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Asymptotic Behavior for Textiles in von-Kármán regime

Georges Griso∗, Julia Orlik†, Stephan Wackerle ‡

December 20, 2019

Abstract

The paper is dedicated to the investigation of simultaneous homogenization and dimension
reduction of textile structures as elasticity problem with an energy in the von-Kármán-regime. An
extension for deformations is presented allowing to use the decomposition of plate-displacements.
The limit problem in terms of displacements is derived with the help of the unfolding operator and
yields in the limit the von-Kármán plate with linear elastic cell-problems. It is shown, that for
homogeneous isotropic beams in the structure, the resulting plate is orthotropic. As application of
the obtained limit plate we study the buckling behavior of orthotropic textiles.

Keyword: Homogenization, periodic unfolding method, dimension reduction, von-Kármán orthotropic
plate, Energy minimization under pre-strain, buckling under homogenized pre-strain
Mathematics Subject Classification (2010): 35B27, 35J86, 47H05, 74Q05, 74B05, 74K10, 74K20.

1 Introduction

In contrast to our first paper about homogenization of textiles [21], where a geometrical linear
elasticity is considered, we investigate here textiles with von-Kármán energy. The von-Kármán model
is a nonlinear plate model, which is stated with respect to displacements and widely used by mathe-
maticians and engineers, see [4, 2, 7, 8, 14, 15, 26]. To achieve the von-Kármán model in the limit we
consider an elastic energy of order ||e(uε)||L2(Ω∗ε) ≤ Cε5/2, which is in consensus with [5, 7, 14, 15]. A
simultaneous homogenization and dimension reduction of a von-Kármán plate was already studied in
[23], however in our paper we give the corrector results related on the periodic topology of the textile.

Since the von-Kármán plate arises as Γ-Limit from geometrical nonlinear problems, it is necessary to
consider initially deformations. Hence, the homogenization of the textile for von-Kármán energy begins
with the extension of a deformation into the holes of the structure. This extension is applied onto the
deformations of the textile beam structure for glued beams. Due to the fact that the limit-plate is stated
with respect to displacements we directly introduce the decomposition of the displacement associated to
the extended deformation, see [4, 18, 17]. For the elementary displacements we establish the Korn-type
estimates giving rise to the asymptotic behavior of the fields. To derive the homogenized model the
unfolding and rescaling operator (see for instance [10, 11, 20, 21]) accounting for both homogenization
and dimension reduction is used. For the von-Kármán-plate studied here it is necessary to investigate
also the nonlinear term in the Green-St.Venant strain tensor. The additional term yield the von-
Kármán nonlinearities in the limit. The derived asymptotic limits allow to prove with arguments of
Γ-convergence to show that the limit energy in in fact of von-Kármán-type. It is proven, that the
homogenized limit energy admits minima. The uniqueness, though, is not provable.
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Although the initial and the homogenized problem are nonlinear, the cell-problems for the von-
Kármán plate are linear and in fact the same as achieved for a linear elastic plate. Furthermore,
the cell-problems yield for isotropic homogeneous beams an orthotropic plate, which is valid for the
von-Kármán energy and linear elasticity.

The final part of the paper is devoted to homogenization of the pre-stress in yarns and modeling
of the buckling of the von-Kármán plate under pre-strain, like in [22, 6, 26, 1], but for an orthotropic
plate.

2 Preliminary extension results for deformations and displace-
ments

In this section, Ω and Ω′ are two bounded domains in Rn containing the origin with Lipschitz
boundaries and such that Ω ⊂ Ω′. For every ε > 0, we denote Ωε = εΩ and Ω′ε = εΩ′. In Lemma 2.1
we prove an extension result for deformations in H1(Ωε)

n.

The lemma below is based on the rigidity theorem obtained by G. Friesecke, R. James and S. Müller in
[13]. Here, for the starshaped open sets with respect to a ball, we use a variant of this theorem which
explicitly gives the dependence of the constants in the estimates in terms of only two parameters which
depend on the geometry of the domain: its diameter and the radius of the ball (see [3, 19]).

Lemma 2.1. For every deformation v in H1(Ωε)
n there exists a deformation ṽ in H1(Ω′ε)

n satisfying

ṽ|Ωε = v,∥∥dist
(
ṽ, SO(n)

)∥∥
L2(Ω′ε)

≤ C
∥∥dist(v, SO(n))

∥∥
L2(Ωε)

.
(2.1)

The constant does not depend on ε.

Proof. First, some classical recalls and then the proof.

• (i) Since Ω is a bounded domain with Lipschitz boundary, there exist N ∈ N∗, R1 and R2 two
strictly positive constants and a finite set {O1, . . . ,ON} of open subsets of Ω, each of diameter
less than R1 and starshaped with respect to a ball of radius R2 (B(Ai, R2), Ai ∈ Oi) such that

Ω =

N⋃
k=1

Ok.

As a consequence, there exists r such that for every Oi, i ∈ {1, . . . , N} there exists a chain from
O1 to Oi

Ol1 = O1, Ol2 , . . . , Olp = Oi, p ∈ {1, . . . , N}
such that, if p > 1 one has Olj ∩ Olj+1

, j ∈ {1, . . . , p− 1}, contains a ball of radius r.

• (ii) Let O be an open set in Rn included in the ball B(A;R1) and starshaped with respect to
the ball B(A,R2), R1 > 0, R2 > 0. Theorem II.1.1 in [3] claims that for every deformation
v ∈ H1(O)n, there exist a matrix R ∈ SO(n) and a ∈ Rn such that

‖v−a−Rx‖L2(O) ≤ CR1‖dist(∇v, SO(3))‖L2(O), ‖∇v−R‖L2(O) ≤ C‖dist(∇v, SO(n))‖L2(O).

The constant C depends only on
R1

R2
and n.

TransformO by a dilation of ratio ε > 0 and centerA, the above result gives: for every deformation
v ∈ H1(Oε)n where Oε

.
= εO, there exist a matrix R ∈ SO(n) and a ∈ Rn such that

‖v−a−Rx‖L2(Oε) ≤ Cε‖dist(∇v, SO(n))‖L2(Oε), ‖∇v−R‖L2(Oε) ≤ C‖dist(∇v, SO(n))‖L2(Oε).

The constant C does not depend on ε.
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• (iii) Ω and Ω′ being two bounded domains in Rn with Lipschitz boundaries and such that Ω ⊂ Ω′.
There exists a continuous linear extension operator P ′ from H1(Ω)n into H1(Ω′)n satisfying

∀v ∈ H1(Ω)n, P ′(v)|Ω = v, ‖P ′(v)‖L2(Ω′) ≤ C‖v‖L2(Ω), ‖P(v)‖H1(Ω′) ≤ C‖v‖H1(Ω).

If we transform Ω and Ω′ by the same dilation of ratio ε (and center O ∈ Ω), this extension
operator induces an extension operator P ′ε from H1(Ωε)

3 into H1(Ω′ε)
3 satisfying

∀v ∈ H1(Ωε)
3,

{
P ′ε(v)|Ωε = v, ‖P ′ε(v)‖L2(Ω′ε)

≤ C‖v‖L2(Ωε),

‖P ′ε(v)‖L2(Ω′ε)
+ ε‖∇P ′ε(v)‖L2(Ω′ε)

≤ C
(
‖v‖L2(Ωε) + ε‖∇v‖L2(Ωε)

)
.

The constants do not depend on ε.

Now, consider a deformation v ∈ H1(Ωε)
n. We apply (ii) with the open sets Oi,ε = Ai + ε(Oi − Ai),

there exist matrices Ri ∈ SO(n) and vectors ai ∈ Rn such that

‖v − ai −Ri x‖L2(εOi,ε) ≤ Cε‖dist(∇v, SO(n))‖L2(εOi,ε),

‖∇v −Ri‖L2(εOi,ε) ≤ C‖dist(∇v, SO(n))‖L2(εOi,ε).

The constant C does not depend on ε.

Then, using the second part of (i), we compare Ri to R1 as well as ai to a1, i ∈ {1, . . . , N}. As a
consequence, one obtains that

‖v − a1 −R1 x‖L2(Ωε) ≤ Cε‖dist(∇v, SO(3))‖L2(Ωε), ‖∇v −R1‖L2(Ωe) ≤ C‖dist(∇v, SO(n))‖L2(Ωε).

The constants do not depend on ε.

Now, we define the extension of v. We set

ṽ = P ′ε(v − a1 −R1 x) + a1 + R1 x a.e. in Ω′ε.

We easily check (2.1).

3 The structure

3.1 Parameterization of the yarns

To see the parametrization of yarns and the structure we refer to [21]. Nevertheless, we shortly
repeat the most important definitions and results. The middle line of a beam is paramtrized by rescaled

function Φε = εΦ(
z

ε
) of

Φ(z) =


−κ, if z ∈ [0, κ],

κ
(

6 (z−κ)2

(1−2κ)2 − 4 (z−κ)3

(1−2κ)3 − 1
)

if z ∈ [κ, 1− κ],

κ if z ∈ [1− κ, 1],

Φ(2− z) if z ∈ [1, 2].

(3.1)

Then the beams in the structure are defined by

P (1)
r

.
=
{
z ∈ R3 | z1 ∈ (0, L), (z2, z3) ∈ (−κε, κε)2

}
, P (2)

r
.
=
{
z ∈ R3 | z2 ∈ (0, L), (z1, z3) ∈ (−κε, κε)2

}
.

for the reference beams in the two directions. Then the curved beams are defined by

P(1,q)
ε

.
=
{
x ∈ R3 | x = ψ(1,q)

ε (z), z ∈ P (1)
r

}
, P(2,p)

ε
.
=
{
x ∈ R3 | x = ψ(2,p)

ε (z), z ∈ P (2)
r

}
,
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1
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Figure 1: The domain Y ∗ ⊂ Y = (0, 1)2×(−2κ, 2κ), a quarter of the periodicity cell of the full structure.

with the diffeomorphisms

ψ(1,q)
ε (z)

.
= M (1,q)

ε (z1) + z2e2 + z3n
(1,q)
ε (z1), ψ(2,p)

ε (z)
.
= M (2,p)

ε (z2) + z1e1 + z3n
(2,p)
ε (z2),

and the corresponding middle lines

M (1,q)
ε (z1)

.
= z1e1 + qεe2 + (−1)q+1Φε(z1)e3, M (2,p)

ε (z2)
.
= pεe1 + z2e2 + (−1)pΦε(z2)e3.

3.2 Parameterization of the whole structure

Denote Ω∗ε the whole structure (see [21] for details)

Ω∗ε
.
= Ωε ∩

( 2Nε⋃
p=0

P(1,q)
ε ∪

2Nε⋃
q=0

P(2,p)
ε

)
, Ωε

.
= ω × (−2κε, 2κε), ω = (0, L)2. (3.2)

3.3 An extension result

The presented extension heavily depends on the fact that the beams are glued. For a more general
contact condition as in [21] it is necessary to treat the two directions separately and obtain two defor-
mations, which give the same limit for gε ∼ ε4. Nevertheless, the more general case would exceed the
bounds of this paper.

Proposition 3.1. For every deformation v in H1(Ω∗ε)
3 there exists a deformation ṽ in H1(Ωε)

3 sat-
isfying

ṽ|Ω∗ε = v,∥∥dist
(
ṽ, SO(3)

)∥∥
L2(Ωε)

≤ C
∥∥dist(v, SO(3))

∥∥
L2(Ω∗ε)

.
(3.3)

The constant does not depend on ε.

Proof. Now that the general extension for Lipschitz domains in nonlinear elasticity is recalled in the
above lemma, we specify the extension procedure for the the domain Ω∗ε.
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Figure 2: First extension domain

Figure 3: Periodicity cell of the periodic plate with holes.

First, we divide the domain Ω∗ε into portions included in domains isometric to the parallelotope
(0, ε + 2κε) × (0, 2κε) × (0, 4κε)1 as depicted in Figure 2. These portions include a curved beam
and parts of the beams in the perpendicular direction with which the beam is in contact. Besides,
after a rotation and/or a reflection, all the portions are of the same form and itself Lipschitz-domains.
Furthermore, note that these portions intersect each other and every contact cylinder Cpq×(−2κε, 2κε)
with Cpq = (pε− κε, pε+ κε)× (qε− κε, qε+ κε) is used in four of such domains.

Since every portion is a Lipschitz domain the extension procedure given in Lemma 2.1 is applicable
for every v ∈ H1(Ω∗ε) and yields an extension to the parallelotope (e.g. (pε− κε, (p+ 1)ε+ κε)× (qε−
κε, qε+κε)×(−2κε, 2κε)). As second step, we define new domains included in (pε−κε, (p+1)ε+κε)×
(qε− κε, (q + 1)ε+ κε)× (−2κε, 2κε) by collecting four of the above portions as depicted in Figure 3.
Note that the contact cylinders in every corner of the new domain is used by two portions. Obviously
this domain is again a Lipschitz domain and hence we extend all the fields into the holes using again
Lemma 2.1.

To obtain the full extension we reassemble the structure. To do this, note that the domains (pε −
κε, (p+ 1)ε+ κε)× (qε− κε, (q + 1)ε+ κε)× (−2κε, 2κε) have an overlap. This overlap includes every
beam twice and the contact cylinders again fourfold, i.e. the overlap consists exactly of the domains
before the last extension. Together with the interportions from the step before we obtain that the
contact cylinders are the most used domains for the extension, namely eight times. This influences the
estimate and finally give the final extension ṽ which satisfies∥∥dist

(
ṽ, SO(3)

)∥∥
L2(Ωε)

≤ C
∥∥dist(v, SO(3))

∥∥
L2(Ω∗ε)

where the constant does not depend on ε. By construction, we have ṽ|Ω∗ε = v.

Henceforth, we use the extended deformation v ∈ H1(Ωε), which is a deformation of a periodic
plate without holes. This allows to use the results in the papers [4] and general results of [12], [21], [2].

The structure is clamped on its lateral boundary. Moreover, in contrast to [21] here we assume a glued
contact, which corresponds to the case gε ≡ 0 in [21]. This allows to obtain one deformation field for

1We reduce the parallelotopes that are in contact with the boundary of ω.
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the whole structure Ω∗ε instead of one for each beam as in [21].

Denote
γ = ∂ω ∩ {x2 = 0} = (0, L)× {0}, Γε = γ × (−2κε, 2κε).

The set of the admissible deformations are

Vε
.
=
{
v ∈ H1(Ω∗ε)

3 | such that v = Id a.e. on ∂Ω∗ε ∩ Γε

}
,

Dε
.
=
{
v ∈ H1(Ωε)

3 | such that v = Id a.e. on Γε

}
.

(3.4)

Remark 3.2. Every deformation belonging to Vε is extended in (0, L) × (−κε, 0) × (−2κε, 2κε) by
setting v = Id in this open set. Then, Proposition 3.1 gives an extension of v whose restriction to Ωε
belongs to Dε and satisfies (3.3).

4 The non-linear elasticity problem

Set
Y ′ := (0, 2)2, Y := (0, 2)2 × (−2κ, 2κ).

Let Y∗ ⊂ Y be the reference cell of the beam structure. The cell Y∗ is deduced from Y ∗ (see Figure 1)
after two symmetries with respect to the planes y1 = 1 and y2 = 1.

Denote Ŵ the local elastic energy density, then the total elastic energy is

Jε(v) =

∫
Ω∗ε

Ŵε

(
·,∇v

)
dx−

∫
Ω∗ε

fε · (v − Id) dx, ∀v ∈ Vε, (4.1)

where Id is the identity map. The local density energy Ŵ : Y∗ × S3 −→ R+ ∪ {+∞} is given by

Ŵε(·, F ) =

Q
( ·
ε
,

1

2
(FTF − I3)

)
if det(F ) > 0,

+∞ if det(F ) ≤ 0,

where S3 is the space of 3× 3 symmetric matrices. The quadratic form Q is defined by

Q(y, S) = aijkl(y)SijSkl for a.e. y ∈ Y∗ and for all S ∈ S3,

where the aijkl’s belong to L∞(Y∗) and are periodic with respect to e1 and e2.
Moreover, the tensor a is symmetric, i.e., aijkl = ajikl = aklji. Also it is positive definite and satisfies

∃c0 > 0, such that c0 SijSij ≤ aijkl(y)SijSkl for a.e. y ∈ Y∗ and for all S ∈ S3. (4.2)

Note, that the energy density

Ŵε(x,∇v(x)) =

Q
(x
ε
,E(v)(x)

)
if det(∇v(x)) > 0,

+∞ if det(∇v(x)) ≤ 0,
for a.e. x ∈ Ω∗ε

depends on the strain tensor E(v) =
1

2

(
(∇v)T∇v − I3

)
with I3 the unit 3× 3 matrix.

Remark 4.1. As a classical example of a local elastic energy satisfying the above assumptions, we
mention the following St Venant-Kirchhoff’s law for which

Ŵ (F ) =


λ

8

(
tr(FTF − I3)

)2
+
µ

4
tr
(
(FTF − I3)2

)
if det(F ) > 0

+∞ if det(F ) ≤ 0.
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Now we are in the position to state the problem.

Therefore, set
mε = inf

v∈Vε

Jε(v)2.

5 Preliminary estimates

5.1 Recalls about the plate deformations

Denote x′ = (x1, x2) ∈ R2 and

Uε
.
=
{
u ∈ H1(Ωε)

3 | u = 0 a.e. on Γε

}
.

The deformations and the terms of their decompositions are estimated in terms of ‖dist(∇v, SO(3))‖L2(Ω∗ε),
this is why the lemma below plays a crucial role

Lemma 5.1. Let v ∈ Vε be a deformation and ṽ ∈ Dε the extended deformation given by Proposition
3.1 and Remark 3.2. The associated displacement u = ṽ − Id belongs to Uε and satisfies

‖e(u)‖L2(Ωε) ≤ C0‖dist(∇v, SO(3))‖L2(Ω∗ε) +
C1

ε5/2
‖dist(∇v, SO(3))‖2L2(Ω∗ε) (5.1)

The constants do not depend on ε and v (they depend on ω, Y ∗ and κ).

Proof. In [4, Lemma 4.3] it is proved that there exists a constant which does not depend on ε and ṽ
such that

‖e(u)‖L2(Ωε) ≤ C‖dist(∇ṽ, SO(3))‖L2(Ωε)

(
1 +

1

ε5/2
‖dist(∇ṽ, SO(3))‖L2(Ωε)

)
.

Then, Proposition 3.1 gives a constant which does not depend on ε and v such that∥∥dist
(
ṽ, SO(3)

)∥∥
L2(Ωε)

≤ C
∥∥dist(v, SO(3))

∥∥
L2(Ω∗ε)

.

This ends the proof of the lemma.

5.2 Recalls about the plate displacements

Set
H1
γ(ω)

.
=
{
φ ∈ H1(ω) | φ = 0 a.e. on γ

}
,

H2
γ(ω)

.
=
{
φ ∈ H1(ω) | φ = 0, ∇φ = 0 a.e. on γ

}
.

Below we recall a definition from [11, Chapter 11] (see also [20, 16])

Definition 5.2. Elementary displacement are elements ue of H1(Ωε)
3 satisfying for a.e. x = (x′, x3) ∈

Ωε (where x′ ∈ ω)
ue,1(x) = U1(x′) + x3R1(x′),

ue,2(x) = U2(x′) + x3R2(x′),

ue,3(x) = U3(x′).

Here
U = (U1,U2,U3) ∈ H1(ω)3 and R = R1e1 +R2e2 ∈ H1(ω)2.

2It is well known that the existence of a minimizer for Jε is still an open problem.
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The following lemma is proved in [11, Theorem 11.4 and Proposition 11.6]

Lemma 5.3. Let u be in Uε. The displacement u can be decomposed as the sum

u = ue + u (5.2)

of an elementary displacement ue and a residual displacement u, both belonging to Uε and satisfying

U ∈ H1
γ(ω)3, R ∈ H1

γ(ω)2, ‖u‖L2(Ωε) + ε‖∇u‖L2(Ωε) ≤ Cε‖e(u)‖L2(Ωε). (5.3)

Moreover, one has

‖Uα‖H1(ω) + ε
(
‖U3‖H1(ω) + ‖R‖H1(ω)

)
≤ C

ε1/2
‖e(u)‖L2(Ωε),∥∥∂αU3 +Rα

∥∥
L2(ω)

≤ C

ε1/2
‖e(u)‖L2(Ωε),

‖uα‖L2(Ωε) + ε‖u3‖L2(Ωε) ≤ C‖e(u)‖L2(Ωε),

2∑
α,β=1

∥∥∥∂uα
∂xβ

∥∥∥
L2(Ωε)

+
∥∥∥∂u3

∂x3

∥∥∥
L2(Ωε)

≤ C‖e(u)‖L2(Ωε),

2∑
α=1

(∥∥∥∂uα
∂x3

∥∥∥
L2(Ωε)

+
∥∥∥ ∂u3

∂xα

∥∥∥
L2(Ωε)

)
≤ C

ε
‖e(u)‖L2(Ωε).

(5.4)

The constants do not depend on ε.

5.3 Assumptions on the forces

The forces have to admit a certain scaling with respect to the ε-scaling of the domain. For the
textile we require forces of the type

fε,1 = ε2f1,

fε,2 = ε2f2,

fε,3 = ε3f3,

a.e. in Ω∗ε, (5.5)

with f ∈ L2(ω)3. In order to obtain at the limit a von-Kármán model, the applied forces must satisfy
a condition

‖f‖L2(ω) ≤ C∗. (5.6)

This constant depends on the reference cell Y∗, the mid-surface ω of the structure and the local elastic
energy W (see Lemma 5.4).

The scaling of the force gives rise to the order of the energy in the elasticity problem. We prove
this, in lemma below.

Lemma 5.4. Let v ∈ Vε be a deformation such that Jε(v) ≤ 0. Assume (5.5) on the forces. There
exists a constant C∗ independent of ε and the applied forces such that, if ‖f‖L2(ω) < C∗ one has

‖dist(∇v, SO(3))‖L2(Ω∗ε) ≤ Cε5/2‖f‖L2(Ω).

The constant C does not depend on ε.

Proof. Using (4.2) gives rise to the estimation

c0‖dist(∇v, SO(3))‖2L2(Ω∗ε) ≤
∣∣∣ ∫

Ω∗ε

fε · (v − Id) dx
∣∣∣. (5.7)

8



Introduce u = ṽ − Id ∈ Uε the associated displacement to the extended deformation (see Lemma 5.1).
Then, with (5.5) and the estimates (5.4)3 we obtain∣∣∣ ∫

Ω∗ε

fε · (v − Id) dx
∣∣∣ ≤ ε5/2‖fα‖L2(ω)‖uα‖L2(Ω∗ε) + ε7/2‖f3‖L2(ω)‖u3‖L2(Ω∗ε)

≤ ε5/2‖fα‖L2(ω)‖uα‖L2(Ωε) + ε7/2‖f3‖L2(ω)‖u3‖L2(Ωε)

≤ C2ε
5/2‖f‖L2(ω)‖e(u)‖L2(Ωε).

(5.8)

Eventually, the above inequality with (5.7) and Lemma 5.1 give

c0‖dist(∇v, SO(3))‖2L2(Ω∗ε) ≤ C2C0ε
5/2‖f‖L2(Ω)‖dist(∇v, SO(3))‖L2(Ω∗ε)

+ C2C1‖f‖L2(Ω)‖dist(∇v, SO(3))‖2L2(Ω∗ε).

If C2C1‖f‖L2(ω) < c0, then

‖dist(∇v, SO(3))‖L2(Ω∗ε) ≤
C2ε

5/2

c0 − C2C1‖f‖L2(Ω)
‖f‖L2(Ω).

Now, if the deformation v ∈ Vε satisfies Jε(v) ≤ 0, one can give a lower bound of the infimum of
the functional Jε. To do this, use the assumptions (4.2) on the problem and (5.5)-(5.6) on the forces
together with the Lemmas 5.1-5.4 and inequality (5.8) lead to

c0‖(∇v)T∇v − I3‖2L2(Ω∗ε) ≤
∫

Ω∗ε

Ŵ (∇v)dx ≤
∫

Ω∗ε

fε · (v − Id) dx ≤ Cε5‖f‖2L2(ω). (5.9)

As a consequence, there exists a constant c independent of ε such that

−cε5 ≤ Jε(v) ≤ 0 (5.10)

Recalling that mε = infv∈Vε
Jε(v) yields

−c ≤ mε

ε5
≤ 0. (5.11)

Our aim is to give the asymptotic behavior of the rescaled sequence
{mε

ε5

}
ε

and to characterize its

limit as the minimum of a functional.

6 Asymptotic behavior

In this section, we consider a sequence {vε}ε of deformations satisfying

‖dist(∇vε, SO(3))‖L2(Ω∗ε) ≤ Cε5/2. (6.1)

Below we are interested by the asymptotic behavior of the sequence of displacements {uε}ε = {vε−Id}ε.
Here, for every ε, uε is the associated displacement to the extended deformation vε.

From Lemma 5.1, one has
‖e(uε)‖L2(Ωε) ≤ Cε

5/2. (6.2)

Below, we recall some estimates of Lemma 5.3 under this assumption. One has

‖uε‖L2(Ωε) + ε‖∇uε‖L2(Ωε) ≤ Cε
7/2,∥∥Uε,3∥∥H1(ω)

+
∥∥Rε∥∥H1(ω)

≤ Cε,
∥∥Uε,α∥∥H1(ω)

≤ Cε2,∥∥∂αUε,3 +Rε,α
∥∥
L2(ω)

≤ Cε2.

(6.3)

The constants do not depend on ε.
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Lemma 6.1 (See [4, Section 7]). Under the assumptions of Lemma 5.3, there exist a subsequence of
{ε}, still denoted {ε}, U3 ∈ H2

γ(ω) and Uα, Rα ∈ H1
γ(ω) (α ∈ {1, 2}) such that

1

ε
Uε,3 → U3 strongly in H1

γ(ω),

1

ε
Rε,α ⇀ Rα weakly in H1

γ(ω), and strongly in L4(ω)

1

ε2
Uε,α ⇀ Uα weakly in H1

γ(ω),

1

ε2

(
∂αUε,3 +Rε,α

)
⇀ Zα weakly in L2(ω).

(6.4)

Moreover, one has

∂αU3 +Rα = 0. (6.5)

Proof. The convergences and equalities are easy consequences of the above estimates (6.3). To see the

strong convergence of (6.4)1 note that (5.4)1,2 and the strong convergence of
1

ε
Rε,α in L2(Ω) imply

1

ε
∂αUε,3 =

1

ε
(∂αUε,3 +Rε,α)− 1

ε
Rε,α → 0−Rα = ∂αU3, strongly in L2(ω).

the last equality comes from (6.5).

6.1 The unfolding and the unfolding and rescaling operators

For the asymptotic behavior we introduce two operators: Tε for the homogenization in ω and Tε
for the homogenization and dimension reduction in Ω∗ε. Both operators can be found in [11] thus we
recall here only the important properties.

Definition 6.2. For every measurable function φ ∈ L1(ω) we recall the definition of the unfolded
function Tε(φ) ∈ L1(ω × Y ′)

Tε(φ)(x′, y′) = φ
(
ε
[x′
ε

]
+ εy′

)
for a.e. (x′, y′) ∈ ω × Y ′.

For every measurable function ψ ∈ L1(Ω∗ε) the unfolding and the rescaling operator Tε is defined by

Tε(ψ)(x′, y) = ψ
(
ε
[x′
ε

]
+ εy

)
for a.e. (x′, y) ∈ ω × Y∗.

Lemma 6.3. There exist a subsequence of {ε}, still denoted {ε}, Ûα, R̂α ∈ L2(ω;H1
per(Y ′)) and u ∈

L2(ω;H1
per(Y ′)) such that

1

ε
Tε(∇Uε,3) −→ ∇U3 strongly in L2(ω × Y ′)2

1

ε
Tε(Rε) −→ R strongly in L2(ω × Y ′)2

1

ε2
Tε(∇Rε,α) ⇀ ∇Rα +∇yR̂α weakly in L2(ω × Y ′)2

1

ε2
Tε(∇Uε,α) ⇀ ∇Uα +∇yÛα weakly in L2(ω × Y ′)2

1

ε2
Tε(∂αUε,3 +Rε,α

)
⇀ Zα +∇yαu + R̂ weakly in L2(ω × Y ′).

(6.6)
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Moreover, there exists u ∈ L2(ω;H1
per(Y∗))3 such that

1

ε2
Tε(uε) ⇀ u weakly in L2(ω;H1(Y∗)),

1

ε2
Tε(∇uε) ⇀ ∇yu weakly in L2(ω × Y∗)9.

(6.7)

Furthermore, one has

1

ε2
Tε
(
∇uε(∇uε)T

)
−→

∂1U3∂1U3 ∂1U3∂2U3 0
∂1U3∂2U3 ∂2U3∂2U3 0

0 0 ∇U3 · ∇U3

 strongly in L1(ω × Y∗)9. (6.8)

The above convergence is weak in L2(ω × Y∗)9.

Proof. The first convergence (6.6)1 is a consequence of (6.4) and the classical results of the PUM.
Convergences (6.6)2,3,4 come from the convergences in Lemma 6.1 and again of the classical results of
the PUM (see [11]). The last convergence (6.6)5 is a consequence of [11, Lemma 11.11], together with
the convergences (6.4)4 and (6.6)3.

∇uε =

∂1Uε,1 + x3∂1Rε,1 ∂2Uε,1 + x3∂2Rε,1 Rε,1
∂1Uε,2 + x3∂1Rε,2 ∂2Uε,2 + x3∂2Rε,2 Rε,2

∂1Uε,3 ∂2Uε,3 0

+∇uε

Then since (6.6)1,2 are strong convergences and the other fields converge to zero due to (6.6)3,2 and
(6.8) we obtain

1

ε
Tε
(
∇uε

)
−→

 0 0 R1

0 0 R2

∂1U3 ∂2U3 0

 strongly in L2(ω × Y∗)9. (6.9)

Hence, using (6.5) this yields

1

ε2
Tε
(
∇uε(∇uε)T

)
−→

 0 0 R1

0 0 R2

−R1 −R2 0

 0 0 −R1

0 0 −R2

R1 R2 0


=

R1R1 R1R2 0
R1R2 R2R2 0

0 0 R2
1 +R2

2

 strongly in L1(ω × Y∗)9.

Now note that the sequence is actually bounded in L2(Ω× Y∗) by

‖∇uε(∇uε)T ‖L2(Ωε) ≤ ‖∇uε(∇uε)
T + 2e(uε)‖L2(Ωε) + 2‖e(uε)‖L2(Ωε)

= ‖∇vε(∇vε)T − I3‖L2(Ωε) + 2‖e(uε)‖L2(Ωε) ≤ Cε
5/2

Hence, the sequence
{ 1

ε2
Tε
(
∇uε(∇uε)T

)}
ε

is bounded in L2(Ω×Y∗)9. This ensures that (6.8) is also

weakly converging in L2(Ω× Y∗).

Eventually, we find with (6.9)

Tε(∇vε)→ I3 strongly in L2(ω × Y∗)9. (6.10)
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Additionally, the displacements converge as follows

1

ε2
Tε(uε,α)→ Uα − y3∂αU3 strongly in L2(Ω× Y),

1

ε1
Tε(uε,3)→ U3 strongly in L2(Ω× Y).

(6.11)

The above convergences show that the limit displacement is of Kirchhoff-Love type.
Then, we have

Lemma 6.4. For a subsequence we have

1

2ε2
Tε
(
(∇vε)T∇vε − I3

)
⇀ E(U) + ey(û) weakly in L2(ω × Y∗)9, (6.12)

where the symmetric matrix E(U) is defined by

E(U) =

−y3
∂2U3
∂x2

1
+ Z11 −y3

∂2U
∂x1∂x2

+ Z12 0

∗ −y3
∂2U3
∂x2

2
+ Z22 0

0 0 0


where

û(x′, y) =

u(x′, y) +
y3

2
(Z1(x′) · e3)e1 +

y3

2
(Z2(x′) · e3)e2 + y3R̂(x′, y′) ∧ e3 + u(x′, y′) + y3|∇U3(x′)|2e3

for a.e. (x′, y) ∈ ω × Y∗

and

Zαβ = eαβ(U) +
1

2

∂U3

∂xα

∂U3

∂xβ
(α, β) ∈ {1, 2}2.

Proof. First, in the strain tensor ∇v(∇v)T − I3 replace the deformation by its associated displacement
u = v − Id. This yields

∇v(∇v)T − I3 = ∇u(∇u)T +∇u+ (∇u)T = ∇u(∇u)T + 2e(u). (6.13)

The first term on the right hand side is already covered in (6.8). Hence, consider now 1
ε2Tε(e(u)).

However, this is already done in [11] and yields

1

ε2
Tε(e(u)) ⇀

e11(U)− y3
∂2U3
∂x2

1
e12(U)− y3

∂2U3
∂x1∂2

0

∗ e22(U)− y3
∂2U3
∂x2

2
0

0 0 0

+ ey(û), weakly in L2(Ω× Y∗), (6.14)

where we define

û(x′, y) = u(x′, y) +
y3

2
(Z1(x′) · e3)e1 +

y3

2
(Z2(x′) · e3)e2 + y3R̂(x′, y′) ∧ e3 + u(x′, y′) + y3|∇U3(x′)|2e3

for a.e. (x′, y) ∈ ω × Y∗. Upon rewriting the result this yields the claim.

Note, that the antisymmetric part is responsible for the nonlinearity of the problem. Finally we
prove that in the limit problems and in the case of glued yarns, one can replace the eαβ(U)’s with the
Zαβ(U)’s.
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6.2 The limit problem

The limits of the previous section allow to investigate the limit of the elastic problem. Therefore
recall the energy of the elasticity problem in the limit

J (U , û) =

∫
ω

∫
Y∗
Ŵ
(
y,E(U) + ey(û)

)
dydx′ − |Y∗|

∫
ω

f · U dx′. (6.15)

Define the limit space

U :=
{
U =

(
U1,U2,U3

)
∈ H1(ω)2 ×H2(ω) | U = 0, ∂αU3 = 0 a.e. on γ

}
Furthermore, set

J(U , û) =

∫
ω

∫
Y∗
Ŵ
(
y,E(U) + ey(û)

)
dydx′, (6.16)

the part of the energy without the external force. Thus we can write

J (U , û) = J(U , û)− |Y∗|
∫
ω

f · U dx′.

First we prove that the functional J admits a minimum on U× L2(ω;H1
per(Y∗))3.

For every (ξ, ζ, ŵ) ∈ S .
= R3 × R3 ×H1

per,0(Y∗)3 denote Ẽ the symmetric matrix

Ẽ(ξ, ζ, ŵ) =

ξ1 − y3ζ1 + e11,y(ŵ) ξ3 − y3ζ3 + e12,y(ŵ) e13,y(ŵ)
∗ ξ2 − y3ζ2 + e22,y(ŵ) e23,y(ŵ)
∗ ∗ e33,y(ŵ)


Lemma 6.5. We equip the space S .

= R3 × R3 ×H1
per,0(Y∗)3 with the semi-norm

‖(ξ, ζ, ŵ)‖S =

√√√√ 3∑
i,j=1

‖Ẽij(ξ, ζ, ŵ)‖2L2(Y∗).

Then, this expression actually defines a norm on S equivalent to the product-norm.

Proof. To show that the semi-norm is actually a norm it is necessary to show the positive definiteness,
i.e., ‖(ξ, ζ, ŵ)‖S = 0 implies (ξ, ζ, ŵ) = 0.

Let (ξ, ζ, ŵ) ∈ S satisfy ‖(ξ, ζ, ŵ)‖S = 0 and define the map

τ(y) =

y1 (ξ1 − y3ζ1) + y2 (ξ3 − y3ζ3)
y1 (ξ3 − y3ζ3) + y2 (ξ2 − y3ζ2)

−y
2
1

2 ζ1 −
y22
2 ζ2 − y1y2ζ3

 .

Then rewrite

Ẽ(ξ, ζ, ŵ) = ey(τ + ŵ). (6.17)

Hence, τ(y) + ŵ(y) = a + b ∧ y is a rigid motion. Then the properties of ŵ ∈ H1
per,0(Y∗) (periodicity

in the directions e1, e2 and vanishing mean) imply that a = b = ξ = ζ = 0 and thus also ŵ = 0.

Finally, by a contradiction argument it is easy to prove that there exists a constant C such that

‖ξ‖2 + ‖ζ‖2 + ‖ŵ‖H1
per,0(Y∗) ≤ C‖(ξ, ζ, ŵ)‖S (6.18)

holds for all (ξ, ζ, ŵ) ∈ S.
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Lemma 6.6. The functional J admits a minimum on U× L2(ω;H1
per,0(Y∗))3.

Proof. First, from (4.2) and Lemma 6.5, there exists a constant C > 0 such that

C
( 2∑
α,β=1

[∥∥∥eαβ(W) +
1

2

∂W3

∂xα

∂W3

∂xβ

∥∥∥2

L2(ω)
+
∥∥∥ ∂2W3

∂xα∂xβ

∥∥∥2

L2(ω)

]
+ ‖ŵ‖2L2(ω;H1(Y∗))

)
≤ J(W, ŵ),

for all (W, ŵ) ∈ U× L2(ω;H1
per,0(Y∗))3.

(6.19)

Set

m = inf
(U,û)∈U×L2(ω;H1

per,0(Y∗))3
J (U , û)

where m ∈ [−∞, 0].

Step 1. We show that m ∈ (−∞, 0].

To show that m is actually finite we show that the sequence is bounded and thus admits a weak
convergent subsequence and then use the weak sequential continuity of J .

The boundedness of Ui are show with the help of the functional J . Now, consider first U3, which
using (6.19) together with the boundary conditions satisfies

‖û‖2L2(ω;H1(Y∗)) ≤ J(U , û), ‖U3‖2H2(ω) ≤ C
2∑

α,β=1

∥∥∥ ∂2U3

∂xα∂xβ

∥∥∥2

L2(ω)
≤ C2J(U , û). (6.20)

Similarly, the estimate for Uα is obtained. For this keep in mind that in the energy only Zαβ arise and
we arrive at

2∑
α,β=1

‖eαβ(U)‖2L2(ω) ≤ cJ(U , û) + ‖∇U3‖4L4(ω) ≤ cJ(U , û) + ‖U3‖4H2(ω) ≤ cJ(U , û) + [C1C2J(U , û)]
2
.

Note that we used here the embedding H2(ω) ↪→W 1,4(ω). The 2D-Korn inequality then yields

‖U1‖2H1(Ω) + ‖U2‖2H1(Ω) ≤ cJ(U , û) + [C1C2J(U , û)]
2
. (6.21)

With (6.20) and (6.21) we have for the sequence that

J(U , û) ≤ ‖f3‖L2(ω)‖U3‖L2(ω) +
√
‖f1‖2L2(ω) + ‖f2‖2L2(ω)

[
‖U1‖L2(ω) + ‖U2‖L2(ω)

]
≤ ‖f3‖L2(ω)

√
J(U , û) +

√
‖f1‖2L2(ω) + ‖f2‖2L2(ω)

[
c
√
J(U , û) + C1C2J(U , û)

] (6.22)

Thus we also have

J(U , û) ≤ c‖f‖L2(ω)

√
J(U , û) + C1C2‖f‖L2(ω)J(U , û) (6.23)

which shows that J(U , û) is bounded if and only if C1C2‖f‖L2(ω) ≤ 1, which is the same constraint as
before in Lemma 5.4. Then, we have

∀(U , û) ∈ U× L2(ω;H1
per,0(Y∗))3,

J (U , û) ≤ 0 =⇒ ‖U1‖H1(ω) + ‖U2‖H1(ω) + ‖U3‖H2(ω) + ‖û‖L2(ω;H1(Y∗)) ≤ C.

Then we easily show that m ∈ (−∞, 0].

Step 2. We show that m is a minimum.
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Consider a minimizing sequence {(Un, ûn)}n ⊂ U×L2(ω;H1
per,0(Y∗))3 satisfying J (Un, ûn) ≤ J (0, 0) =

0 and

m = inf
(U,û)∈U

J (U , û) = lim
n→+∞

J (Un, ûn).

From step 1, one has

‖Un1 ‖H1(ω) + ‖Un2 ‖H1(ω) + ‖Un3 ‖H2(ω) + ‖ûn‖L2(ω;H1(Y∗)) ≤ C

where the constant does not depend on n.
Hence, there exists a subsequence of {(Un, ûn)}n, still denoted {(Un, ûn)}n, such that

(Un, ûn) ⇀ (U ′, û′) weakly in U× L2(ω;H1
per,0(Y∗))3.

Furthermore, by the lower semi-continuity of J it is clear that

J (U ′, û′) = lim inf
n→+∞

J (Un, ûn) ≤ lim
n→+∞

J (Un, ûn) ≤ m (6.24)

However, since m = inf(U,û)∈U J (U , û) we conclude that for every (U , û) ∈ U × L2(ω;H1
per,0(Y∗))3 it

holds

J (U ′, û′) ≤ m ≤ J (U , û).

This proves that the infimum is in fact a minimum.

Theorem 6.7. Under the assumptions on the forces (5.5)-(5.6) we have

m = lim
ε→0

mε

ε5
= min

(U,û)∈U×L2(ω;H1
per(Y∗))3

J (U , û). (6.25)

Proof. To show this result, we use a kind of Γ-convergence technique.

Step 1. In this step we show that

min
(U,û)∈U×L2(ω;H1

per(Y∗))3
J (U , û) ≤ lim inf

ε→0

mε

ε5
.

To show this, let {vε}ε, vε ∈ Vε, be a minimizing sequence of deformations. It satisfies

lim
ε→0

Jε(vε)
ε5

= lim inf
ε→0

mε

ε5
.

Without lost of generality, we can assume that the sequence satisfies Jε(vε) ≤ 0 and hence the estimates
of the previous sections yield

‖dist(∇vε, SO(3))‖2L2(Ω∗ε) ≤ Cε
5 and ‖(∇vε)T∇vε − I3‖2L2(Ω∗ε) ≤ Cε

5. (6.26)

Therefore, we are allowed to use the decomposition defined in 5.2 and yields the estimates (6.3) and
convergences as in Lemma 6.4 and 6.3. Then the assumptions on the force lead to

lim
ε→0

1

ε5

∫
ω×Y∗

Tε(fε · (vε − Id))dx′dy = lim
ε→0

1

ε5

∫
ω×Y∗

Tε(fε · uε)dx′dy

= |Y∗|
∫
ω

f · U dx′,

converging as a product of a weak and a strong convergence. As consequence, we have with the weak
convergence of the strain tensor 6.12 together with the weak lower semi-continuity of J that

lim inf
ε→0

Jε(vε)
ε5

≥ J(U , û)− |Y∗|
∫
ω

f · U dx (6.27)
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Step 2. We show that for every (U ′, û′) ∈ U× L2(ω;H1
per(Y∗))3, one has

lim sup
ε→0

mε

ε5
≤ J (U ′, û′). (6.28)

To do that, let (U ′, û′) be in U × L2(ω;H1
per(Y∗))3. We will build a sequence {vε}ε of admissible

deformations such that

lim sup
ε→0

mε

ε5
≤ lim
n→+∞

lim
ε→0

Jε(V (n)
ε )

ε5
= J (U ′, û′).

Consider a sequence {U (n)}n in V ∩
(
C1(ω)2 × C2(ω)

)
and {û(n)}n in L2(Ω;H1

per(Y∗))3 ∩ C1(ω ×Y∗)3,
where we additionally assume that û′n|x2=0 = 0, such that

U (n)
α → U ′α strongly in H1(ω)

U (n)
3 → U ′3 strongly in H2(ω)

û(n) → û′ strongly in L2(ω;H1
per(Y∗)).

(6.29)

Now, we show that there exists a sequence {vε}ε such that

lim supε→0

mε

ε5
≤ J (U (n), û(n)).

We define the sequence of deformations

V
(n)
ε,1 (x) = x1 + ε2

(
U (n)

1 (x1, x2)− x3

ε
∂1U (n)

3 (x1, x2) + εû
(n)
1 (x1, x2,

x3

ε
)
)

V
(n)
ε,2 (x) = x2 + ε2

(
U (n)

2 (x1, x2)− x3

ε
∂2U (n)

3 (x1, x2) + εû
(n)
2 (x1, x2,

x3

ε
)
)

V
(n)
ε,1 (x) = x3 + ε

(
U (n)

3 (x1, x2) + ε2û
(n)
3 (x1, x2,

x3

ε
)
)

and by construction we have V ∈ Vε. Obviously, the deformation can be further restricted to the
original structure Ω∗ε.

Now we are interested in the convergences of the deformations {V (n)
ε }ε. Note that they satisfy

‖∇V (n)
ε − I3‖L∞(Ωε) ≤ C(n)ε,

which is why we can assume that det(∇V (n)
ε ) > 0 for all n ∈ N and all x ∈ Ω∗ε (if ε is small enough).

This leads us together with the right-hand-side to

mε ≤ Jε(V (n)
ε ). (6.30)

Since the convergence of the deformation components are known, we obtain

1

2ε2
Tε
((
∇V (n)

ε

)T∇V (n)
ε − I3

)
−→ E(U (n)) + ey

(
û(n)

)
strongly in L2(ω × Y∗)

defined as in Lemma 6.4. This convergence gives rise to the convergence of the elastic energy

lim
ε→0

1

ε5
Jε(V (n)

ε ) = lim
ε→0

1

ε5

∫
ω×Y∗

Tε
(
Ŵ
(
y,∇V (n)

ε

))
dx′dy

= lim
ε→0

1

ε5

∫
ω×Y∗

Tε
(
Q
(
y, (∇V (n)

ε )T∇V (n)
ε − I3

))
dx′dy

=

∫
ω×Y∗

Q
(
y,E(U (n)) + ey(û(n))

)
dx′dy
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and the right-hand-side

lim
ε→0

1

ε5

∫
ω×Y∗

Tε
(
fε ·

(
V (n)
ε − Id

))
dx′dy −→ |Y∗|

∫
ω

fε · U (n)dx′dy

Hence with (6.30) we obtain

lim sup
ε→0

mε

ε5
≤ lim
ε→0

1

ε5
Jε(V (n)

ε ) = J
(
U (n), û(n)

)
.

Since this holds for every n ∈ N, then consider the limit for n to infinity. The strong convergences
(6.29) yield

lim sup
ε→0

mε

ε5
≤ lim
n→+∞

J
(
U (n), û(n)

)
= J

(
U ′, û′

)
,

which concludes the proof of (6.28).
Step 3. Hence, combining both steps we obtain for every (U ′, û′) ∈ U× L2(ω,H1

per(Y∗))

J (U , û) ≤ lim inf
ε→0

mε

ε5
≤ lim sup

ε→0

mε

ε5
≤ J (U ′, û′). (6.31)

Thus, choosing (U ′, û′) = (U , û) gives

J (U , û) = lim
ε→0

mε

ε5

and finally, one obtains

lim
ε→0

mε

ε5
= J (U , û) = min

(U ′,û′)∈U×L2(ω,H1
per(Y∗))

J (U ′, û′).

6.3 The cell problems

Recall the energy (6.15):

J (U , û) =
1

2

∫
ω

∫
Y∗
a
(
E(U) + ey(û)

)
:
(
E(U) + ey(û)

)
dydx′ − |Y∗|

∫
ω

f · U dx′. (6.32)

To obtain the cell problems consider the variational formulation for û associated to the functional J .
For this we use the Euler-Lagrange equation (since it is a quadratic form in e(û) over a Hilbert-space)
and we obtain:

Find û ∈ L2(Ω;H1(Y∗))3 such that∫
Ω×Y∗

a
(
E(U) + ey(û)

)
: ey(ŵ) dy = 0, for all ŵ ∈ L2(Ω;H1

per,0(Y∗))3.
(6.33)

Upon this, we use the periodicity w.r.t. Y∗ to restrict the cell problems to

Find û ∈ H1
per,0(Y∗)3 such that∫

Y∗
a
(
E(U) + ey(û)

)
: ey(ŵ) dy = 0, for all ŵ ∈ H1

per,0(Y∗)3.
(6.34)

Hence, the fields û depend linearly on E(U), one has

û(x′, y) =

2∑
α,β=1

Zαβ(x′) χ̂mαβ(y) +

2∑
α,β=1

∂αβ U3(x′)χ̂bαβ(y). (6.35)
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This leads directly to the typical cell problems

Find
(
χ̂m11, χ̂

m
12, χ̂

m
22, χ̂

b
11, χ̂

b
12, χ̂

b
22

)
∈ H1

per,0(Y∗)3×6 such that∫
Y∗
a(y)(Mαβ + ey(χ̂mαβ)) : ey(ŵ) dy = 0,∫

Y∗
a(y)(−y3M

αβ + ey(χ̂bαβ)) : ey(ŵ) dy = 0,

 for all ŵ ∈ H1
per,0(Y∗)3,

(6.36)

where we denote

M11 =

1 0 0
0 0 0
0 0 0

 , M22 =

0 0 0
0 1 0
0 0 0

 , M12 = M21 =

0 1 0
1 0 0
0 0 0

 . (6.37)

Then, set the homogenized coefficients

ahomαβα′β′ =
1

|Y∗|

∫
Y∗
aijkl(y)

[
Mαβ
ij + ey,ij(χ̂

m
αβ)
]
Mα′β′

kl dy,

bhomαβα′β′ =
1

|Y∗|

∫
Y∗
aijkl(y)

[
y3M

αβ
ij + ey,ij(χ̂

b
αβ)
]
Mα′β′

kl dy,

chomαβα′β′ =
1

|Y∗|

∫
Y∗
aijkl(y)

[
y3M

αβ
ij + ey,ij(χ̂

b
αβ)
]
y3M

α′β′

kl dy.

(6.38)

Accordingly, the homogenized energy is defined by

J homvK (U) =
1

|Y∗|
J (U , û)

1

2

∫
ω

(
ahomαβα′β′ZαβZα′β′ + bhomαβα′β′Zαβ ∂α′β′U3 + chomαβα′β′∂αβU3 ∂α′β′U3

)
dx′ −

∫
ω

f · U dx′.
(6.39)

with

Zαβ = eαβ(U) +
1

2
∂αU3∂βU3.

Theorem 6.8. Under the assumptions (5.5)-(5.6) the problem

min
U∈U
J homvK (U) (6.40)

admits solutions. Moreover, one has

m = lim
ε→0

mε

ε5
= min

(U,û)∈U×L2(ω;H1
per(Y∗))3

J (U , û) = |Y∗|min
U∈U
J homvK (U).

6.4 Yarn made of isotropic and homogeneous material

Let us here assume that the yarns are made from an isotropic and homogeneous material whose
Lamé’s constants are λ, µ. The following Lemma shows that the homogenized textile is then orthotropic.

Lemma 6.9. Under the above assumption on the material, one has

bhomαβα′β′ = 0 ∀(α, β, α′, β′) ∈
{

1, 2
}4

(6.41)

and also
ahom1111 = ahom2222 and ahomαα12 = 0, α ∈

{
1, 2
}
,

chom1111 = chom2222 and chomαα12 = 0, α ∈
{

1, 2
} (6.42)
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Proof. Consider the following transformation:

φ ∈ H1
per(Y∗)3 7−→ φ̃ ∈ H1

per(Y∗)3

φ̃(y) = −φ1(ỹ)e1 + φ2(ỹ)e2 + φ3(ỹ)e3 where ỹ = (2− y1)e1 + y2e2 + y3e3, for a.e. y ∈ Y∗.

One has 

ey,ii(φ̃)(y) = ey,ii(φ)(ỹ), i ∈ {1, 2, 3},

ey,12(φ̃)(y) = −ey,12(φ)(ỹ),

ey,13(φ̃)(y) = −ey,13(φ)(ỹ),

ey,23(φ̃)(y) = ey,23(φ)(ỹ),

for a.e. y ∈ Y∗.

Using this transformation in problem (6.36)2 gives{
χ̂bαα(2− y1, y2, y3) = χ̂bαα(y),

χ̂b12(2− y1, y2, y3) = −χ̂b12(y),
for a.e. y ∈ Y∗. (6.43)

Since

∫
Y∗
y3 dy = 0, one has

bhomαβα′β′ =
1

|Y∗|

∫
Y∗
σα′β′(χ̂

b
αβ) dy.

Hence
bhomαα12 = 0, α ∈ {1, 2}.

Now, from (6.43), we get
χ̂b12,1(2− y1, y2, y3) = χ̂b12,1(y),

χ̂b12,2(2− y1, y2, y3) = −χ̂b12,2(y),

χ̂b12,3(2− y1, y2, y3) = −χ̂b12,3(y),


χ̂bαα,1(2− y1, y2, y3) = −χ̂bαα,1(y),

χ̂bαα,2(2− y1, y2, y3) = χ̂bαα,2(y),

χ̂bαα,3(2− y1, y2, y3) = χ̂bαα,3(y),

for a.e. y ∈ Y∗.

(6.44)
Equality (6.44) and the periodicity lead to equalities below of the traces

χ̂b12,i(0, y2, y3) = χ̂b12,i(1, y2, y3) = χ̂b12,i(2, y2, y3) = 0, i ∈ {2, 3},
χ̂bαα,1(0, y2, y3) = χ̂bαα,1(1, y2, y3) = χ̂bαα,1(2, y2, y3) = 0.

Now using the symmetry with respect to the plane y2 = 1, we obtain{
χ̂bαα(y1, 2− y2, y3) = χ̂bαα(y),

χ̂b12(y1, 2− y2, y3) = −χ̂b12(y),
for a.e. y ∈ Y∗. (6.45)

Hence
χ̂b12,i(y1, 0, y3) = χ̂b12,i(y1, 1, y3) = χ̂b12,i(y1, 2, y3) = 0, i ∈ {1, 3},
χ̂bαα,2(y1, 0, y3) = χ̂bαα,2(y1, 1, y3) = χ̂bαα,2(y1, 2, y3) = 0.

The results above allow to replace problem (6.36)2 by the following ones:
Find χ̂b12 ∈ G(Y∗) such that∫
Y∗
σy,ii(χ̂

b
12) ey,ij(ŵ) dy =

∫
Y∗
y3 σy,12(ŵ) dy,

for all ŵ ∈ G(Y∗)
Find χ̂bαα ∈ H(Y∗) such that∫
Y∗
σy,ii(χ̂

b
αα) ey,ij(ŵ) dy =

∫
Y∗
y3 σy,αα(ŵ) dy,

for all ŵ ∈ H(Y∗)

(6.46)
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where Y∗ is the part of the cell included in (0, 1)2 × (−2κ, 2κ) and (i ∈ {2, 3}, j ∈ {1, 3})

G(Y∗) =
{
φ ∈ H1(Y∗)3 | φi(0, y2, y3) = φi(1, y2, y3) = 0, φj(y1, 0, y3) = φj(y1, 1, y3) = 0

}
,

H(Y∗) =
{
φ ∈ H1(Y∗)3 | φ1(0, y2, y3) = φ1(1, y2, y3) = 0, φ2(y1, 0, y3) = φ1(y1, 1, y3) = 0

}
.

Now, consider the transformation

φ ∈ H(Y∗) 7−→ φ ∈ H(Y∗), (resp. φ ∈ G(Y∗) 7−→ φ ∈ G(Y∗))
φ(y) = φ2(y)e1 + φ1(y)e2 − φ3(y)e3 where y = y2e1 + y1e2 − y3e3, for a.e. y ∈ Y∗.

One has

ey,11(φ)(y) = ey,22(φ)(y), ey,22(φ)(y) = ey,11(φ)(y), ey,33(φ)(y) = ey,33(φ)(y),

ey,13(φ)(y) = −ey,23(φ)(y), ey,12(φ)(y) = ey,12(φ)(y), ey,23(φ)(y) = −ey,13(φ)(y),
for a.e. y ∈ Y∗.

We use the above transformation in problems (6.46) that gives

χ̂b12(y2, y1,−y3) = −χ̂b12(y),

χ̂b11(y2, y1,−y3) = −χ̂b22(y),
for a.e. y ∈ Y∗. (6.47)

These equalities lead to
bhom1212 = bhom1122 = 0, bhom1111 = −bhom2222.

The last transformation

φ ∈ H(Y∗) 7−→ φ ∈ H(Y∗),

φ(y) = −φ2(y)e1 + φ1(y)e2 + φ3(y)e3 where y = (1− y2)e1 + y1e2 + y3e3, for a.e. y ∈ Y∗.

One has

ey,11(φ)(y) = ey,22(φ)(y), ey,22(φ)(y) = ey,11(φ)(y), ey,33(φ)(y) = ey,33(φ)(y),

ey,13(φ)(y) = −ey,23(φ)(y), ey,12(φ)(y) = −ey,12(φ)(y), ey,23(φ)(y) = −ey,13(φ)(y),
for a.e. y ∈ Y∗.

We use the above transformation in problem (6.46)2 that gives

χ̂b11(1− y2, y1, y3) = χ̂b22(y), for a.e. y ∈ Y∗. (6.48)

This equality gives
bhom1111 = bhom2222

which ends the proof of (6.41). Similarly one obtains (6.42).

As a consequence of the above lemma in the expressions of the energy (6.39) and (6.51) they remain
three coefficients ahom (ahom1111, a

hom
1122, a

hom
1212) and chom (chom1111, c

hom
1122, c

hom
1212).

6.5 The linear problem

The analysis presented in this paper is stated especially for the von-Kármán limit. Although this is
a nonlinear model the problem is stated with displacments and not deformations as usual in nonlinear
elasticity. In fact the von-Kármán plate is the critical case for the choice of the geometric energy
‖dist(∇v, SO(3))‖L2(Ωε∗) ∼ Cε5/2 in between linear and nonlinear plates, as it can be seen in [4, 2, 15,
7, 5, 23, 14].
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To obtain the linear problem one simply considers the symmetric strain tensor e(u) instead of the
Green-Lagrangian strain tensor e(u)+ 1

2∇u(∇u)T = 1
2 (∇v(∇v)T − I3). All results in this paper remain

true but the Zαβ(U) are replaced by eαβ(U) in the limit.

The resulting linear limit energy

Jlin(U , û) =

∫
ω

∫
Y∗
Ŵ
(
y,Elin(U) + ey(û)

)
dydx′ − |Y∗|

∫
ω

f · U dx′, (6.49)

with

Elin(U) =

e11(U)− y3
∂2U3
∂x2

1
e12(U)− y3

∂2U3
∂x1∂2

0

∗ e22(U)− y3
∂2U3
∂x2

2
0

0 0 0

 (6.50)

found in (6.14).

Then, with the same steps as in section 6.3 the cell problems are given by (6.36) and yield the
homogenized linear plate equation also found in [11, Thm. 11.21].

Theorem 6.10. Assume that the force satisfies fε = ε2+νf1e1 + ε2+νf2e2 + ε3+νf3e3 with f ∈ L2(ω)
and ν > 0. Then, J lin is the unfolded limit energy. Furthermore, the cell problems are again given by
(6.36) and yield the homogenized energy

J homlin (U) =

1

2

∫
ω

(
ahomαβα′β′eαβ(U)eα′β′(U) + bhomαβα′β′eαβ(U)∂α′β′U3 + chomαβα′β′∂αβU3∂α′β′U3

)
dx′ −

∫
ω

f · U dx′.

(6.51)

The minimizer of this functional satisfies the variational problem

Find U ∈ U such that for all V ∈ U:∫
ω

ahomαβα′β′eαβ(U)eα′β′(V) +
bhomαβα′β′

2
(eαβ(U) ∂α′β′V3 + eαβ(V)∂α′β′U3)

+ chomαβα′β′∂αβU3∂α′β′V3dx
′ =

∫
ω

f · V dx′. (6.52)

Note that this is the same energy as for the problem presented in [11, Ch. 11] for the case θ = 1. The
existence and uniqueness of a solution for this linear problem is for instance investigated in [11, 9, 24, 8].

Remark 6.11. The shown derivation of a homogenized von-Kármán plate is also valid for other micro-
structures for which the extension in section 2 holds true, e.g. shells whose mid-surfaces are developable
surfaces.

Remark 6.12. It is also possible to derive the von-Kármán plate on the level of deformations and
the decomposition of deformation, see [4, 2]. However, this needs a more involved analysis of the
decomposed fields, since there exist more degrees of freedom. This different approach yields some insights
into nonlinear elasticity and the connection between nonlinear decomposition and linear decompositions
(see also [2, 17]), yet the result is the same as presented here.

7 Comparison to [21]

In fact, the cell problems derived here are the same in [21]. However, it is not obvious on the first
sight because of a different point of view therein. The coincidence of both cases can be explained by
the fact, that the homogenization presented here is also valid for the problem stated in [21] with fixed
junctions between the beams, i.e. the gap-function g ≡ 0, for linear elasticity. Besides replacing Zαβ
by eαβ the result analogous to (6.39).
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8 Stability of a plate with von-Kármán energy

Here, we give an example of the pre-strain in an orthotropic plate. Linearization of the Kármán
plate was considered in [22], [26],[1], under an assumption of scalar fields and that the in-plane elastic
strain is equal to the given in-plane strain e∗.

Homogenization of the in-plane pre-stress

In counterparts of 4.1, we can take a given pre-stress in yarns, σ∗ij,ε(x) := ε2aijkl(
x

ε
)e∗kl,ε(x), due to

a thermal, chemical or electric expansion, with e∗kl,ε ∈ L2(Ω∗ε), (k, l) ∈ {1, 2, 3}2. We assume that

Tε (e∗ε) ⇀ e∗ weakly in L2(ω × Y∗;R3×3). (8.1)

In 4.1, we replace the term

∫
Ω∗ε

fε · (v − Id) dx by the following:∫
Ω∗ε

ε2 a e∗ε : e(v − Id) dx.

Then, as in Subsection 5.3, we prove that there exists a constant C∗ such that, if ‖e∗ε‖L2(Ω∗ε) ≤ C∗
√
ε

then for every v ∈ Vε such that Jε(v) ≤ 0 one has

‖dist(∇v, SO(3))‖L2(Ω∗ε) ≤ C∗∗ε5/2

where the constants C∗ and C∗∗ do not depend on ε. Proceeding as in Section 6, we obtain the limit
functional

J (U , û) =
1

2

∫
ω×Y∗

a
(
E(U) + ey(û)

)
:
(
E(U) + ey(û)

)
dydx′ − 1

2

∫
ω×Y∗

a e∗ :
(
E(U) + ey(û)

)
dx′dy.

Now, we search the field û with an additional corrector, responsible for the right-hand side, to homog-
enize the pre-stress, similar to [25]. Let χ̂p be in L2(ω;H1

per,0(Y∗))3 the solution of∫
Y∗
a ey(χ̂p) : ey(ŵ) dy =

∫
Y∗
a e∗(x, ·) : ey(ŵ) dy, for a.e. x ∈ ω and for all ŵ ∈ H1

per,0(Y∗)3.

One has

û(x′, y) =

2∑
α,β=1

Zαβ(x′)χ̂mαβ(y) +

2∑
α,β=1

∂αβ U3(x′) χ̂bαβ(y) + χ̂p(x′, y), for a.e. (x′, y) ∈ ω × Y∗.

(8.2)

Then, the effective pre-strain is

ahomαβα′β′(e
∗
αβ)hom(x′) =

1

|Y∗|

∫
Y∗
a(y)e∗(x′, y) :

(
Mα′β′ + ey(χ̂p)(x′, y)

)
dy. (8.3)

So, in te limit, the force functional will be replaced by

|Y∗|
∫
ω

ahom(e∗)hom(x′) : Z(x′) dx′, (8.4)

with

Z =

(
Z11 Z12

∗ Z22

)
, (8.5)

Note that the macroscopic pre-stress will act in-plane, i.e. there will be no entry in the bending term
from this pre-stress, because of the rotational symmetry of the periodicity cell.
Note, that since the minimization of a functional is up to a given additive term, the pre-strain can be
insert into the left-hand side (energetic part) of the functional and substructed from the elastic strain.
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Uni-axial compression

Now, all displacements must satisfy the following inhomogeneous Dirichlet conditions:

U(0, x2) =


e∗L

2
0

0

 , U(L, x2) =


−e
∗L

2
0

0

 , for a.e. x2 ∈ (0, L). (8.6)

Set

Ũ(x′) = e∗
(L

2
− x1

)
e1 for a.e. x′ = (x1, x2) ∈ ω. (8.7)

This displacement satisfies the above Dirichlet conditions and one has

e(Ũ) =

(
−e∗ 0

0 0

)
.

Denote

UNew =
{
U =

(
U1,U2,U3

)
∈ H1(ω)2 ×H2(ω) | U = 0, ∂1U3 = 0 a.e. on ΓD

}
, ΓD = {0, L} × (0, L).

Now, our aim is to minimize over UNew the functional

J homvK (U + Ũ) =
1

2

∫
ω

(
ahom1111

(
(Z ′11)2 + (Z ′22)2

)
+ 4ahom1212(Z ′12)2 + 2ahom1122Z ′11Z ′22

+ chom1111

(
(∂11U3)2 + (∂22U3)2

)
+ 4chom1212(∂12U3)2 + 2chom1122∂11U3 ∂22U3

)
dx′,

U ∈ UNew

(8.8)

with here

Z ′αβ = eαβ(U + Ũ) + ∂αU3∂βU3 = Zαβ + Z∗αβ

where
Z∗αβ = eαβ(Ũ).

Again, we want to solve the minimization problemFind U∗ ∈ UNew such that

min
U∈UNew

J homvK (U + Ũ) = J homvK (U∗ + Ũ).

We know that the infimum of this functional on UNew is reached. Here, we want to get buckling. This
means that the solutions of the above problem are not only in-plane displacements.

Suppose that there is no buckling. This means that the solutions of the above minimization problem
are in fact the solution of the following minimization problem:Find U∗lin ∈ UNew such that

min
U∈UNew

J homlin (U + Ũ) = J homlin (U∗lin + Ũ)

where

J homlin (U+Ũ) =
1

2

∫
ω

(
ahom1111

(
(e11(U+Ũ))2+(e22(U+Ũ))2

)
+4ahom1212(e12(U+Ũ))2+2ahom1122e11(U+Ũ)e22(U+Ũ)

)
dx′
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The above minimization problem admits a unique solution (an in-plane displacement U∗lin). We have

0 < J homlin (U∗lin + Ũ) = C∗(e∗)2 ≤ J homlin (Ũ) = (e∗)2ahom1111L
23.

Now, if we find a displacement of type V3e3 such that

J homvK (V3e3 + Ũ) < J homlin (U∗lin + Ũ) = J homvK (U∗lin + Ũ)

this will show that there is buckling.

To do this, we seek a flexion independent of x2 (taking into account the boundary conditions)

V3(x′) = V3(x1) for a.e. x′ = (x1, x2) ∈ ω

with V3 ∈ H2
0 (0, L) in order to get an admissible displacement (V3e3 ∈ UNew). Hence, one has

e11(Ũ) + (∂1V3)2 = −e∗ + (V ′3(x1))2,

e12(Ũ) + ∂1V3∂2U3 = 0, e22(Ṽ) + ∂2V3∂2U3 = 0,

(∂11V3)2 = (V ′′3 (x1))2, (∂22V3)2 = 0,

(∂12V3)2 = 0, ∂11V3 ∂22V3 = 0.

That gives

J homvK (V3e3 + Ũ) =
L

2

∫ L

0

ahom1111

(
(e∗)2 − 2e∗(V ′3(x1))2 + (V ′3(x1))4

)
+ chom1111(V ′′3 (x1))2dx1.

A necessary condition to obtain a buckling is J homvK (V3e3 + Ũ) < (e∗)2ahom1111L
2. Hence∫ L

0

ahom1111(V ′3(x1))4dx1 +

∫ L

0

chom1111(V ′′3 (x1))2dx1 < 2e∗
∫ L

0

ahom1111(V ′3(x1))2dx1.

Choose the function
V3(x1) = sin2

(πx1

L

)
for all x1 ∈ [0, L].

A straight forward calculation leads to

ahom1111

3π4

8L3
+ chom1111

2π4

L3
< 2e∗ahom1111

π2

2L
.

Thus

e∗ >
π2

L2

3ahom1111 + 16chom1111

8ahom1111

.

To get a sufficient condition we need to know a lower bound of C∗.

Remark 8.1. A weaker condition on e∗, which recovers conditions as in [1], is given by the bound
from below on the energy.

J homvK (V3e3 + Ũ) ≥ L

2

∫ L

0

[
chom1111 − e∗

L2

2π2
ahom1111

]
(V ′′3 (x1))2dx1. (8.9)

where we used the Poincaré inequality∫ L

0

(V ′3(x1))2 dx1 ≤
L2

(2π)2

∫ L

0

(V ′′3 (x1))2 dx1. (8.10)

3 To get the exact value of the constant C∗ we have to solve the corresponding linear problem.
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Then, we have

(e∗)2ahom1111L
2 > J homvK (V3e3 + Ũ) ≥ L

2

∫ L

0

[
chom1111 − e∗

L2

2π2
ahom1111

]
(V ′′3 (x1))2dx1 (8.11)

A necessary condition to get buckling is

L

2

∫ L

0

[
chom1111 − e∗

L2

2π2
a1111

]
(V ′′3 (x1))2dx1 < 0.

That gives

e∗ >
π2chom1111

2L2ahom1111

. (8.12)

For the sufficient condition, note that the coercivity yields

c‖e(U∗lin − Ũ)‖2 ≤ J homlin (U∗lin − Ũ). (8.13)

Furthermore, note that ‖e(U∗lin−Ũ)‖ > 0 since the fields satisfy different boundary conditions. Indeed,
we know that by the Korn-inequality, the trace-estimation

‖e(U∗lin − Ũ)‖L2(ω) ≥ c‖U∗lin − Ũ‖H1(ω) ≥ c‖U∗lin − Ũ‖L2(Γ) ≥ cL2e∗ > 0 (8.14)

where c does not depend on ω.
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