1 , x 2 ) ∈ Ω, ψ 2 (x 1 , x 2 ) = k∈Z ψ 2,k (x 2 )e ikx 1 , (x 1 , x 2 ) ∈ Ω, ξ(x 1 , x 2 ) = k∈Z ξ k (x 2 )e ikx 1 , (x 1 , x 2 ) ∈ Ω, q(x 1 , x 2 ) = k∈Z q k (x 2 )e ikx 1 , (x 1 , x 2 ) ∈ Ω. (28) 
The eigenvalue problem (27) rewrites as follows

                 (λ + νk 2 )ψ 1,k (x 2 ) -νψ 1,k (x 2 ) + ikq k (x 2 ) = 0 in (0, L), (λ + νk 2 )ψ 2,k (x 2 ) -νψ 2,k (x 2 ) + q k (x 2 ) = 0 in (0, L), ikψ 1,k (x 2 ) + ψ 2,k (x 2 ) = 0 in (0, L), ψ 1,k (0) = ψ 1,k (L) = ψ 2,k (0) = ψ 2,k (L) = 0, (λ + αk 2 )ξ k (x 2 ) -αξ k (x 2 ) = ψ 2,k (x 2 ) in (0, L), ξ k (0) = ξ k (L) = 0. (29)
We distinguish two cases.

Case 1: Dirichlet Laplacian eigenvalue, ψ 2,k = 0 in (0, L). From the third equation of (29), we find that ψ 1,k = 0 so q k = 0 from the first equation of (29). Therefore, ξ k satisfies

(λ + αk 2 )ξ k (x 2 ) -αξ k (x 2 ) = 0, in (0, L), ξ k (0) = ξ k (L) = 0.
This immediately gives the eigenfunction (26), associated to the corresponding eigenvalue taken in ( 23) and ( 24), (25) trivially hold.

Case 2: Stokes eigenvalue, ψ 2,k = 0. By observing the first four equations of ( 27), we remark that λ is an eigenvalue of the (autoadjoint) Stokes operator. So λ is real. From the third and the fourth equations of (29), we obtain that

ψ 2,k (0) = ψ 2,k (L) = ψ 2,k (0) = ψ 2,k (L) = 0 (30)
By using the first three equations of (29), we obtain that ψ 2,k satisfies the following ODEequation

νψ (4) 2,k (x 2 ) -(λ + 2νk 2 )ψ 2,k (x 2 ) + k 2 (λ + νk 2 )ψ 2,k (x 2 ) = 0, x 2 ∈ (0, L). (31) 
If λ ∈ [-νk 2 , +∞), then by multiplying (31) by ψ 2,k and by integrating by parts using (30), we find

ν L 0 (ψ 2,k ) 2 + (λ + 2νk 2 ) L 0 (ψ 2,k ) 2 + k 2 (λ + νk 2 ) L 0 ψ 2 2,k = 0.
Then, we get ψ 2,k = 0 in (0, L) and by using another time (30), we obtain ψ 2,k = 0 in (0, L) which contradicts our hypothesis ψ 2,k = 0. As a consequence, we will assume in the following that λ ∈ (-∞, -νk 2 ). From (31) and by using the fifth equation of ( 29) and (31), we obtain that ξ k satisfies the ordinary differential equation of order six (24) and the boundary conditions (25).

By denoting

µ 1 := k 2 + λ ν , µ 2 := k 2 + λ α , ( 32 
)
the roots of the characteristic equation associated to the ODE (24) are ±k with multiplicity one , ±µ 1 with multiplicity one , ±µ 2 with multiplicity one.

Here, we have used that α = ν. Then, we deduce that a fundamental basis of the ODE associated to ( 24) is (e ±kx , e ±µ 1 x , e ±µ 2 x ).

(33)

The eigenvalue problem associated to ( 24) and ( 25) is equivalent to

det(M (µ)) = 0, (34) 
where M (µ) is equal to

        1 1 1 1 1 1 e kL e -kL e µ 1 L e -µ 1 L e µ 2 L e -µ 2 L k 2 k 2 µ 2 1 µ 2 1 µ 2 2 µ 2 2 k 2 e kL k 2 e -kL µ 2 1 e µ 1 L µ 2 1 e -µ 1 L µ 2 2 e µ 2 L µ 2 2 e -µ 2 L k 3 -kµ 2 2 kµ 2 2 -k 3 µ 3 1 -µ1µ 2 2 µ1µ 2 2 -µ 3 1 0 0 e kL (k 3 -kµ 2 2 ) e -kL (kµ 2 2 -k 3 ) e µ 1 L (µ 3 1 -µ1µ 2 2 ) e -µ 1 L (µ1µ 2 2 -µ 3 1 ) 0 0         . ( 35 
)
A computation, performed in Maxima, leads to

det(M (µ)) = µ 1 e µ 1 L+kL -ke µ 1 L+kL -µ 1 e µ 1 L -ke µ 1 L + e kL µ 1 -µ 1 + ke kL + k µ 1 e µ 1 L+kL -ke µ 1 L+kL + µ 1 e µ 1 L + ke µ 1 L -e kL µ 1 -µ 1 -ke kL + k (µ 2 -k) 2 (µ 2 + k) 2 (µ 2 -µ 1 ) 2 (µ 2 + µ 1 ) 2 (e µ 2 L -1)(e µ 2 L + 1)e -Lµ 2 -Lµ 1 -kL . ( 36 
)
For obtaining (34), one of the factor of ( 36) is necessary equal to 0. First, we remark that µ 2 = ±k and µ 2 = ±µ 1 because λ = 0 and α = ν. Secondly, the case e µ 2 L = ±1 corresponds to

sin( μ2 L) = 0, i.e. μ2 = jπ L , l ∈ Z, with μ2 = iµ 2 . (37) 
Then, by using the comatrix formula and by remarking that the last two columns of the matrix (35) are equal in this case, we have

ξ k (x) = A sinh(µ 2 x) = iA sin( μ2 x), A ∈ C. (38) 
Now, by using the fifth equation of ( 29) and (38), we obtain that ψ 2,k = -αξ k + αµ 2 2 ξ k = 0, which contradicts our assumption ψ 2,k = 0.

We can check by a straightforward but lengthy computation that the product of the first two factors of (36) is equal to

4e Lµ 1 +Lk sinh(kL) sinh(µ 1 L)µ 2 1 -2k(1 -cosh(kL) cosh(µ 1 L))µ 1 + k 2 sinh(kL) sinh(µ 1 L) ,
then by setting µ 1 = i μ1 , we obtain the condition (22).

Fattorini-Hautus test: proof of Theorem 2.1

By using [BT14, Theorem 1.1] and (i), (ii), (iii), (iv) and (v), proving Theorem 2.1 reduces to show the following unique continuation property

If A * Φ = λΦ for some λ ∈ C and if B * Φ = 0, then Φ = 0, ( 39 
)
where Φ is expanded in Fourier modes, without 0-mode.

The computation of B * Φ yields to

B * Φ(x 1 ) = ∂ξ ∂x 2 (x 1 , L) = k∈Z ξ k (L)e ikx 1 , x 1 ∈ T. (40) 
By gathering (39) and (40), we obtain that

∀k ∈ Z * , ξ k (L) = 0. (41) 
Proposition 3.4. There exists a countable subset N of (0, ν) such that for every α ∈ (0, ν) \ N , assuming that Φ satisfies A * Φ = λΦ for some λ ∈ R and B * Φ = 0 and expanding (Φ, q) as in (28), for all k ∈ Z \ {0}, we have ψ 1,k = ψ 2,k = ξ k = q k = 0 everywhere in (0, L).

Proof. We prove the Fattorini-Hautus criterion by distinguishing two cases.

Case 1: Dirichlet Laplacian eigenvalue. If λ ∈ Sp L , we know the explicit form of the eigenfunction given by (26), ξ k (x 2 ) = A sin((jπ/L)x 2 ) for some A ∈ C, j ∈ N * . The observation (41) immediately leads to A = 0.

Case 2: Stokes eigenvalue. We assume that λ ∈ Sp S .

Let us multiply the first equation of ( 24) by f where f also satisfies the equation ( 24) and integrate by parts, using the boundary conditions ( 25) and (41),

-ξ (5) k (L)f (L) + ξ (5) k (0)f (0) + ξ (4) k (L)f (L) -ξ (4) k (0)f (0) + ξ (3) k (0)f (0) -ξ k (0)f (4) (0) - λ α + λ ν + 3k 2 ξ (3) k (0)f (0) + ξ k (0)f (2) (0) + λ ν + 2k 2 λ α + k 2 + k 2 λ ν + k 2 ξ k (0)f (0) = 0. ( 42 
)
By recalling the notation (32) and the fundamental basis (33) of the ordinary differential equation (24), we take f of the following form

f (x) = A sinh(kx) + B sinh(µ 1 x) + C sinh(µ 2 x), (A, B, C) ∈ R 3 , (43) 
We remark that f (0) = f (0) = f (4) (0) = 0, then we deduce that (42) becomes -ξ

(5)

k (L)f (L) + ξ (4) k (L)f (L) -ξ (4) k (0)f (0) = 0. (44) 
The next step is to prove that one can choose f such that

f (0) = f (L) = 0, f (L) = 0,
in order to obtain ξ (4) k (L) = 0 and one can also choose (another) f such that

f (0) = f (L) = 0, f (L) = 0,
in order to obtain ξ

(5) k (L) = 0. Hence, ξ k satisfies the sixth order differential equation (24) with Cauchy data

ξ k (L) = ξ k (L) = ξ (2) k (L) = ξ (3) k (L) = ξ (4) k (L) = ξ (5) 
k (L) = 0, which gives us ξ k = 0 in (0, L) by Cauchy-Lipschitz theorem, then as before ψ 2,k = ψ 1,k = q k = 0 in (0, L), which concludes the proof of Proposition 3.4.

It is then sufficient to check that the following matrix is invertible

R :=   k µ 1 µ 2 sinh(kL) sinh(µ 1 L) sinh(µ 2 L) k cosh(kL) µ 1 cosh(µ 1 L) µ 2 cosh(µ 2 L)   . (45) 
Indeed, by (43), we readily remark that

R   A B C   =   f (0) f (L) f (L)   .
Then, if we take f (x) = sinh(kx)-k µ 1 sinh(µ 1 x), we check that f satisfies f (0) = 0 and f (L) = 0 because µ 1 = ±k. This gives ξ (4) k (L) = 0 and we conclude as before. Another proof could be to use directly the unique continuation property of the Stokes system with the observation q k (L) = 0 for every k ∈ Z * , see [CE19, Proposition 2.1].

Perspectives and related references

4.1 Null-controllability of the Boussinesq system A natural perspective that could be addressed in the future is the null-controllability of the linearized Boussinesq system (2). In this context, the techniques employed in the article [START_REF] Chowdhury | Null controllability of the incompressible Stokes equations in a 2-D channel using normal boundary control[END_REF], which establishes the null-controllability of the incompressible Stokes equation, would be useful. The difficulty comes from the lengthy computations, due to the eigenvalue problem (24) and (25) associated to the ordinary differential equation of order six, instead of an ordinary differential equation of order four that appears for the Stokes problem, see [CMR18, Equation (2.4)]. Let us mention that the null-controllability of Boussinesq system with few internal controls, even in the nonlinear case, has been studied in the following articles [START_REF] Fernández-Cara | Some controllability results for the N -dimensional Navier-Stokes and Boussinesq systems with N -1 scalar controls[END_REF], [START_REF] González-Burgos | Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation[END_REF], [START_REF] Fernández | On the control of some coupled systems of the Boussinesq kind with few controls[END_REF] and [START_REF] Carreno | Local controllability of the N -dimensional Boussinesq system with N -1 scalar controls in an arbitrary control domain[END_REF].

Stabilization around a Poiseuille flow

We remark that another particular stationary solution of (1) is given by a Poiseuille flow (u 1 , u 2 , p, θ, h) = (Cx 2 (x 2 -L), 0, 0, 0, 0). As in [START_REF] Munteanu | Normal feedback stabilization of periodic flows in a twodimensional channel[END_REF], we could try to get some exponential stabilization result for the linearized system around the previous stationary state, by a finitedimensional feedback control acting on the temperature, through the upper boundary {x 2 = L}. Let us mention that the boundary stabilization of the Boussinesq system around unstable states, with feedback controllers for both velocity and temperature, has been studied in [START_REF] Badra | Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system[END_REF], [START_REF] Badra | Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control[END_REF] and more recently in [START_REF] Ramaswamy | Boundary feedback stabilization of the Boussinesq system with mixed boundary conditions[END_REF].

Open loop-stabilization of the nonlinear Boussinesq system

In the spirit of [START_REF] Chowdhury | Open loop stabilization of incompressible Navier-Stokes equations in a 2d channel using power series expansion[END_REF], a natural perspective would be to obtain some local open-loop stabilization result for the nonlinear Boussinesq system (1) at any given decay rate. By looking at (4), we see that any stabilization strategy based on the linearized system (2) will fail to stabilize the system (1) at a rate lower than -νπ 2 /L 2 , corresponding to the first eigenvalue λ 0,1 = -νπ 2 /L 2 of the operator ν∂ 22 with Dirichlet boundary conditions on (0, L).

Let us explain briefly the approach of the authors in our context. It is based on a power series expansion, already used in [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF] in the context of KdV equation and [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF] for Schrödinger equation (see also [START_REF] Coron | Control and nonlinearity[END_REF]Chapter 8] for an introduction to this method). We assume that the controlled solution (u, θ) and its control h can be expanded as

u = εα + ε 2 β, θ = εθ 1 + ε 2 θ 2 , p = εp 1 + ε 2 p 2 , h = εh 1 + ε 2 h 2 ,
for some ε > 0 small enough, where (α, β), (θ 1 , θ 2 ), (p 1 , p 2 ), (g 1 , g 2 ) are all of order one. This allows to look for (h 1 , h 2 ) such that (α, β, θ 1 , θ 2 )

               ∂ t α -ν∆α + ∇p 1 = θ 1 e 2
in (0, ∞) × Ω, div α = 0 in (0, ∞) × Ω, α = 0 in (0, ∞) × Γ, ∂ t θ 1 -α∆θ 1 = 0 in (0, ∞) × Ω, θ 1 (t, x 1 , 0) = 0, θ 1 (t, x 1 , L) = h 1 (t, x 1 ) on (0, ∞) × T, (α, θ 1 )(0, •) = (α 0 , θ 0 1 ) in Ω,

               ∂ t β -ν∆β + ∇p 2 = -(α + εβ) • ∇(α + εβ) + θ 2 e 2 in (0, ∞) × Ω, div β = 0 in (0, ∞) × Ω, β = 0 in (0, ∞) × Γ, ∂ t θ 2 -α∆θ 2 = -(α + εβ) • ∇(θ 1 + εθ 2 ) (48) 
in (0, ∞) × Ω, θ 2 (t, x 1 , 0) = 0, θ 2 (t, x 1 , L) = h 2 (t, x 1 ) on (0, ∞) × T, (β, θ 2 )(0, •) = (β 0 , θ 0 2 ) in Ω,

is stable and decays exponentially at rate -ω 0 .

As the control function h 1 cannot act on the 0-mode of (α, θ 1 ), see (4), we would put the unstable undetectable part of component of (u, θ) in the (β, θ 2 ) part. Our construction would therefore use the nonlinear term in (49) to indirectly control the projection of β on the unstable undetectable part.
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Recall that from the proof of Proposition 3.2, we have λ ∈ (-∞, -νk 2 ), then µ 1 = i μ1 and also µ 2 = i μ2 because α < ν with ( μ1 , μ2 ) ∈ R 2 . We compute the determinant F ( μ2 ) := det(R) = cos( μ2 L)(k sin( μ1 L) -sinh(kL) μ1 ) + sinh(kL) μ1 cos( μ1 L) -k cosh(kL) sin( μ1 L)

We readily see that F is an analytic function in a neighbourhood of infinity, which is not identically equal to zero. Indeed, by Rouché's theorem, for μ2 sufficiently large, the zeros of F are exactly located in a neighbourhood of the zeros of μ2 F 1 ( μ2 ). Moreover, F 1 is not identically equal to zero because the factor k sin( μ1 L) -sinh(kL) μ1 = 0 because µ 1 = ±k. So, the set of zeros of F is at most countable. Then, let us set

Let us mention that in (46), we have underlined the dependence of F in function of the eigenvalue λ k j of the Stokes operator, defined in (21). We have that N is a countable subset of (0, ν) because it is a countable union of countable sets. For every α ∈ (0, ν) \ N , for all λ k j eigenvalue of the Stokes operator, F λ k j ( μ2 ) = 0. So the matrix R, defined in (45), is invertible for every α ∈ (0, ν) \ N .

Remark 3.5. The restriction α < ν seems to be purely technical in the previous proof. Indeed, we have used this assumption in order to have µ 2 = i μ2 purely imaginary, and to remark that F ( μ2 ) is not identically equal to zero in a neighbourhood of infinity, i.e. α in a neighbourhood of zero. We cannot do the same in the limit α → +∞ because in this case, we do not know how to prove that det(R), seen as an analytic function in µ 2 , is not identically equal to zero. Let us remark that α → +∞ is equivalent to µ 2 → ±k, so det(R) → 0 as α → +∞.

Remark 3.6. A more direct approach to prove Proposition 3.4 would be to explicitly compute ξ k (L), where ξ k is defined as

with (A i ) T 1≤i≤6 in the kernel of the matrix defined in (35). Then, (A i ) 1≤i≤6 can be computed explicitly by the comatrix formula for instance. Unfortunately, computations performed in Maxima leads to an inextricable formula.

Remark 3.7. If we add a control on the component u 2 on the upper boundary, i.e. we consider (2) with two controls u 2 (t, x 1 , L) = h 1 (t, x 1 ) and θ(t, x 1 , L) = h 2 (t, x 1 ), we prove that Proposition 3.4 holds then Theorem 2.1 holds without restriction on α ∈ (0, +∞). Indeed, we can check that in this case, the observation (41) becomes ∀k ∈ Z * , (q k (L), ξ k (L)) = (0, 0).

(47) By using the first, third, fifth equations of (29) and the boundary conditions (25), we obtain that ξ k satisfies ξ k (L) = ξ k (L) = ξ