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Abstract—To check the correctness of heterogeneous models of
a complex critical system is challenging to meet the certification
standard. Such guarantee can be provided by embedding the het-
erogeneous models into an integrated modelling framework. This
work is proposed in the B-PERFect project of RATP (Parisian
Public Transport Operator and Maintainer), it aims to apply
formal verification using the PERF approach on the integrated
safety-critical software related to railway domain expressed in a
single modelling language: HLL. This paper presents a certified
translation from B formal language to HLL. The proposed
approach uses HOL as a unified logical framework to describe
the formal semantics and to formalize the translation relation of
both languages. The developed Isabelle/HOL models are proved
in order to guarantee the correctness of our translation process.
Moreover, we have also used weak-bisimulation relation to check
the correctness of translation steps. The overall approach is
illustrated through a case study issued from a railway software
system: onboard localization function. Furthermore, it discusses
the integrated verification at system level.

Index Terms—Formal Semantics, B to HLL Translation Vali-
dation, Theorem Proving, Model Animation

I. INTRODUCTION

Nowadays, it is well known that the development of com-

plex industrial systems, involving both hardware and soft-

ware components, is becoming a huge task requiring high

quality development processes. Moreover, when these systems

deal with critical application domains, like transportation and

aerospace, energy, etc., these processes need to set up rigor-

ous verification and validation procedures. Formal approaches

have proved useful to define such rigorous procedures.

Furthermore, in a system engineering context, the devel-

opment of a complex system is not handled by a unique

developer. Several stakeholders are involved in the different

development processes and may handle a component (part

or a piece) of the system to be developed. Each of these

development processes gathers several development activities

and models shared and distributed among all the stakeholders.

A consequence of the involvements of many actors in such

developments is heterogeneity. Indeed, several modeling tech-

niques, programming languages, design processes, validation

and verification procedures, etc. may be set up by each stake-

holder. Each stakeholder delivers the component (hardware

or software) he/she is in charge of. Then, the main issue

resided in the global verification and validation of the whole

complex system. To solve this issue, one solution consists in

imposing a standardized approach based on shared processes

and languages. This approach is not realistic when the systems

are too complex.

Our concern is the validation and verification of systems

developed by various stakeholders who use their own mod-

elling languages and development processes. We believe that

black box validation and verification procedures can be set

up. We show that formal modelling techniques provide a

rigorous solution to allow integrated verification and validation

activities.

Our work is inspired by railway transportation system de-

velopment processes set up at RATP. For several years, RATP

has been involved in the application of formal verification tech-

niques to assess the safety level of railway systems which gave

birth to a formal verification methodology called PERF (Proof

Executed over a Retro engineered Formal model) [1], designed

to be applicable to any software system independently of their

development processes and languages. The approach consists

in diving all the produced component models in a single shared

PERF pivot modelling language supporting formal verification.

The PERF pivot language, HLL[2], is a synchronous data-flow

language, similar to Lustre[3], allowing to express, in the same

formalism, the system behavior as well as safety requirements.

This translation shall be sound and semantic preserving. Once

this translation is achieved, it becomes possible to question

the obtained shared models, for verification and validation

purposes.

In this paper, we deal with the B method [4]. The B-

PERFect project was initiated in order to investigate the

applicability of PERF on software systems developed using the

B method [4]. Software systems developed using B are valid

by correct by construction with respect to safety requirements.

The idea behind the B-PERFect project is not to replace the

formal verification process of B but to propose a verification

alternative to be used for an internal independent safety

assessment. This will not question the proof process of B.

However, it may eventually reveal any error in the initial

formalization of safety requirements. The proposed method

for safety-critical software verification is a bottom-up approach

starting from the source code to the high level specification.

On these basis, in our approach, B models are automatically

translated into HLL models. As this approach relies on a

translator tool, a vital property is the semantic preservation

and thus the certification of the translator.

In this paper, we address the problem of validating the
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translator by proving semantic equivalence between the source

code and the target code. To prove the correctness of the

program transformation, the formal semantics of each mod-

elling language is expressed in Isabelle/HOL. Furthermore, a

formal proof of semantic preservation (semantic equivalence)

is carried out. It guarantees the equivalence between the B

source language and the HLL target language. The overall

approach is exemplified through a case study borrowed from

the railway domain and supplied by RATP.
The rest of the paper is organized as follows. Section II

introduces the PERF approach and the case study illustrating

our approach. An overview of our framework and basic

concepts of B and HLL language are given in III. Section

IV presents the B2HLL tool. The Isabelle/HOL formalization

and the proof of the semantics equivalence is presented in

Section V. In Section VI, the animation of the Isabelle/HOL

formalization is described. Section VII discusses the related

work and Section VIII gives some concluding remarks.

II. PERF: AN INTEGRATION VERIFICATION FRAMEWORK

RATP’s engineering department relies on rigorous verifi-

cation methodologies based on formal methods. The use of

formal methods has been successfully applied for several

RATP projects development, revealing safety critical bugs.

RATP projects involve various subcontractors who use dif-

ferent development methods and languages. The resulting

heterogeneity enforces RATP to master all subcontractor’s

methods and languages and to manage a complex assessment

process. To deal with this complexity, a unified verification

approach, offering an “ex post facto” proof, is applied to

each supplied product independently of the subcontractor’s

development language or method.

A. The PERF Framework
The PERF verification process consists in translating the

source code of the system under investigation into a formal

HLL model. The safety properties, corresponding to the global

requirements of RATP, are also expressed in HLL as proof

obligations. The obtained model is completed (close loop

modelling) with constraints or assumptions describing a model

of the environment. Then, verification is performed on the

obtained model. If the proof engine reveals counter-examples,

the corresponding scenario is analyzed in order to understand

the safety risk related to this property violation. A complete

tool chain associated to PERF (translators, counter-example

analyzers, SAT-based proof engines [5]) is available.
PERF is actually applied in every project where translators

are available. Programming and modelling languages like C,

Ada or Scade are currently supported by PERF. It has been

successfully set up to verify systems like Computer Based

Interlockings, wayside and onboard equipments of CBTC

(Communication Based Train Control) [6].

B. B-PERFect Motivation
In railway domain, due to the existing gap between high-

level system specification and low-level software implemen-

tation, the safety assurance is difficult to obtain. Moreover,

gluing the safety risks expressed at the system level with the

software components responsible for handling these risks is

a hard task. The B method is proved useful to reduce this

gap by defining a refinement chain moving from high level

specifications to low level ones. But, independent assessment

of safety-critical systems developed using the B method with

respect to informal requirements can be complicated and might

be intrusive in some situations. The detection of inconsisten-

cies in invariants cannot be done automatically.

Even though the formal verification performed by the B

proof engines can be trusted, the validation of the safety

properties can only be performed by tedious and non efficient

reviewing activities of code or specification. .

To address the above constraints, the B-PERFect project

provides an independent alternative for the verification of

the safety properties on systems developed using the B

method. According to the PERF approach, the B models

are transformed into HLL models where the required safety

requirements are added for checking the correctness of system

behaviour. By doing so, one can prove additional system

properties. The idea behind this is not to prove again the

already proved properties on the supplied B models but to

guarantee the safety properties which could not be expressed

on the isolated B model due to the absence of its environment.

This process is non intrusive and supports a verification of the

integration of all system components.

C. Case study: Train localization in a CBTC system

CBTC [7] is a complex system which uses bidirectional

communication between onboard and wayside equipments in

order to ensure a safe and high performance service. It is

composed of different sub-systems that depend on each sup-

plier’s architecture, specification and development formalism.

A CBTC system offers two main functions 1) localization

(onboard), and 2) tracking of trains (wayside). Localization
computes the topological position of trains while tracking uses

Localization to build the cartography of the trains on the whole

network.

In this case study, we are concerned with Train Reference-

Point Localization TRPL function, a sub-function of the Lo-
calization. Given a topology of n line segments, a travelled

distance estimation d and a train position p corresponding to

a segment identifier, an abscissa and an orientation, the TRPL
function computes the new train position p′.

In order to reduce the complexity of the TRPL function,

environment based assumptions are considered i.e. 1) a railway

line is considered as a sequence (consecutive) of segments of

equal length associated with an identifier 2) the train orienta-

tion is a one way and remains the same for all the segments. In

an ideal world, the verification can be performed on the high-

level system requirements and their low-level implementation

under the given safety properties. Unfortunately, this is not

possible because either the developed model is too complex

or the given safety properties do not address directly the

developed high-level requirements.



The following requirements are associated to TRPL. First

unitary requirements (checked on the TRPL function in

isolation) and second integration or system requirements,
involving the environment assumptions, are presented.

1) Unitary requirements:

UnitReq1 The train reference point position p′ shall be
computed according to the given orientation.

UnitReq2

The distance between the current reference

point position p and the next reference point

position p′ shall be equal to the travelled

distance d.

UnitReq3
The train reference point position p shall not

change when the new position goes beyond

the known segments zone n.

2) Integration or system requirements: The system require-

ment on the TRPL function expresses that the reference point

positions are computed on each consecutive segment crossed

by a train. It entails checking that the next segment is not

occupied. Safety specifications can have different levels of

refinement and not all of the requirements are directly encoded

in the B model as invariant or by implementation. For the

purpose of this paper, observe that this requirement is not

defined in the B model, it is checked at the integrated HLL

model level because it is defined over several models.

SystReq
The next reference point position shall be

on the next segment (adjacent to the current

segment position) in the given orientation

III. CERTIFIED EMBEDDING OF B MODELS

In the context of the B-PERFect project, as mentioned

previously, our aim is to deploy the PERF approach for B

models. We aim at developing a certified semantic preserving

translator of B models to HLL. We prove that the translator

B2HLL together with its implemented transformation rules

defined in [8] is semantic preserving.

A. Our framework

Our approach is depicted in Fig. 1. It is based on a deep
embedding using the Isabelle/HOL framework as a unified

formal modelling framework. First, both B and HLL modelling

language semantics are modelled in Isabelle/HOL. Then, an

equivalence relation between these models is formalized. It

is based on a bi-simulation relation (upper part of Fig. 1).

An equivalence theorem is stated and proved (by a structural

induction) once for all.

Specific B and HLL models are checked to be equivalent as

follows. Each B and HLL models are defined as instances of

these semantic models (Instance of relation on Fig. 1). Then,

the equivalence theorem associated to the defined equivalence

is checked for these two instances. All the proof obligations

are successfully discharged.

Discharging the proof obligations associated to the instan-

tiation of the equivalence theorem (checking the theorem

hypotheses) certifies that B and HLL models are equivalent

according to the defined equivalence relation. The construction

of proofs is mechanical. It is the responsibility of developer

to discharge the verification condition in Isabelle/HOL using

different tactics and to prove that the theorem hypotheses hold.

Isabelle/HOL toolkit and its library of tactics are used for this

purpose. Finally, an export tool (lower part of Fig. 1) produces

Isabelle/HOL models for the specific input B models and HLL

models produced by B2HLL tool.

Fig. 1. A formal framework of certified translator

B. HLL modelling language

HLL is a formal declarative and synchronous data flow

language close to LUSTRE [3]. HLL models are seen as

typed streams defined as compositions of either temporal or

data operators. Temporal operators describe clock-dependent

expressions while data operators, like arithmetic, logical or

array operators, are used to manipulate streams values (being

either integer or boolean values). The declarative nature of the

language eases the definition of formal behavioural models

as well as safety properties. A HLL project is organized in

namespaces sections. Streams are declared in declarations
blocks with type checking information, and their values are

given in the definitions blocks. The proof obligations block

contains a set of properties related to streams for requirement

verification purpose. Constraints expressions are used to re-

duce the domain definition of unbound inputs streams.

C. The B Method

The B method [4] handles complete critical-software devel-

opment processes from specification to code using refinement.

A B development process is layered. Each layer corresponds

to an abstraction level and the refinement provides the relation

between layers. B is based on first-order logic and set theory.

Models are represented in B as machines. A machine contains

state variables, instances of other machines, type invariants,

an initialization clause and operations acting on the defined

state variables. Generally, B project models represent a state

transition system in which the initialization clause sets the

initial values of variables and the operation clause specifies

how variables are modified from one state to another. The

invariant (first order logic expression) describes the safety

properties of the model. Invariant preservation proof obliga-

tions are generated and need to be discharged in order to assert

machine consistency. The highest level of abstraction is the



specification, a representation of functional requirements and

the lowest one corresponds to an implementation where only

programming-like constructs are allowed [9].

D. Isabelle/HOL

In the style of LCF [10], Isabelle/HOL is a generic inter-

active theorem prover for Higher-Order Logic (HOL) [11].

It is based on a meta logic used to encode object logics

like First-Order Logic and Zermelo-Fraenkel set theory and

offers a natural-deduction-style proof rules. The modelling

part relies on functional programming languages. Basic type

declaration is typedecl(’t1, ’t2, ...) Tnew, where ’ti are possible

type parameters and Tnew is a new defined type. Other type

constructors are available: ti × tj for product and ti ⇒ tj for

function maps. Moreover, it also supports condition, let and

case expressions, which are basic constructs of the functional

languages. Several powerful external provers are integrated in

Isabelle/HOL.

IV. B2HLL: A TRANSLATOR FROM B TO HLL

In [8], we have described the general transformation prin-

ciples from B to HLL, including the B2HLL tool we imple-

mented. Below, we illustrate this transformation and show how

a B model corresponding to the case study of section II-C,

carrying the unitary requirements is translated to a HLL model.

A. From B to HLL 1

Due to the semantic mismatch, the transformation of B

models to HLL models is not straightforward. On the B side,

imperative style is used while data flow paradigm with single

static assignment form (SSA) is used on the HLL side. B

constants are directly translated into HLL constants and the

typing invariants of B are equivalently translated to HLL

datatypes. A particular issue in this transformation concerns

B state variable evolutions and updates. A specific dataflow

shall be defined on the HLL side to record the changes.

B state variables become HLL data streams. Each B state

variable updated in a B conditional statement becomes a

HLL conditional expression that merges the information from

different control flow branches associated to the evolution

of the variable. Expressions, conditionals and loops are also

translated in HLL. Regarding properties, HLL provides the

same quantifiers as B language, the translation of B predicates

and B expressions is almost straightforward. Finally, each B

operation is translated to a HLL namespace as a sequence of

assignments. More details on this transformation can be found

in [8].

B. A B model for TRPL

Listing 1-2 shows the obtained implementation of the last

level of a B refinement. The B model associated to the TRPL

defines the context of the model by introducing constants

for predefined limits (i.e. maximum number of segments,

the length of a segment, maximal distance of displacement).

1The complete B and HLL models are available at:
http://yamine.perso.enseeiht.fr/TASE_Annex.pdf

These constants are used to define a topolgy of the railway

network in the Typ1, T yp2 and Typ3. The state variables are:

v_segment- a new segment identifier; v_segment_before - a

previous segment identifier; v_absOnSegment - an abscissa

on the current segment; v_absOnSegment_before - a previ-

ous abscissa on the segment; and v_is_segment_found - to

state if a new position is found in the limit of known zone of

segments. They are typed in the Inv1, Inv2, Inv3 and Inv4.
Unitary requirements defined in section II-C are mod-

elled in the invariant clause as safety properties (UnitReq1,
UnitReq2 and UnitReq3).

Several operations are introduced, they modify the state

variables. To illustrate our approach, only the implementation

level of the findLoc procedure is presented. When the new

position of a train remains in its bounds, the findLoc proce-

dure changes the train reference point position based on a

displacement i_dep, a previous segment i_seg and abscissa

i_abs given as parameters.

IMPLEMENTATION T r a i n P o s i t i o n i n g

. . .

INVARIANT

/ * Typ1 * / t _ s egmen t = 1 . . c_nb_segments

/ * Typ2 * / t _ d ep l a c emen t = 0 . . c_max_dep

/ * Typ3 * / t _ a b s c i s s e = 0 . . c _ s egmen t _ l e ng t h

/ * Inv1 * / v_segment ∈ t _ s egmen t

/ * Inv2 * / v_segmen t_be fo r e ∈ t _ s egmen t

/ * Inv3 * / v_absOnSegment ∈ t _ a b s c i s s e

/ * Inv4 * / v_absOnSegment_before ∈ t _ a b s c i s s e

/ * UnitReq1 * /
( v_ segmen t_be fo r e * c_ s egmen t _ l e ng t h ) +

v_absOnSegment_before≤
( v_segment * c_ s egmen t _ l e ng t h ) +

v_absOnSegment

/ * UnitReq2 * /
( v_ isSegmentFound = TRUE⇒∃dd . (

dd ∈ t _ d ep l a c emen t ∧
( v_segment − v_segmen t_be fo r e ) *
c_ s egmen t _ l e ng t h + v_absOnSegment =

v_absOnSegment_before + dd ) )

/ * UnitReq3 * /
( v_isSegmentFound = FALSE⇒
( v_ segmen t_be fo r e * c_ s egmen t _ l e ng t h ) +

v_absOnSegment_before =

( v_segment * c_ s egmen t _ l e ng t h ) +

v_absOnSegment )

. . .

Listing 1. B TRPL Invariants

OPERATIONS

f indLoc ( i _ s eg , i _ ab s , i _dep ) =

VAR l_x , l _ s e g IN

l_x:= i _ a b s + i_dep

; l _ s e g:= i _ s e g

; WHILE c_ s egmen t _ l e ng t h < l_x ∧
( l _ s e g < c_nb_segments ) DO

l_x:= l _x − c_ s egmen t _ l e ng t h

; l _ s e g:= l _ s e g + 1

INVARIANT

l _ s e g ∈ t _ s egmen t ∧ l _x ∈ NAT

∧ i _ s e g ∈ t _ s egmen t ∧ i _ a b s ∈
t _ a b s c i s s e

∧ i _dep ∈ t _ d ep l a c emen t

∧ ( l _ s e g − i _ s e g ) * c_ s egmen t _ l e ng t h

+ l_x

= i _ a b s + i_dep

VARIANT l_x

END

; v_isSegmentFound:= boo l (

c _ s egmen t _ l e ng t h≥ l _x ∧
( l _ s e g≤ c_nb_segments ) )

; IF ( v_isSegmentFound = TRUE) THEN

v_absOnSegment:= l _x

; v_segment := l _ s e g

END END

. . .

END

Listing 2. B TRPL Operations

A while loop ensures that the segment identifier is increased

when the train displacement is greater than the length of a

segment. The loop invariant states that the input parameters re-

spect their typing properties and the new train reference point

is correctly computed by preserving the model invariants. The

operation findLoc is triggered by the main program that models

the current TRPL updates for a train displacement given by

odometry devices. The developed B model is successfully

proved using Atelier B [9] ensuring invariant preservation and

thus fulfilling the unitary requirements.

C. A HLL model for TRPL

Starting from the B model described above, a HLL model

is produced by the B2HLL tool according to the transfor-

mation principles defined in section IV-A. B state variables

are represented as flows using cyclic definition in the HLL

model. For each B implementation, the transformation process

starts by producing corresponding HLL namespaces. Then,

state variables flows are initialized starting from the B ini-
tialisation clause. The next values in the state variables flows

are produced from the transformation of the B operations and

the corresponding programming constructs. This behaviour



is exemplified in listing 3. For example, the v_seg B state

variable is updated with respect to the computed value in the B

operation findLoc. The new computed values of the variable

"v_seg_0" are used as inputs in the model ”findLoc_0” to

compute the next possible values of the variable v_seg. Note

that each state variable named V arName is duplicated using

an integer i suffix V arName_i to avoid side effects and to

allow the HLL model to observe all the internal variables

behaviours.

All the B constructs are transformed into HLL. Assignments

become HLL assignments performed in sequence with a new

integer suffix for each involved variables. Conditional expres-

sions are transformed in two steps. First the then and else
branches are translated, and then the conditional expression

is built. B looping (while) construct is transformed into a

recursive conditional statement. The B variant determines the

number of iterations for termination.

Namespaces : " T r a i n P o s i t i o n i n g _ 0 " { . . .

Types :

i n t [ 1 , c_nb_segments ] t _ s egmen t ;

i n t [ 0 , c_max_dep ] t _ d ep l a c emen t ;

i n t [ 0 , c _ s egmen t _ l e ng t h ] t _ a b s c i s s e ;

D e c l a r a t i o n s :

t _ d ep l a c emen t x_dep l acemen t ;

D e c l a r a t i o n s :

t _ a b s c i s s e v_absOnSeg ;

t _ s egmen t v_seg ;

D e f i n i t i o n s :

v_seg_0 := 1 , v_seg ;

v_absOnSeg_0 := 0 , v_absOnSeg ;

v_seg := v_segment ;

v_absOnSeg := v_absOnSegment ;

. . .

P roo f O b l i g a t i o n s :

(1≤ v_segment &

v_segment≤ c_nb_segments ) ; / / Inv1

(0≤ v_absOnSegment & / / Inv3

v_absOnSegment≤c_ s egmen t _ l e ng t h ) ;

/ / Uni tReq1

( p r e ( v_segment , v_seg_0 ) *
c_ s egmen t _ l e ng t h +

p r e ( v_absOnSegment , v_absOnSeg_0 )≤
v_segment * c_ s egmen t _ l e ng t h +

v_absOnSegment )

/ / Uni tReq2

v_isSegmentFound_1 −>

( ( ( v_segment − p r e ( v_segment , v_seg_0 ) )

* c_ s egmen t _ l e ng t h + v_absOnSegment ) =

p r e ( v_absOnSegment , v_absOnSeg_0 ) +

: : doLoc_0 : : l_xDep_0 )

/ / Uni tReq3

~( v_isSegmentFound_1 ) −>

( p r e ( v_segment , v_seg_0 ) *
c_ s egmen t _ l e ng t h +

p r e ( v_absOnSegment , v_absOnSeg_0 ) =

v_segment * c_ s egmen t _ l e ng t h +

v_absOnSegment ) ;

/ / Sys tReq

v_seg = p r e ( v_seg , 1 ) ∨
v_seg = p r e ( v_seg , 1 ) + 1 ;

Listing 3. HLL TRPL Properties

Namespaces : " f i ndLoc_0 "{

D e f i n i t i o n s : / / mapping i n p u t p a r ame t e r s

i_dep_0 := l_xDep_0 ;

i _ ab s_0 := v_absOnSeg_0 ;

i _ s eg_0 := v_seg_0 ;

/ / d i s t a n c e compu t a t i on

l_x_0 := i _ ab s_0 + i_dep_0 ;

l _ s eg_0 := i _ s eg_0 ;

/ / Begin While I t e r 0

l_x_1 := l_x_0 − c_ s egmen t _ l e ng t h ;

l _ s eg_1 := l _ s eg_0 + 1 ;

l_x_2 := i f c _ s egmen t _ l e ng t h < l_x_0 &

( l _ s eg_0 < c_nb_segments )

t h en l_x_1 e l s e l_x_0 ;

l _ s eg_2 := i f c _ s egmen t _ l e ng t h < l_x_0 &

( l _ s eg_0 < c_nb_segments )

t h en l _ s eg_1 e l s e l _ s eg_0 ;

. . . / / End I t e r 0

v_absOnSegment_1 := l_x_20 ; / / IF cond

v_segment_1 := l _ s eg_20 ; / / IF body

v_segment_2 := i f ( v_isSegmentFound_1== t r u e )

t h en v_segment_1

e l s e v_segment_0 ;

v_absOnSegment_2 := i f ( v_isSegmentFound_1

== t r u e )

t h en v_absOnSegment_1

e l s e v_absOnSegment_0 ;

. . . }

D e f i n i t i o n s : / / S t a t e v a r i a b l e s u pd a t e s

v_segment_1 := : : " f i ndLoc_0 " : : v_segment_2 ;

v_isSegmentFound_1 := : : " f i ndLoc_0 " : :

v_isSegmentFound_1 ;

v_absOnSegment_1 := : : " f i ndLoc_0 " : :

v_absOnSegment_2 ;

v_isSegmentFound := v_isSegmentFound_1 ;

v_absOnSegment := v_absOnSegment_1 ;

v_segment := v_segment_1 ;

. . . }

Listing 4. HLL TRPL Operations

The B invariants are transformed into HLL Proof Obligations
clause encoding the safety properties. All the unitary require-

ments are derived from the B INVARIANT clause.

D. System analysis

Up to now, all the properties established in B are also the

properties of the HLL model. One may ask what is the added

value of such a transformation.

The interest of integrating the models in the HLL framework

is double. First it allows to have a shared model obtained

for various modelling languages and second it allows to

check global properties at system level using a non intrusive

approach (the source models are not modified). For exam-

ple, the system requirement SystReq encoded in HLL (not

expressed in the B model) as presented in listing 5 requires

that, when a train moves, the next segment associated to the

new train position is either the same one or the next one.

The requirement does not allow trains to move forward to any

segment. Only consecutive segment changes are allowed.

Proof O b l i g a t i o n s : / / SystReq
v_seg = pre ( v_seg , 1 ) ∨ v_seg = pre ( v_seg , 1 ) + 1;

Listing 5. System level Requirement

This requirement is not fulfilled by the produced HLL model

shown above and the proof engine revealed a counter-example.

The corresponding scenario was analyzed to understand the

risk related to this property violation. This analysis revealed

a possible environment restriction hypothesis related to the

limitation of the maximum travelled distance (therefore of the

speed, of the period of sensing position, etc.) in a cycle.

V. CERTIFIED TRANSLATION

This section addresses the last step of the formal verifica-

tion and validation process we have set up when using the

PERF framework. It consists in certifying the transformation

process by formally guaranteeing semantic preservation after

translation. We give the details of the Isabelle/HOL based

certification process defined in section III-A.

Our goal is to show that the semantics of a source B model

is preserved with the semantics of the translated HLL model.

For this purpose, we define an equivalence relationship using

a weak bi-simulation relationship relating B states and HLL

flows. A deep embedding approach is defined. It consists

in formalizing B, HLL and the equivalence relationship in

Isabelle/HOL and prove that the transformation preserves

equivalence. The proof is a structural induction on the con-

structs of the modelling language and on the transformation

rules. Isabelle/HOL data-types and functions formalize all the

concepts of both B and HLL. Below we give the main structure

of this deep embedding.

A. Types and values

Isabelle/HOL data-types modelling features and constructs

of B and HLL (states, flows, expressions, modelling state-

ments) are defined. Variables names, variable values and an

environment function associating variables to their values are

introduced in Listing 6 where Tval represents primitive types,

varname defines a variable name with the associated type

(powerset) and env is the environment function.
data type Tval = Bool | I n t

type_synonym varname = "name × Tval "

type_synonym env = " varname⇒ v a l "

Listing 6. Environment function for variables

B. B Semantics in Isabelle/HOL

The semantics of B is described using a semantic function

structurally defined on each B syntactic constructs.



1) B Syntax: Specific data-types for arithmetic ex-

pressions aexp, boolean expressions bexp and B state-

ments instruction (a bloc of instructions for sequence,

skip, assignment, and conditional) are defined in List-

ings 7, 8, and 9 respectively to model B abstract syntax.
datatype aexp =

Value i n t

| AVar vname

| P l u s aexp aexp

| Times aexp aexp

| Minus aexp aexp

| Uminus aexp

Listing 7. Arith-
metic expressions

datatype bexp =

Value boo l | Neq aexp aexp

| Bvar vname | Not bexp

| And bexp bexp | Or bexp bexp

| Leq aexp aexp | Eq aexp aexp

| Equiv bexp bexp | Lt aexp aexp

| Gt aexp aexp | Greq aexp aexp

Listing 8. Boolean expressions

datatype i n s t r u c t i o n =

Bl " i n s t r u c t i o n l i s t "

| SKIP

| Ass ign vname exp

| I f bexp

i n s t r u c t i o n i n s t r u c t i o n

Listing 9. Statements

2) B Semantics: The semantics of B constructs is de-

fined using primitive recursive functions encoded in Is-

abelle/HOL. B expressions are interpreted by the total function

meaning_exp ∈ exp → env → val. An expression is

evaluated in the environment env. The semantics of B state-

ments is given by the total function meaning_instruction ∈
instruction → env → env. It updates the environ-

ment env with the effect of the interpreted instruction.

Listing 10 provides the definition of the semantic function

meaning_instruction.

fun me a n i n g _ i n s t r u c t i o n : : " i n s t r u c t i o n ⇒ env⇒ env " where

" m e a n i n g _ i n s t r u c t i o n ( SKIP ) σ = σ "

| " m e a n i n g _ i n s t r u c t i o n ( Bl l i s t ) σ = ( c a s e l i s t o f [ ] ⇒σ
| e # l⇒ me a n i n g _ i n s t r u c t i o n ( Bl l ) ( m e a n i n g _ i n s t r u c t i o n e σ ) ) "

| " m e a n i n g _ i n s t r u c t i o n ( Ass ign ( vn , Tva l . Bool ) ( Bexp exp ) ) σ =

σ ( ( vn , Tva l . Bool ) := B ( meaning_b exp σ ) ) "

| " m e a n i n g _ i n s t r u c t i o n ( Ass ign ( vn , Tva l . I n t ) ( Aexp exp ) ) σ =

σ ( ( vn , Tva l . I n t ) := I ( meaning_a exp σ ) "

| " m e a n i n g _ i n s t r u c t i o n ( I f c b1 b2 ) σ =

( i f meaning_b c σ t h en me a n i n g _ i n s t r u c t i o n b1 σ e l s e m e a n i n g _ i n s t r u c t i o n b2 σ ) "

Listing 10. Semantics of B statements

3) The case of loops: The above defined semantic function

does not handle the while loop B statement. As mentioned

in section IV-C the transformation tool translates such a loop

to the recursive function b_while_to_if with conditional (see

Listing 11). In this Listing, we observe that the function is

called a nb number of times corresponding to the original

B VARIANT value. It produces a sequence of if then else
statements in a bloc Bl. In other words, each loop is unfolded

recursively to a sequence of if then else statements.

fun b _wh i l e _ t o _ i f : : " n a t⇒ bexp⇒ i n s t r u c t i o n ⇒ i n s t r u c t i o n " where

" b _wh i l e _ t o _ i f 0 _ _ = SKIP " |

" b _wh i l e _ t o _ i f ( Suc nb ) c i = Bl [ I f c i SKIP , ( b _wh i l e _ t o _ i f nb c i ) ] "

Listing 11. A recursive function encoding while loops

The built-in fixpoint operator available in Isabelle/HOL defines

the semantics of such recursive functions. Therefore, the

conditional is enough to translate the whole B constructs of

the IMPLEMENTATION level.

4) TRPL model of B in Isabelle/HOL: The developed model

of the selected case study is embedded (exported as instance)

in Isabelle/HOL. All the state variables are flattened. All

the TRPL operations are directly encoded in Isabelle/HOL

applying the formalized B semantics.

C. HLL Semantics in Isabelle/HOL

As for B, the semantics of HLL in Isabelle/HOL is given.

The HLL flows (streams) are defined as total functions map-

ping naturals on a polymorphic data-type in Listing 12.

type_synonym ’ a s t r e am = " n a t⇒ ’ a "

data type v a l = B " boo l s t r e am " | I " i n t s t r e am "

Listing 12. Data type for HLL flows (streams)

HLL variables are defined as (name×Tval)×nat. In addition,

each variable is identified using a unique natural number.
1) HLL Syntax: Similarly to B, specific data-types for

arithmetic expressions aexp, boolean expressions bexp and

statements instruction are defined. A specific expression

is the conditional expression is added. Last, statements

(bloc of assignements as instructions) are defined. Listings

13, 14, and 15 show these definitions in Isabelle/HOL.
data type aexp =

Value " i n t s t r e am "

| AVar vname

| P l u s aexp aexp

| Times aexp aexp

| Minus aexp aexp

| Uminus aexp

Listing 13. Arith-
metic Expression

data type bexp =

Value " boo l s t r e am "

| Neq aexp aexp

| Bvar vname | Not bexp

| And bexp bexp | Or bexp bexp

| Leq aexp aexp | Eq aexp aexp

| Equiv bexp bexp | Lt aexp aexp

| Gt aexp aexp | Greq aexp aexp

Listing 14. Boolean
Expression

data type exp =

Bexp bexp

| Aexp aexp

| I f bexp exp exp

data type i n s t r u c t i o n =

Bl " i n s t r u c t i o n l i s t "

| Ass ign vname exp

| Assign ’ vname exp exp

Listing 15. Expression
and Statements

2) HLL Semantics: The semantics of the HLL language

imposes that the updating of the flows is performed in a

synchronous manner i.e. the flows are modified simultaneously

and there is no side effect. The function stream_comp (see

Listing 16) has been defined in order to compose different

stream values. This function is call by the semantic function

interpreting the HLL statements.
fun
s t ream_comp : : " v a l⇒ v a l⇒ v a l "

where

" stream_comp (B v1 ) (B v2 ) =

B(λ i . i f i =0 t h en v1 0 e l s e

v2 ( i−1)) "

| " s t ream_comp ( I v1 ) ( I v2 ) =

I (λ i . i f i =0 t h en v1 0 e l s e

v2 ( i−1)) "

Listing 16. Flow
composition

fun meaning_exp : : " exp⇒ env⇒ v a l " where

" meaning_exp ( Bexp ex ) σ = B ( meaning_b ex σ ) "

| " meaning_exp ( Aexp ex ) σ = I ( meaning_a ex σ ) "

| " meaning_exp ( I f c b1 b2 ) σ = ( l e t ( va l1 , v a l 2 ) =

( ( meaning_exp b1 σ ) , ( meaning_exp b2 σ ) ) i n (

c a s e ( va l1 , v a l 2 ) o f

( ( I b1 ) , ( I b2 ) )⇒ I (λ i . ( i f meaning_b c σ i

t h en b1 i e l s e b2 i ) )

| ( (B b1 ) , (B b2 ) )⇒B (λ i . ( i f meaning_b c σ i

t h en b1 i e l s e b2 i ) ) ) ) "

Listing 17. Semantics of HLL Expressions

Like for B, the HLL semantics is given by semantic func-

tions defined structurally on the corresponding syntactic con-

structs. The defined function meaning_exp ∈ exp → env →
val interprets expressions while the meaning_instruction ∈
instruction → env → env function updates the environment

of flows according to the semantics of the HLL statement (See

Listings 17 and 18).
fun me a n i n g _ i n s t r u c t i o n : : " i n s t r u c t i o n ⇒ env⇒ env " where

" m e a n i n g _ i n s t r u c t i o n ( Bl l i s t ) σ =

( c a s e l i s t o f [ ] ⇒σ
| e # l⇒ me a n i n g _ i n s t r u c t i o n ( Bl l ) ( m e a n i n g _ i n s t r u c t i o n e σ ) ) "

| " m e a n i n g _ i n s t r u c t i o n ( Ass ign vn exp ) σ = σ ( vn := meaning_exp exp σ ) "

| " m e a n i n g _ i n s t r u c t i o n ( Assign ’ vn exp1 exp2 ) σ = ( l e t v1 = meaning_exp exp1 σ i n

l e t v2 = meaning_exp exp2 σ i n σ ( vn := stream_comp v1 v2 ) ) "

Listing 18. Semantics of HLL statements

3) TRPL model of HLL in Isabelle/HOL: Like for B, the

HLL model of the selected case study, obtained by transforma-

tion, is embedded (exported as instance) in the Isabelle/HOL.

All the state variables are flattened. Note that the HLL

formalization in Isabelle/HOL does not take into account the

notion of Namespaces. To address this issue the HLL variable

names are prefixed with the name of the namespace where

they are declared.

D. Certification of the translation
Once the B and HLL semantics are encoded in Is-

abelle/HOL, we have to formally define the transformation



function and the equivalence theorem asserting semantic

preservation. We describe the specification of the B2HLL

translation [8] in Isabelle/HOL and then discuss the semantic

preservation by defining an equivalence relationship.
1) The Transformation Function: This function is defined

on the syntactic constructs identified for both B and HLL.

First, we address the mapping of B state variables to HLL

flows (streams) which require a specific process. Each B

variable identifier is mapped to a pair of HLL identifiers by

Mapping = Bvname �→ (Hllvname × Hllvname) where

the first one is used for expression evaluation and the second

one for mapping updates.

B Expressions and statements are transformed by T_exp ∈
Bexp → Mapping → HLLexp and Transformation ∈
Binstruction → Mapping → (HLLinstruction ×
mapping) functions, respectively. For both expressions and

statements, the defined Mapping for variables is used to

retrieve the HLL variable associated to each B variable.
fun T r a n s f o rma t i o n : : " b . i n s t r u c t i o n ⇒ mapping⇒ ( h l l . i n s t r u c t i o n × mapping ) " where

" T r a n s f o rma t i o n ( b . Bl [ ] ) m = ( h l l . Bl [ ] , m) "

| " T r a n s f o rma t i o n ( b . Bl ( a# l i s t ) ) m = ( comp ( T r a n s f o rma t i o n a m) (

T r a n s f o rma t i o n ( b . Bl l i s t ) ) ) "

| " T r a n s f o rma t i o n b . SKIP m = ( h l l . Bl [ ] , m) "

| " T r a n s f o rma t i o n ( b . Ass ign vname exp ) m =

( l e t v = ( c r e a t eF r e s hHLLVa r i a b l e vname m) i n

( h l l . Ass ign v ( T_exp exp m) , m( vname 	→ ( v , v ) ) ) ) "

| " T r a n s f o rma t i o n ( b . I f bexp i n s t r u c t i o n 1 i n s t r u c t i o n 2 ) m =

( l e t

(* c ’ =⇒C o n d i t i o n t r a n s f o r m a t i o n * )
c ’ = ( T_exp ( b . Bexp ( bexp ) ) m) ;

(* c1 =⇒ IF b l o c k t r a n s f o r m a t i o n and m1 =⇒ R e s u l t i n g mapping *)
( c1 ,m1) = T r a n s f o rma t i o n i n s t r u c t i o n 1 m;

(* c2 =⇒E l s e b l o c k t r a n s f o r m a t i o n and m2 =⇒ R e s u l t i n g mapping *)
( c2 ,m2) = T r a n s f o rma t i o n i n s t r u c t i o n 2 (m⊗ m1) ;

(* v a r s =⇒M o d i f i e d v a r s i n one o f IF b r a n c h e s * )
v a r s = {v . v : ( dom m) ∧ ( (m v �= m1 v ) ∨ (m v �= m2 v ) ) } ;

i n s t = λ i v . ( c a s e ( snd v ) o f Tva l . Bool⇒ ( h l l . Bexp o h l l . Bvar )

| Tva l . I n t ⇒ h l l . Aexp o h l l . AVar ) ;

(* s t =⇒F i n a l s t a t e a f t e r IF *)
s t = F i n i t e _ S e t . f o l d ( T _ i f _ s t e p _ s t ) m2 v a r s ;

(* L i s t o f a s s i g n s f o r m o d i f i e d v a r s * )
a s s i g n s = F i n i t e _ S e t . f o l d ( T _ i f _ s t e p _ i m1 m2 i n s t c ’ s t ) {} v a r s

i n ( Bl ( [ c1 , c2 ]@( s e t _ t o _ l i s t a s s i g n s ) ) , s t ) ) "

Listing 19. B to HLL Transformation Function in Isabelle/HOL

The transformation functions are defined inductively on the

syntactic constructs of the B modelling language. Listing

19 shows the definition of transformation functions in Is-

abelle/HOL.
2) The equivalence relationship: We define equivalence on

state variables using an observational (bisimulation) relation

[12] between states on the B side and HLL flows on the other

side. Listing 20 defines this relation for the case of integer and

boolean types. It has to be defined for all other types.
d e f i n i t i o n meaning_equ iv : : " b . env⇒ mapping⇒ h l l . env⇒ boo l " ( " _∼= _ _ " ) where

" b∼=m h ≡∀ v∈ ( dom m) . c a s e v of

( vname , Tva l . Bool ) ⇒ ( ( b v ) �boo l ( ( h o ( f s t o ( t h e o m) ) ) v ) )

| ( vname , Tva l . I n t ) ⇒ ( ( b v ) � i n t ( ( h o ( f s t o ( t h e o m) ) ) v ) ) "

Listing 20. State equivalence Relation (bi-simulation)

This definition defines the initial property of the inductive

proof process of semantic preservation.
3) Asserting the correctness of transformation: All the

ingredients to write the equivalence theorem are available.

Listing 21 describes the global equivalence theorem defining

the semantic preservation property. Let CodeB and codeHLL
be a B code and a HLL code, and σB and σHLL be two states

for B and HLL respectively (lines 1 and 2 in Listing 21) such

that σB and σHLL are equivalent by the meaning_equiv
relation (line 5 in Listing 21). This theorem asserts under

the assumption that the transformation of the codeB gives a

codeHLL (Line 4 in Listing 21), the meaning_equiv relation

holds on the semantics of the codeB and codeHLL in the

states σB and σHLL, respectively (Line 10 in Listing 21).

theorem Equ i v a l e n c e :

1 . f i x e s codeB : : " b . i n s t r u c t i o n " and σB : : " b . env "

2 . and codeHLL : : " h l l . i n s t r u c t i o n " and σHLL : : " h l l . env "

3 . and n m: : mapping

4 . assumes * : " ( codeHLL , m) = T r a n s f o rma t i o n codeB n "

5 . and # : "σB
∼=n σHLL "

6 . and $ : " f i n i t e ( dom n ) "

7 . and @ : " we l l _ d e f i n e d codeB n "

8 . and ♣ : " we l l _de f i n ed_mapp ing n "

9 . and ~ : " w e l l _ d e f i n e d _ s t a t e σHLL "

shows
10 . " ( b . m e a n i n g _ i n s t r u c t i o n codeB σB )∼= m

( h l l . m e a n i n g _ i n s t r u c t i o n codeHLL σHLL ) "

Listing 21. Main Equivalence Theorem

4) Proving semantic preservation: The proof of the equiv-

alence theorem of Listing 21 is performed using the theorem

prover of Isabelle/HOL. Most of the proofs are interactive

(semi-automatic), they are completed through user interaction

with the theorem prover of Isabelle/HOL.

A structural induction with case based reasoning (for each

syntactic construct) have been set up. These cases have been

decomposed into several lemmas which have been used for

the proof of the main equivalence theorem. However, some

complex transformation rules may require more elaborated

proofs. For example, the semantic preservation proof for if
conditional requires more than 300 lines of proof script and

uses 25 lemmas to complete the proof.

In summary, the proof of the correctness of the transfor-

mation from B to HLL represents more than 5000 lines of

proof scripts for discharging the proof obligations related to

the transformation associated to the equivalence proofs.

VI. THE TRANSFORMATION AT WORK

The previous sections showed a complete transformation

process together with a proof of equivalence. Theorem prover

is a standard approach that can be used to prove the given

properties in form of lemmas and theorems by checking every

possible states of the system. Trying to prove an incorrect

proposition may lead to dead-ends or considerable time loss.

Therefore, the idea of debugging proofs by testing the conjunc-

tures is helpful. Model animation is a powerful technique to

perform such tests. We have used a model animator, available

in the Isabelle/HOL tool, to validate our transformation on

several examples, they helped to identify the right formlisation

of definitions, lemmas and theorems.

Moreover, we have used model animation on the TRPL
case study presented in section II-C for the models defined in

sections IV-B and IV-C. By animating the main equivalence

proof, we have shown that the output HLL model computed

by the B2HLL tool is equivalent to the source B model, with

respect to the defined transformation rules. In the process

of safety assessment, the validation of the translator is an

important step. Even though the B to HLL transformation is

automatic, the model animation is interactive. This approach

was applied to several case studies provided by RATP and the

industrialization of the tool is ongoing.



VII. RELATED WORK

The formal validation and certification of translators has

been studied by several authors. In general, the compiler is

regarded as a black box and the semantic equivalence is

established by performing proofs based on semantic relation-

ships between source and target programs. Many contributions

studied compiler certification for various language paradigms

using different provers. [13] shows the formal verification

of transformation of Java programs to Java byte code using

Isabelle/HOL. [14] presents a formal approach for translating

imperative code, such as C and C++, into the synchronous

formalism Signal [15]. In this work, model-checker is used

to check the required properties. Pop et al. [16] present non-

standard denotational specification of the SSA form, including

its conversion from imperative languages to SSA, and vice

versa. A similar approach is presented in [17] for the SSA

formalization. An automatic generation of correct program

translation is described in [18]. The semantic equivalence of

the source and the target code is showed using a simulation

based proof. The CompCert compiler [19] is a formally

certified translator using Coq proof assistant [20] to generate

the assembly code from the C language. The generated code

is obtained directly from the theorem prover. Formal compiler

verification is presented in [21], [22] using LUSTRE. [23],

[24] present synchronous versus sequential code validation

based on the proof strategy. In our work, we have adopted the

similar approach to establish an equivalence relation between

the semantic states of the two models that can be preserved by

the execution steps. Compared to the other approaches, ours

is open and does not rely on any specific modelling language.

VIII. CONCLUSION & FUTURE WORK

This paper presented a complete formal verification process

for checking requirements at both functional and system

level on B models. The approach consists in integrating B

models and environment assumptions and constraints in a

single modelling framework (HLL). Our work defined a formal

technique, related to model translation, to verify and to validate

the safety critical software developed using the B modelling

language. HLL language is used as a basis for safety properties

verification in order to bridge the gap between the software

specification, such as the formal development in B, and the

verification techniques on system level. In our work, we

proposed a formal framework to guarantee the correctness

of the translation from B models to HLL models. The cor-

rectness of the translation rules is proven in Isabelle/HOL

theorem prover. A proof of equivalence between B and HLL

semantics based on a bi-simulation relationship has been set

up. It guarantees that the translation rules implemented in the

B2HLL tool are correct i.e. semantic preserving according to

the defined equivalence relation. The formalization and the

associated proofs presented in this work can be easily extended

to other transformation from state based language to HLL. The

developed approach is currently being integrated in the PERF

tool suite used at the RATP company.

As future work, our objective is to extend this verification

process to higher abstraction levels of B developments (re-

finements). Such an extension offers the capability to perform

formal verification at early stages of the development and

avoid time and resource consuming verification at code level.

Our approach consists in seeing operations (functions and

procedures) as black boxes abstracted by their before-after

predicates. The main difficulty remains in formalizing abstract

and concrete variables together with the gluing invariants.
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