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Abstract

The remapping strategy is crucial in any Arbitrary Lagrangian-Eulerian (ALE) algorithm based on a Lagrange-plus-
remap paradigm. This step is particularly challenging for space-staggered schemes since inconsistencies may appear
between cell centered and node centered fields after remap if no special care is taken [1–3]. We propose here a
space-staggered remapping strategy focusing on conservation properties and entropy control. The proposed algorithm
conserves mass, total energy and respects the Second Law of Thermodynamics (for robustness) up to round-off errors.
This is achieved at a low computational cost by introducing a consistent, explicit and local post processing of the
linear momentum after remap. This new method is then analyzed showing that the strict momentum conservation
is sacrificed. It is now conserved to the scheme’s order, such as entropy. Other classical properties such that the
“DeBar consistency” [4], the continuity with the Lagrangian step and the monotonicity are also discussed. This work
is developed in the context of the intersection-based (or overlay-based) remap. Therefore, the rezoned mesh does
not have to be close to the Lagrangian one and, even if it is not considered here, our study can be easily extended to
rezoning strategies which modify the mesh connectivity.

Keywords: Hydrodynamics, Multi-Material ALE Schemes, Staggered Schemes, Staggered Remap, Energy
Conservation, Entropy Control, Geometric Consistency

1. Introduction

1.1. General framework

For many multi-material problems such as fluid-structure interaction, impact or implosion problems, materials are
in very large strains due to their nature or to the applied forces. In our situations of interest, we also have a strong
coupling between energy and momentum conservation laws, due to intense transfers between internal and kinetic
energies and to strong advection effects. Such situations are classically governed by the Euler’s equations, written
below in Lagrangian form and using a multi-material, single velocity framework

dx
dt = u, geometric conservation,
dρϕ

dt = − ρϕ ∇ · u, mass conservation,
ρ du

dt = −∇p + ∇ · (Jτ), linear momentum,
ρϕ deϕ

dt = − pϕ ∇ · u + Jτϕ : ∇u, internal energy evolution.

(1)

Materials are denoted by ϕ with u the velocity, ρϕ the material density, pϕ the material pressure, p the average
pressure and eϕ the material specific internal energy. The above formulation emphasizes the internal energy evolution
as compared to the total energy conservation in order to focus on entropy variation. It neglects any heat exchange
between neighboring points, which is justified for very fast evolutions. The constitutive materials are supposed to be
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non-miscible and to stay in a hydrodynamic regime, characterized by possibly very large material pressures pϕ and by
moderate deviatoric stress tensors Jτϕ. For simplicity, it is often assumed that the internal energy is only a function
eϕ = eϕ(vϕ, sϕ) of the material specific volume vϕ = 1

ρϕ
(or equivalently of the transformation Jacobian J since we

have 1
ρϕ

= J
ρ
ϕ
0
) and of the material specific entropy sϕ. Material hydrodynamic pressure pϕ and material temperature

Tϕ are then given by

pϕ = − ∂eϕ
∂vϕ
∣∣

sϕ , (2)

Tϕ = ∂eϕ
∂sϕ
∣∣
vϕ . (3)

For isotropic materials in such regimes, the constitutive law characterizing the deviatoric Piola stress tensor τϕ can be
written under a simple differential form [5, 6]

dτϕ

dt
= f (τϕ,∇u, . . .). (4)

We introduce a specific internal energy and an entropy associated to each material ϕ, together with the characteristic
function 1ϕ(x) with value 1 if the point x is part of material ϕ and 0 otherwise. Then, “average” quantities can be
defined by

ρ =
∑
ϕ

1ϕ ρϕ, p =
∑
ϕ

1ϕ pϕ, τ =
∑
ϕ

1ϕτϕ. (5)

Arbitrary-Lagrangian-Eulerian (ALE) techniques [7] are required in this context to handle large deformations. On
the one hand, Lagrangian methods respect material interfaces and discontinuities but they are prone to severe mesh
tangling and cannot capture large deformations, vorticity or shear. At best, these large mesh distortions result in a loss
of accuracy but, in general, they cause an early breakdown of the calculations. On the other hand, Eulerian methods—
whereby fluids flow over a fixed mesh—can handle such deformations but they fail to maintain sharp interfaces and
produce diffusive solutions. ALE techniques combine the two previous approaches by controlling the mesh motion
during the simulation. A full and recent review of ALE schemes is available in [8]. The advective terms introduced by
this mesh motion can either (i) be taken into account directly in the PDEs (1) (ii) or be solved in a separate step [9]. The
first case, usually termed “direct ALE” in the literature [10, 11], is computationally less costly than the second one but
introduces more complexity in the discretization step. Herein, we will only consider the second case, usually referred
as “Lagrange-plus-remap”, where the ALE algorithm is commonly split into three steps: (i) a Lagrangian update of
variables whereby mesh cells are fluid elements carried and distorted by the flow; (ii) a rezoning (or regularization)
phase in order to improve mesh cells’ quality; and (iii) a remapping phase consisting in a conservative transfer (or
advection) of the fields from the Lagrangian mesh to the rezoned mesh. More precisely, this paper deals with the
step (iii) which is commonly a source of conservation and/or entropy errors. Indeed, a proper remapping stage in a
multi-material hydrodynamic framework should respect some constraints [1, 2]:

• material locations: material interfaces should be preserved although they may not coincide with cell interfaces;

• conservation: mass, momentum and total energy have to be conserved;

• entropy control: remap has to be dissipative and entropy has to be conserved in smooth regions;

• monotonicity: remapped fields have to stay between justified bounds;

• continuity: fields have to remain unchanged when the mesh is not regularized;

• DeBar condition [4]: a constant velocity field has to be exactly remapped whatever the density field;

• accuracy: the remapping step has to be second-order in space on regular fields.

For space-staggered schemes, we have the additional need to remap node velocities in a compatible way. This
question is addressed in [1, 2] for flux-based staggered remap (see also [15] for an extension to axisymmetric geome-
try). The authors of [3] also proposed an intersection-based (or overlay-based) approach, instead of computing fluxes.
The reader can refer to [16] for the multi-material extension of this work. Another direction consists in remapping on
a finer grid where each cell is subdivided in nodal subcells [17].
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1.2. Conservation and entropy control in Lagrange-plus-remap algorithms
Total energy conservation and entropy control play an important role for an accurate and robust computation of

both shock-dominated and isentropic flows. Conservation of total energy is required in presence of strong shocks
while entropy errors may lead to diffusion, overheating or lack of robustness and accuracy, especially in presence of
non-linear equations of state. Keeping the energy conservation while controlling the entropy is challenging both for
the Lagrangian phase and the remap. In more details, in a conservative context, a poor handling of the kinetic energy
is the major source of entropy inconsistencies since the errors in kinetic and internal energies must compensate each
other. More precisely, time and space discretization errors in the linear momentum equation introduce a numerical
residual in the kinetic energy variation dK

dt , i.e.

dKD
dt +

∫
D
σ : ∇u dV , 0,

where D is an isolated domain and σ is the total stress tensor. For energy conservative Lagrangian schemes which
strictly satisfy

d
dt

(
KD +

∫
D
ρ e dV

)
= 0,

this induces an entropy violation in a reversible process, i.e.∫
D
ρT ds

dt dV := d
dt

∫
D
ρ e dV −

∫
D
σ : ∇u dV = − dKD

dt −

∫
D
σ : ∇u dV , 0.

For entropy focused Lagrangian schemes which satisfy by construction∫
D
ρT ds

dt dV := d
dt

∫
D
ρ e dV −

∫
D
σ : ∇u dV = 0,

errors in the kinetic energy variation lead to total energy conservation violation

d
dt

(
KD +

∫
D
ρ e dV

)
, 0,

which is inappropriate when handling strong shocks or large energy transfers. Kinetic energy errors can be removed
in a conservative way by using consistent high-order non-linear implicit corrections in momentum equation [12, 13]
at the cost of an expensive algorithm. Note also the work of Burton et al. [14] on the reduction of dissipation in
Cell-Centered Hydro (CCH) schemes. But the issue is here to control such errors during the remap.

In practice, the kinetic energy is reconstructed on the new mesh with remapped velocities, corner and node masses.
Two possibilities are then available to define the total energy on the new mesh: directly remap the total energy or
remap the internal energy. On the one hand, if the total energy is projected, there might be a significative entropy
error because the internal energy will not be controlled since it is deduced from the remapped total energy and the
reconstructed kinetic energy. This error will be significative when dealing with large variations in kinetic and internal
energies. On the other hand, if the internal energy is projected, the total energy will not be conserved since the
reconstructed kinetic energy is not. As recommended in [17], we choose here internal energy as a remapped quantity
in order to control entropy. A so-called “kinetic energy fix” or ” De Bar fix” [4] is then required to retrieve the
total energy conservation. But this fix is not associated to a pressure work and is therefore a source of entropy
inducing an error since entropy—as any field—should be preserved during the remap. Consequently, to ensure a
proper entropy control, this additional correction has to be positive—to ensure dissipation—and close to zero—at
least to the scheme’s order. To our knowledge, these two aspects are often overlooked, with the notable exception
of [18] where a low-dissipation and flux-based algorithm (based on [19]) is developed thanks to considerations in
momentum fluxes. A repair paradigm [20–22], possibly combined with monotonicity constraints [1], can also be used
to overcome this drawback. An a posteriori re-distribution of fluxes is thus performed to enforce bounds preservation
on several remapped quantities, including the internal energy. This procedure only considers the internal energy and
does not fix the kinetic energy discrepancy. Moreover, the locality is lost if one wants to be independent of the
order in which the re-distribution is performed, even if a few cells are concerned in principle [21]. It is finally worth
mentioning that high-order staggered remap [23]—naturally motivated by high-order versions of Lagrangian SGH
schemes—also represent a good way to decrease the kinetic energy error.
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1.3. Overview of this work
This paper deals with the analysis of the impact of a second-order staggered remap using an intersection-based (or

overlay-based) approach on conservation properties and on the entropy control. We show that an accurate overlay-
based remap with exact mesh intersections and exact integrations affects both the momentum and the kinetic energy
because of node mass re-localizations and node velocity remap. We propose a staggered remapping strategy in order
to take into account these discrepancies at a low computational cost. While preserving the strict conservation of
total energy, our strategy allows to recover a proper entropy control at the expense of strict momentum conservation,
“DeBar consistency” [4] and monotonicity losses. Concerning the entropy, the word “proper” is used here in the sense
that our remap is dissipative—there is no destruction of entropy up to machine precision—and preserves isentropic
flows to the scheme’s order.

This staggered remapping strategy is then combined with a multi-material conservative space- and time-staggered
(CSTS) Lagrangian scheme [24, 25] in order to numerically test the proposed strategy. This Lagrangian scheme
strictly conserves mass, momentum, angular momentum and total energy [26, 27, 29]. It also guarantees an increase
of entropy and its preservation in an isentropic process up to the scheme’s order [24, 25, 30].

This paper is organized as follows. Our staggered remap is presented in Section 2, where exact intersections be-
tween meshes are performed. A correction step is proposed at that level in order to limit the entropic and energetic
impact of this remap. The Lagrangian CSTS scheme [24, 25]—to be combined with our staggered remap—is de-
scribed in Section 3 together with a summary of our full ALE algorithm. Numerical results are provided in Section 4
to assess the good entropic and energetic behavior of our full ALE approach.

2. Staggered remap

2.1. Introduction and notation
The goal of this section is to describe our multi-material staggered remap. In this framework, we will use a

superscript

• “Old”: for quantities defined on the original Lagrangian grid;

• “R”: for quantities defined on the regularized grid directly after projection;

• “New”: for quantities defined on the regularized grid after projection and correction as specified in §2.6.

In a given grid, cells (resp. nodes) are denoted by the index c (resp. by p). Unless otherwise specified, sums over
nodes or cells have to be understood as sums over all cells or all nodes on the entire grid, including boundaries. The
set of all cells surrounding a node p is denoted by C(p) and all nodes of a cell c are included in the set P(c). The set
of all nodes connected to a node p by an edge or a cell is denoted by Q(p).

2.2. The remapping strategy
From a theoretical point of view, an intersection-based remapping step, performed at an arbitrary time, reduces to

the calculation of different volume integrals of various fields η on a regularized grid. This grid is initially superposed
with the Lagrangian computational grid. For any cell-centered scalar field η, the most general and robust strategy
directly computes the new cell integrals ∫

VNew
c

η dV =
∑

c′

∫
VNew

c ∩VOld
c′

η̃Old
c′ dV, (6)

using a piecewise exact integration on each intersected piece VNew
c ∩ VOld

c′ between the new regularized mesh and the
distorted Lagrangian grid. The notation η̃Old

c corresponds to the piecewise-linear approximation of the field η, on each
Lagrangian cell, reconstructed from the mean values {ηOld

c }, i.e.

η̃Old
c (x) = ηOld

c + (∇η)Old
c ·

(
x− < x >Old

c

)
, (7)

where < x >Old
c is the geometric center of the Lagrangian cell c. This reconstruction allows to achieve a second-order

accuracy [31]. The monotonicity on the quantity η is ensured by the use of a non-linear mechanism, provided by
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Van Leer [32] in order to limit the gradient (∇η)Old
c . This prohibits the apparition of new local extrema at the cost of a

local loss of second-order accuracy.
The remap of any node field η reuses the same method but on a dual mesh, where each node p is associated to a

cell Vp obtained by joining the midpoints of the adjacent edges and the 2D cell centers of the adjacent cells (see Figure
1 for an example with quadrangular cells in 2D axisymmetric geometry). Node integrals after mesh regularization are
then given by ∫

VNew
p

η dV =
∑

p′

∫
VNew

p ∩VOld
p′

η̃Old
p′ dV. (8)

Again, the notation η̃Old
p corresponds to the piecewise-linear approximation of the field η, reconstructed on each dual

cell from the mean values {ηOld
p }

η̃Old
p (x) = ηOld

p + (∇η)Old
p ·

(
x− < x >Old

p

)
, (9)

In the above formula, < x >Old
p is the geometric center of the dual Lagrangian cell VOld

p which is not necessarily the
node Lagrangian position xOld

p . The constant term ηOld
p in (9) should be the nodal cell average of η and is thus a priori

not defined at xOld
p , possibly leading to a loss of accuracy if one replaces it by the nodal value of η. But a regular mesh

assumption— as used in the proof of Relations (22) and (23), see Appendix B—ensures that < x >Old
p and xOld

p are
within a distance of O(∆x2) and preserves the second order accuracy of (9). This will be confirmed by the numerical
results of Section 4 on the isentropic vortex evolution. The regularity assumption will be however no longer valid in
the cyclic remapping test presented at the end of the paper and a loss of accuracy will be observed.

From these integral constructions, we then define cell and node values on the regularized grid by

ηNew
c =

1
VNew

c

∫
VNew

c

η̃cell dV and ηNew
p =

1
VNew

p

∫
VNew

p

η̃node dV,

where η̃cell (resp. η̃node) stands for the cell (resp. nodal) reconstruction of Equation (7) (resp. of Equation (9)).
Centered and staggered fields are conserved during the remap since by construction of < x >Old

c and < x >Old
p in (7)

and (9) the linear part of reconstructed fields are of zero average on the old cells∑
c

VNew
c ηNew

c =
∑

c

∫
VNew

c

η̃ dV =
∑

c

∫
VOld

c

η̃ dV =
∑

c

VOld
c ηOld

c , (10)

∑
p

VNew
p ηNew

p =
∑

p

∫
VNew

p

η̃ dV =
∑

p

∫
VOld

p

η̃ dV =
∑

p

VOld
p ηOld

p . (11)

2.3. Handling multimaterial cells
The material dependent cell centered fields η to be remapped are materials’ density ρϕc , volumic internal energy

(ρe)ϕc and Piola stress tensor τϕc . Remapping of vectors and tensors is done component by component by default since
the symmetry preservation is not a major concern in the present paper. Centered fields are remapped for each material
ϕ, which means that we must reduce our cell integration to the part Vϕ,Old

c which is effectively occupied by the material
ϕ. We therefore first need to introduce the volumic fraction αϕ,New

c of each material

αϕ,New
c =

1
VNew

c

∑
c′

∫
VNew

c ∩Vϕ,Old
c′

dV, (12)

before computing cell averaged values

ηϕ,New
c =

1

α
ϕ,New
c VNew

c

∑
c′

∫
VNew

c ∩Vϕ,Old
c′

η̃
ϕ,Old
c′ dV. (13)

A Volume-of-Fluid / Piecewise-Linear-Interface-Calculation (VoF/PLIC) interface reconstruction method [33] is
used in order to construct the Lagrangian material subcells Vϕ,Old

c . The reader can refer to [34] for a comparison
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Figure 1: Dual cell Vp built around a node p for a quadrangular Lagrangian mesh in 2D axisymmetric geometry.

with some other interface reconstruction methods. An outgoing normal nϕ,Old
c is computed for each material ϕ—

defining the interface orientation—using volume fractions αϕ,Old
c in the multi-material Lagrangian cells [35]. Then,

interfaces are located in the multi-material cell in order to match volume fractions αϕ,Old
c thanks to analytic formula

available both in planar and axisymmetric geometries [36] which specifies the material subcell Vϕ,Old
c . For simplicity, a

first-order remap is performed in multi-material cells (as in boundary cells). The above material based reconstruction
is still conservative since we have by construction∑

c

Vϕ,New
c ηϕ,New

c =
∑

c

αϕ,New
c VNew

c ηϕ,New
c =

∑
c

∫
Vϕ,Old

c

η̃ϕ,Old
c dV =

∑
c

Vϕ,Old
c ηϕ,Old

c . (14)

A specific care must be given to internal energy reconstruction. Keeping in mind that the entropy field s should
be preserved during the remap—all the necessary entropy is deposed by the artificial viscosity in the Lagrangian
phase—we construct herein an isentropic gradient of the internal energy [37–39] assuming that ∇s = 0. This leads to
a specific formulation, derived in Appendix A, which is proportional to the limited density gradient

(∇ (ρ e))ϕ,Old
c =

(
eϕ,Old

c +
pϕ,Old

c

ρ
ϕ,Old
c

)
(∇ρ)ϕ,Old

c . (15)

Note that the above formula is valid for any equation of state. This choice relaxes the monotonicity constraint on the
internal energy in order to enforce the preservation of isentropic flows up to second-order. The idea of introducing
more physics in the limiting process at the expense of a strict monotonicity was already explored recently by Roe et
al. in [40].

2.4. Remap of node fields
The node fields η to be remapped are node density, momentum and kinetic energy, i.e. η ∈ {ρp , (ρu)p , Kp}.

Let us recall that these staggered fields—including the node density ρp—are material-independant since we consider
a unique velocity for all materials. The definition of node density ρp is crucial for the accuracy and the continuity
constraints outlined in Introduction. Driven by Lagrangian consistency, we choose here

ρOld
p =

mOld
p

VOld
p

, (ρu)Old
p = ρOld

p uOld
p , KOld

p = 1
2 ρ

Old
p (uOld

p )2 (16)

where mp is the node mass used in the Lagrangian step, mass which is usually built from the mass of the neighboring
cells (see Subsection 3.1). Observe that the remap of this node density constructs a new node mass on the regularized
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mesh
mR

p =
∑

p′

∫
VNew

p ∩VOld
p′

ρ̃Old
p′ dV, (17)

which differs from the cell based node mass mNew
p to be used in the Lagrangian scheme, except when no rezoning is

performed. In that case, all values mR
p , mNew

p and mOld
p are strictly equal thanks to the construction (16) of the node

density ρp. This is akin with the approach of Kenamond et al. [15] developed in axisymmetric geometry.
The velocity after remap is finally obtained by

uR
p =

VNew
p

mR
p

(ρu)New
p . (18)

It must be stressed that here, the gradient (∇ (ρu))Old
p is based on an algebraic expansion

(∇ (ρu))Old
p = ρOld

p (∇u)Old
p + (∇ρ)Old

p ⊗ uOld
p , (19)

in order to exactly conserve constant velocity fields even in presence of large or complex density gradients.

2.5. Remapping errors

The above remapping strategy can affect both the momentum and the kinetic energy in two ways. Let us denote
KNew =

∑
pK

New
p the global kinetic energy after remap which exactly matches the global kinetic energy before remap

due to (11).

Error due to the linear momentum remap. Both the reconstruction and the integral averaging modify the mass
weighted L2-norm of the velocity, i.e. KNew ,

∑
p

1
2 mR

p

(
uR

p

)2, with a kinetic energy increase during the recon-

struction step and a kinetic energy decrease during the remap. The difference KNew −
∑

p
1
2 mR

p

(
uR

p

)2 is not positive
a priori which can be a problem for entropy control.

Error due to the mass transfer. As previously explained, the node mass mNew
p , used in the Lagrangian phase and

reconstructed on the new mesh, is built from the mass of the neighboring cells mNew
c and differs from the node mass

mR
p obtained on the dual mesh by remapping. There is therefore a mass re-localization after remap which induces a

change in the linear momentum and an additional transfer of kinetic energy∑
p

mR
p uR

p ,
∑

p

mNew
p uR

p , (20)

KNew ,
∑

p

1
2 mR

p

(
uR

p

)2
,
∑

p

1
2 mNew

p

(
uR

p

)2
. (21)

Again, the sign of the expression
∑

p
1
2 mR

p

(
uR

p

)2
−
∑

p
1
2 mNew

p

(
uR

p

)2 is not controlled a priori.
On smooth meshes, both modifications can be proved to be second-order in space, i.e.

mNew
p − mR

p = mR
p × O(∆x2), (22)

KNew
p − 1

2 mR
p

(
uR

p

)2
= KNew

p × O(∆x2), (23)

with the exception of the axisymmetric geometry where the second-order term O(∆x2) becomes O(∆x) × O( ∆r
r ), in-

ducing therefore a loss of accuracy next to the axis r = 0. Appendix B checks Relations (22) and (23) for the particular
choice of node mass mp used in our test cases.

Note finally that, in the absence of rezoning, the node density definition (16) guarantees that linear momentum
and kinetic energy will be strictly preserved (continuity constraint).
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2.6. Correction phase
Inequalities (20) and (21) show that the above remap violates momentum and total energy conservations. The goal

of the correction phase is to restore energy conservation in a local entropy controlled way and at a low computational
cost. The basic idea is to introduce the local kinetic energy variation into the local internal energy as proposed by
DeBar [4]. Before this, it is useful to perform a velocity correction in order to minimize this kinetic energy variation,
and hence the resulting entropy error. We propose herein to correct the velocity by

uNew
p = λp uR

p , where λp =

√√√√√min
(
KNew

p , 1
2 mR

p

(
uR

p

)2
)

1
2 mNew

p

(
uR

p

)2 . (24)

This correction cancels the kinetic energy variation when strict energy conservation cannot be retrieved in an entropic
way. Observe that λp = 1 in the absence of remapping where we have mOld

p = mR
p = mNew

p , uOld
p = uR

p and KNew
p =

KOld
p = 1

2 mR
p

(
uR

p

)2, which ensures the continuity of the correction (24) with respect to mesh motion. It is explicit and
second-order in space in smooth regions (except near the axis r = 0 in axisymmetric geometry) according to Relations
(22) and (23). With this new definition of velocity, the internal energy is then corrected by

mϕ,New
c eϕ,New

c = mϕ,New
c eϕ,Rc + δKϕ,New

c , (25)

δKϕ,New
c =

∑
p∈P(c)

mϕ,New
cp

mNew
p

(
KNew

p − 1
2 mNew

p

(
uNew

p

)2
)
. (26)

The node kinetic energy discrepancy is distributed here among cells c ∈ C(p) and materials ϕ thanks to a user defined

mass ratio mϕ,New
cp

mNew
p

measuring after projection the relative mass contribution of the material ϕ in cell c to the node p. This
distribution process is not unique with different examples given in [2]. In our applications, we use the cell material
mass mϕ

c and the corner volumes Vmass
cp defined in (30) and set

mϕ
cp =

Vmass
cp

Vc
mϕ

c , mp =
∑

c∈C(p)

∑
ϕ

mϕ
cp.

Corrections (24), (25) and (26) extends the philosophy of the CSTS Lagrangian scheme [24], presented in Section
3, where a consistent correction is introduced in the linear momentum equation in order to preserve the local kinetic
energy. Let us now prove the consistency and the proper entropy control of the above corrections.

Consistency. If KNew
p > 1

2 mR
p

(
uR

p

)2, we have

λp =

√√√√ 1
2 mR

p

(
uR

p

)2

1
2 mNew

p

(
uR

p

)2 =

√
mR

p

mNew
p

=
√

1 + O(∆x2) = 1 + O(∆x2),

thanks to Relation (22). Otherwise, when KNew
p < 1

2 mR
p

(
uR

p

)2, we get from (23) and (22)

λp =

√√√√ KNew
p

1
2 mNew

p

(
uR

p

)2 =

√√√√ 1
2 mR

p

(
uR

p

)2 (1 + O(∆x2))
1
2 mNew

p

(
uR

p

)2 = 1 + O(∆x2).

In both cases, we therefore have
λp = 1 + O(∆x2). (27)

Anticipating the discussion in Subsection 3.3, one can already notice that the above Equation (27) has a strong impact
on the “DeBar condition” and the momentum conservation. The velocity correction breaks the strict momentum
conservation which is now conserved to the second-order. Concerning the “DeBar condition”, even in the case of a

constant velocity uOld
p = u ∀p, λp =

√
mR

p

mNew
p

might be different than one due to density gradient.
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Proper entropy control. Equation (24) allows to write

1
2 mNew

p

(
uNew

p

)2
= 1

2 mNew
p λ2

p

(
uR

p

)2
= min

(
KNew

p , 1
2 mR

p

(
uR

p

)2
)
. (28)

Thanks to Relations (26)-(27)-(28), it is then straightforward to show that the above velocity correction results in a
positive and second-order kinetic energy discrepancy

δKϕ,New
c ≥ 0 and δKϕ,New

c = mϕ,New
c × O(∆x2), (29)

and hence a proper entropy control. Moreover, sinceKNew
p and 1

2 mR
p

(
uR

p

)2 use the same reconstruction procedure, we
expect this kinetic energy discrepancy to be very small . In the above relations, second-order residues O(∆x2) have to
be replaced in axisymmetric geometry by O(∆x) × O( ∆r

r ), inducing a loss of accuracy next to the axis r = 0.

3. Our ALE algorithm

3.1. CSTS Lagrangian step
We now want to couple this general remapping strategy with a specific Lagrangian solver. We focus here on

numerical schemes which are space and time staggered [24, 29, 62] where thermodynamic quantities (material den-
sity, material internal energy, material pressure) are defined at cell centers and at time tn while kinematic quantites
(velocities) are defined at nodes and calculated at half time tn+1/2. In what follows, the superscript n + 1/2 refers to
time-staggered quantities while n or n + 1 refer to time-centered ones.

Such staggered schemes have nice entropic properties and can preserve total energy [28, 29]. But, when combining
our remapping strategy with these time staggered algorithms, there is an issue on the time at which the remap has to be
performed. Taking into account the key role played by the kinetic energy in energy conservation and entropy control,
we decide to perform the remap at half time tn+1/2 where velocities, node masses—and therefore the kinetic energy—
are naturally defined, and where the internal energy can be easily reconstructed. An overview of the whole ALE
algorithm is given in the next Subsection 3.2 highlighting this uncommon choice.

To illustrate this point , we briefly review the CSTS Lagrangian hydrodynamic scheme [24, 25] which we will use
in combination with the above remapping strategy. First, we need to define the node masses to be used in the linear
momentum equation. Below, node masses are computed from the cell masses mc according to the geometric partition
rule

mp =
∑

c∈C(p)

mcp, where mcp =
Vmass

cp

Vc
mc and Vmass

cp = 2
3 VM

cp + 1
3 VW

cp. (30)

The corner volume VM
cp is delimited by the “so-called” median mesh [43, 44] and VW

cp = 1
|P(c)| Vc is the volume defined

by Kolsky and Wilkins [5, 45]. This corner volume Vmass
cp is different from the volume Vcp = Vp ∩ Vc generated by

intersecting the dual node cell Vp used in Section 2 for remap with the primal cell Vc. Note that this corresponds
to a “volume-weighted” momentum formulation since (30) in axisymmetric geometry uses the volumes of the torus
generated by rotation of individual cells or subcells around the z axis. Definition (30) strictly preserves the planar
symmetry on a cartesian mesh and at a given time in axisymmetric geometry [24, 25, 27]. Consider a pure axial
1D Sod shock tube [48] in 2D axisymmetric geometry—described in Figure 2(a)—where the three classical waves
propagate along the axial direction without any radial motion. Only the linear combination in Equation (30) gives a
r-independant and purely axial acceleration on a uniform mesh [27] as shown in Figure 2. Details are given in [24]
and the demonstration is avalaible in [25, Chapter 3, Section 3.7]. The space and time discretization of the linear
momentum conservation law is then obtained from the least action principle applied on a discrete action integral [29].
Since the discrete momentum equation is implicit with respect to the velocity un+1/2

p and the node mass mn+1/2
p , it is

solved by a four steps predictor corrector algorithm [24, 25]:

1. Node mass prediction m∗n+1/2
p

m∗n+1/2
p = mn−1/2

p +
∑

q∈Q(p)

∂mp

∂xq

∣∣n−1/2
· un−1/2

q
∆tn+1/2 + ∆tn−1/2

2
. (31)

The calculation details of corner mass vectors ∂mp

∂xq
can be found in [25].
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2. Velocity prediction u∗n+1/2
p using second order kinetic energy control

m∗n+1/2
p u∗n+1/2

p − mn−1/2
p un−1/2

p =
∑

c∈C(p)

[
(pn

c + qn−1/2
c ) ∂Vc

∂xp

∣∣n + f n−1/2
cp

] ∆tn+1/2 + ∆tn−1/2

2

+
∑

q∈Q(p)

1
4 (un−1/2

q )2 ∂mq

∂xp

∣∣n−1/2
∆tn−1/2 +

∑
q∈Q(p)

1
4 (un−1/2

q )2 ∂mq

∂xp

∣∣n−1/2
∆tn+1/2 , (32)

where qn−1/2
c = Q

[{
un−1/2

p

}]
is the artificial viscosity and f n−1/2

cp = F
[{

un−1/2
p

}]
corresponds to the anti-hourglassing

force.
3. Geometric update

x∗n+1/2
p = xn

p + u∗n+1/2
p

∆tn+1/2

2
, (33)

mn+1/2
p = m

[{
x∗n+1/2

p

}]
and calculation of ∂mq

∂xp

∣∣n+1/2 (34)

4. Velocity correction

mn+1/2
p un+1/2

p − mn−1/2
p un−1/2

p =
∑

c∈C(p)

[
(pn

c + qn
c) ∂Vc
∂xp

∣∣n + f n
cp

] ∆tn+1/2 + ∆tn−1/2

2

+
∑

q∈Q(p)

1
4 (un−1/2

q )2 ∂mq

∂xp

∣∣n−1/2
∆tn−1/2 +

∑
q∈Q(p)

1
4 (u∗n+1/2

q )2 ∂mq

∂xp

∣∣n+1/2
∆tn+1/2 , (35)

where qn
c = Q

[{
1
2 (u∗n+1/2

p + un−1/2
p )

}]
and f n

cp = F
[{

1
2 (u∗n+1/2

p + un−1/2
p )

}]
.

Above, pressure forces have been complemented by an artificial viscosity term qϕc and variational inertial based anti-
hourglassing forces fϕcp in order to handle strong shocks and reduced integration. These dissipative terms are beyond
the scope of this paper and are given in Appendix C. The simple equi-compressibility closure model [41, 42] gives
the relation pc =

∑
ϕ α

ϕ
c pϕc in multi-material cells where αϕc is the constant volume fraction for material ϕ. Material

volume variations ∂Vc
∂xp

∣∣ϕ are thus determined by ∂Vc
∂xp

∣∣ϕ = α
ϕ
c
∂Vc
∂xp

.
The internal energy evolution from times tn to tn+1 is then deduced from an energy conservation principle written

at time tn+1/2, using the “flux-in-time” approach of [29]. In order to be able to remap the internal energy eϕ,n+1/2
c at half

time steps, the material internal energy is updated into two phases. The first one is explicit and constructs the internal
energy eϕ,n+1/2

c at half time step

mϕ
c

(
eϕ,n+1/2

c − eϕ,nc

)
=
∑

p∈P(c)

{
− 1

2

[
(pϕ,nc + qϕ,nc ) ∂Vc

∂xp

∣∣ϕ,n + fϕ,ncp

]
· un+1/2

p ∆tn+1/2

+ 1
4

[
(pϕ,nc + qϕ,nc ) ∂Vc

∂xp

∣∣ϕ,n + fϕ,ncp

]
· (un+1/2

p − un−1/2
p ) (∆tn+1/2 − ∆tn−1/2)

− 1
2

[
(qϕ,nc − qϕ,n−1/2

c ) ∂Vc
∂xp

∣∣ϕ,n + fϕ,ncp − fϕ,n−1/2
cp

]
· un−1/2

p ∆tn−1/2

−
∑

q∈P(c)

1
8 (un−1/2

q )2 ∂mcq

∂xp

∣∣ϕ,n−1/2
· (un+1/2

p + un−1/2
p ) ∆tn−1/2

−
∑

q∈P(c)

1
8 (u∗n+1/2

q )2 ∂mcq

∂xp

∣∣ϕ,n+1/2
· (un+1/2

p + un−1/2
p ) ∆tn+1/2

+ 1
2 (mϕ,n+1/2

cp − mϕ,n−1/2
cp ) un+1/2

p · un−1/2
p

}
. (36)

The second one is locally implicit, and updates the internal energy on each cell by solving a 2 × 2 non-linear system
with unknowns eϕ,n+1

c and pϕ,n+1
c

mϕ
c (eϕ,n+1

c − eϕ,n+1/2
c ) =

∑
p∈P(c)

− 1
2

[(
pϕ,n+1

c + qϕ,n+1/2
c

)
∂Vc
∂xp

∣∣ϕ,n+1
+ fϕ,n+1/2

cp

]
· un+1/2

p ∆tn+1/2, (37)
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Ρ0 = 0.125

p0 = 0.1

Ρ0 = 1

p0 = 1u0 = 0 u0 = 0Γ = 1.4 Γ = 1.4

H0,0L
H0,0.04L

H1,0L
H1,0.04L

u=0 u=0

u.n=0

u.n=0

ez

er

(a)

(b)

(c)

(d)

Figure 2: Pure axial (1D) Sod shock tube [48] in axisymmetric geometry: (a) initial and boundary conditions; (b) last mesh computed with the
corner volume VM

cp [43, 44] before premature stop of the calculation; (c) last mesh computed with the corner volume VW
cp [5, 45] before premature

stop of the calculation; and (d) final mesh at t = 2 computed with the corner volume Vmass
cp of Definition (30). Strong singularities near the axis

r = 0 appear for cases (b) and (c) leading to calculation failure before reaching the final time while the axial 1D symmetry is strictly preserved in
case (d).

pϕ,n+1
c = EOSϕ

(
ρϕ,n+1

c , eϕ,n+1
c

)
. (38)

In the above formula, the node anti-hourglassing forces have been split into local contribution fϕcp based on the mass
weighting factor mϕ

c
mc

.
In Equations (32), (35), (36) and (37), subscripts p and q are node indexes—see Subsection 2.1—and do not refer

to pressure and artificial viscosity also denoted by p and q.

3.2. Lagrange-plus-remap CSTS scheme
By combining the remap of Section 2 with the above lagrangian scheme, we get the following algorithm

Lagrangian step [24]
1. Time step calculation ∆tn+1/2 between times tn and tn+1

∆tn+1/2 = CFL ×min
c
{`n

c / cn
c}, (39)

where `n
c is a characteristic length, cn

c is the sound speed in a cell c and CFL is a user-defined coefficient
2. Velocity prediction u∗,n+1/2

p

3. Geometry prediction x∗,n+1/2
p

4. Calculation of the corresponding dissipative termsDϕ,n
c =

{
qϕ,nc , { fϕ,ncp }p∈P(c)

}
5. Calculation of the node mass and its variations

Mn+1/2,Old
p =

{
{mn+1/2,Old

cp }c∈C(p) ,
{
∂mcq

∂xp

∣∣n+1/2,Old
}

c∈C(p),q∈P(c)

}
11



6. Velocity update un+1/2
p

7. Node position update
xn+1/2

p = xn
p + un+1/2

p
∆tn+1/2

2 (40)

8. Internal energy calculation en+1/2,ϕ
c

Rezoning step at time tn+1/2

9. Grid smoothing xn+1/2
p in case of excessive mesh distorsion

Remapping step at time tn+1/2

10. Remap of cell-centered variables: volumic fractions αϕc , material mass ρϕ,n+1/2
c and material internal energy

(ρ e)ϕ,n+1/2,R
c

11. Calculation of the node mass and its variations on the new geometry

Mn+1/2,New
p =

{
{mn+1/2,New

cp }c∈C(p) ,
{
∂mcq

∂xp

∣∣n+1/2,New
}

c∈C(p),q∈P(c)

}
12. Remap of node-centered values: node mass ρn+1/2

p , node momentum (ρu)n+1/2,R
p and node kinetic energy Kn+1/2

p

Remap correction step at tn+1/2

13. Calculation of the post-remap node mass mn+1/2,R
p

14. Velocity correction un+1/2,New
p to handle node mass re-localization

15. Internal energy correction eϕ,n+1/2,New
c to cancel energy remapping errors.

Lagrangian step [24]
16. Node position update

xn+1
p = xn+1/2

p + un+1/2,New
p

∆tn+1/2

2
(41)

17. Calculation of the associated dissipative terms

Dϕ,n+1/2
c =

{
qϕ,n+1/2

c , { fϕ,n+1/2
cp }p∈P(c)

}
18. Final update of the material internal energies eϕ,n+1

c , together with the material pressures pϕ,n+1
c

19. Average internal energy and pressure calculation en+1
c and pn+1

c within each multi-material cell using the equi-
compressibility closure model

Note that the node mass mn+1/2
p and its variations are computed on the predicted geometry x∗,n+1/2

p and not on the
geometry xn+1/2

p defined by (40). Indeed, the difference between the two geometries is a second-order residue since
x∗,n+1/2

p = xn+1/2
p + O(∆t3). This prevents to compute these geometrical terms twice during the Lagrangian phase. The

above algorithm is also summarized in Tab. 1 where each step is associated to its corresponding equation number.
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Start of cycle ∆tn−1/2 un−1/2
p Dn−1

c Mn−1/2
p xn−1/2

p mn−1/2,R
p en−1/2

c xn
p Dn−1/2

c en
c pn

c
Time step evaluation (39) ∆tn+1/2

Velocity prediction (32) u∗,n+1/2
p

Geometry prediction (33) x∗,n+1/2
p

Dissipative terms Appendix C Dn
c

Nodal mass (30) and variations Mn+1/2,Old
p

Velocity correction (35) un+1/2,Old
p

Node motion (40) xn+1/2
p

Energy (36) en+1/2,Old
c

Rezoning xn+1/2
p

Remap (6) en+1/2,R
c

Node mass (30) and derivatives Mn+1/2,New
p

Remap (8) un+1/2,R
p

Post-remap node mass (17) mn+1/2,R
p

Velocity correction (24) un+1/2,New
p

Internal energy correction (25) en+1/2,New
c

Node motion (41) xn+1
p

Dissipative terms Appendix C Dn+1/2
c

Energy (37) en+1
c

Pressure (38) pn+1
c

Table 1: Global ALE algorithm: the principal variables in the scheme are indicated in the order of evaluation in the time loop with the corresponding equation number. Dissipative terms, corner
masses and their derivatives are gathered in variables Dc =

{
qc , { fcp}p∈P(c)

}
andMp =

{
{mcp}c∈C(p) , {

∂mcq
∂xp
}c∈C(p),q∈P(c)

}
. Only global values are indicated for multi-material cells. Solid lines

separate instantaneous rezoning, remapping and correction phases from the Lagrangian update, corresponding to a time evolution of the system. Dashed lines separate the rezoning and remapping
phases from the correction phase.
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3.3. Properties of the ALE algorithm
By construction of both Lagrangian and remapping steps, the whole ALE scheme is second-order accurate in

space and time on smooth grids. In absence of external forces, it also conserves momentum at second-order and
strictly conserves total energy at time tn+1/2

µn+1/2 − µn−1/2 = O(∆x2), with µn+1/2 =
∑

p

mn+1/2
p un+1/2

p , (42)

En+1/2 − En−1/2 = 0, with En+1/2 =
∑

p

1
2 mn+1/2

p (un+1/2
p )2 +

∑
c

mc en+1/2
c . (43)

Demonstrations of Relations (42) and (43) can be found in [25]. Since the Lagrangian CSTS scheme of Subsection
3.1 is strictly conservative both in momentum and total energy [29], the residue in O(∆x2) in (42) comes from the
velocity correction of (24). This residue is second-order thanks to the Relation (27) except at the axis in axisymmetric
geometries where it reduces to O(∆x) × O( ∆r

r ). Concerning the total energy, conservation of node (11) and centered
(10) quantities during the remap together with our internal energy correction (25)-(26) proves the overall total energy
conservation (43).

The Second Law of Thermodynamic is ensured and for isentropic problems the scheme also preserves entropy, at
the scheme’s order and for each material ϕ [30]

sϕ,n+1/2
c − sϕ,n−1/2

c + O(∆x2 , ∆t3) ≥ 0, (44)

sϕ,n+1/2
c − sϕ,n−1/2

c + O(∆x2 , ∆t3) + O(∆x2) = 0. (45)

Relations (44) and (45) are proved in [25] using (29). The first error in O(∆x2 , ∆t3) comes from the Lagrangian
update of the internal energy which uses a second order quadrature rule for integrating the “p dV” term in time. The
second residue O(∆x2) in (45) is due to the variation of kinetic energy induced by the remap (see Subsection 2.5) and
becomes O(∆x) × O( ∆r

r ) in axisymmetric geometry. Note that it is absent from Inequality (44) because the per-cell
kinetic energy discrepancy δKϕ,New

c is positive (29) up to round-off errors for each material ϕ.
Observe finally that the velocity correction (24) breaks the “DeBar condition” [4]: see discussion in Subsection

2.6 and Equation (27). A uniform velocity field is only preserved to the second-order—first-order in axisymmetric
geometry on the axis r = 0—in presence of smooth density gradients (second-order accuracy). The continuity with
the multi-material Lagrangian CSTS scheme is ensured in the sense that no error is created in absence of rezoning
since we have then λp = 1.

4. Numerical results

4.1. General numerical conditions
First of all, pure remapping tests are considered in order to assess the properties of our remapping algorithm alone.

To that end, the cyclic remapping test of [47] is re-used. Then, several classical—but demanding—hydrodynamic test
cases are performed to assess the built-in properties of our overall ALE CSTS algorithm: (i) second-order accuracy;
(ii) conservation; (iii) thermodynamic consistency; and (iv) robustness. Three grid regularization strategies are used

• Euler: the grid is remapped at each time step onto a fixed cartesian grid, and the post remap velocity and internal
energy corrections are performed;

• ALE: three iterations of the Jun’s algorithm [46] are done at each time step for grid smoothing, and the post
remap velocity and internal energy corrections are performed;

• Lagrange: no grid regularisation or remap are performed.

A classical and Space- and Time-Staggered non-conservative scheme—denoted as “STS” [5, 62] —will be used as
a reference for robustness and will highlight the necessity of the total energy conservation. It is based on an “area-
weighted” formulation of the momentum equation in axisymmetric geometry [5] and does not perform any velocity or
energy correction in either the Lagrangian or the remapping phases. Unless otherwise specified, test cases are running
with the following parameters:
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• Hydrodynamic time step respects the classical condition (39) with CFL = 0.2;

• The characteristic length is set to `c =
√

Ac, where Ac is the cell area;

• Dissipative terms are given in Appendix C.

All test cases are summarized in Tab. 2. In axisymmetric geometry, the z and r axes are respectively the horizontal and
vertical axes. It is finally worth mentioning that the total energy conservation (43) and the kinetic energy discrepancy
positivity (29) hold up to machine precision while total momentum is now conserved only to the second-order (42)
for all test cases when corrections are activated.
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Test cases
References
Geometry

Initial conditions Boundary conditions Adiabatic
constants Dissipative terms Mesh size

Computational domain Rezoning strategy Final time
CFL

Smooth Cyclic
remapping

[47]
plane

ρ0 = sin (64 x y) sin (64 x y)
u0 = (cos (8 x) + sin (8 y) , cos (8 x) − sin (8 y))

e0 = cos (10 x y) cos (10 x y)
/ / /

32 × 32, 64 × 64 and 128 × 128 cells
[0, 1] × [0, 1]

Non-orthogonal meshes
sequence [47] given by (46)

1
/

Cyclic
remapping

[47]
plane

ρ0 = 1, u0 = (1 , −0.3), e0 = 0 for 0 ≤ x ≤ 0.5
ρ0 = 2, u0 = (2 , −0.6), e0 = 1 for 0.5 ≤ x ≤ 1 / / /

32 × 32, 64 × 64 and 128 × 128 cells
[0, 1] × [0, 1]

Non-orthogonal meshes
sequence [47] given by (46)

1
/

Sod
[48]

axisymmetric

u0 = 0
Z1 (z < 0.5, r < 0.5): ρ0 = 1,p0 = 1

Z2 (z ≥ 0.5, r ≥ 0.5): ρ0 = 0.125,p0 = 0.1

Left and Bottom:
u · n = 0

Right and Top: u = 0

γZ1 = 7
5

γZ2 = 7
5

q1 = 0.5
q2 = (γ + 1)/4

cΦ̄ = 0

55 × 55 cells
[0, 1] × [0, 1]

ALE & Euler
rezoning and remap correction

at each time step

0.2
0.2

Isentropic
vortex
[49–52]
plane

ρ0 = T 1/(γ−1)
0

p0 = ρ
γ
0 , u0 = δu0

δu0 and T0 given by (47) and (48)
u = 0 5

3

q1 = 0
q2 = 0
cΦ̄ = 0

50 × 50, 100 × 100, 200 × 200 and
400 × 400 cells
[0, 1] × [0, 1]

ALE & Euler
rezoning and remap correction

at each time step

1
0.2

Sedov
[53–55]

axisymmetric

ρ0 = 1,p0 = 10−14

u0 = 0
First cell: E0 = 0.2468

Left and Bottom:
u · n = 0

Right and Top: u = 0
5
3

q1 = 0.5
q2 = (γ + 1)/4

cΦ̄ = 1

50 × 50, 100 × 100 and 200 × 200 cells
[0, 1.2] × [0, 1.2]

ALE & Euler
rezoning and remap correction

at each 20 time steps

1
0.2

Triple point
[34, 56, 57]

axisymmetric

u0 = 0
L (z < 1): ρ0 = 1, p0 = 1

RT (z > 1, r > 1.5): ρ0 = 0.125, p0 = 0.1
RB (z > 1, r < 1.5): ρ0 = 1, p0 = 0.1

u · n = 0
γL = 1.5
γRT = 1.5
γRB = 7

5

q1 = 0.5
q2 = (γ + 1)/4

cΦ̄ = 0

140 × 60 and 490 × 210 cells
[0, 7] × [0, 3]

ALE
rezoning and remap correction

at each time step

5
0.2

Shocked He
bubble
[58, 59]
plane

u0 = 0
He (disc): ρ0 = 1, p0 = 105

Air: ρ0 = 0.182, p0 = 105

Disc: C = 0.32 ex, R = 0.025

Bottom and Top:
u · n = 0

Left: u = 0
Right: u = −124.824 ex

γHe = 1.648
γAir = 7

5

q1 = 0.5
q2 = (γ + 1)/4

cΦ̄ = 0

180 × 50 cells
[0, 0.65] × [−0.0445, 0.0445]

ALE
rezoning and remap correction

at each time step

134.2153 × 10−6

0.2

Shocked He
bubble
[58, 59]

axisymmetric

u0 = 0
He (disc): ρ0 = 1, p0 = 105

Air: ρ0 = 0.182, p0 = 105

Disc: C = 0.32 ez, R = 0.0225

Bottom and Top:
u · n = 0

Left: u = 0
Right: u = −140.312 ez

γHe = 1.648
γAir = 7

5

q1 = 0.5
q2 = (γ + 1)/4

cΦ̄ = 0

520 × 72 cells
[0, 0.65] × [0, 0.0445]

ALE
rezoning and remap correction

at each time step

125.7463 × 10−6

0.2

Table 2: Summary of test cases performed in this paper: coefficients q1 and q2 stand for respectively linear and quadratic terms of the artificial viscosity, coefficient cΦ̄ controls the anti-hourglassing
magnitude (see Appendix C).
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4.2. Cyclic remapping

We consider here two cyclic remapping tests [47] in order to assess the impact of the proposed corrections on
the solution accuracy and monotonicity during remappings on time varying meshes. The first test remaps smooth
fields, while the second one introduces a discontinuous internal energy. The mesh motion is given by a sequence of
non-orthogonal meshes [47]:

x(ξ , η , t) = ξ + α(t) sin(2 π ξ) sin(2 π η),
y(ξ , η , t) = η + α(t) sin(2 π ξ) sin(2 π η), (46)

α(t) =

{
t/5 for 0 ≤ t ≤ 0.5,
(1 − t)/5 for 0.5 ≤ t ≤ 1,

for 0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1 sampled at N points and 0 ≤ t ≤ 1 sampled at kmax points. Fields are remapped on the unit
square [0 , 1]2 with the following sampling sequence (N , kmax) = (32 , 160), (64 , 320), (128 , 640) and (256 , 1280).
The most distorded 64 × 64 mesh during computation is displayed in Figure 3.

Smooth fields. The following smooth fields

ρ0(x, y) = sin( π2 x) sin( π2 y),
u0(x, y) = (cos(8 x) + sin(8 y) , cos(8 x) − sin(8 y)) ,
e0(x, y) = cos( π2 x) cos( π2 y).

are successively remapped. The results of Figure 4 indicate a suboptimal order of convergence reduced to 1.3 and
1.46 without correction and as low as 0.66 after corrections. This loss of accuracy without correction is attributed
to two factors: (i) the presence of distorded mesh during the computation on which the regularity assumption is
not fullfilled—see Figure 3; and (ii) the effect of the first-order remap done at the boundaries. Moreover, although
Equations (27) and (42) hold true, errors inO(∆x2) accumulate with time leading to a final convergence of orderO(∆x).
In fact, the difference between the remapped velocity and the true velocity after one time step has a convergence order
of around 1.3, mainly due to errors at boundaries.

Non-smooth fields. Discontinuous fields taken from [47]

ρ0(x, y) =

{
2 for y > (x − 0.4) / 0.3,
1 for y ≤ (x − 0.4) / 0.3,

u0(x, y) =

{
(2 , −0.6) for y > (x − 0.4) / 0.3,
(1 , −0.3) for y ≤ (x − 0.4) / 0.3,

e0(x, y) =

{
1 for y > (x − 0.4) / 0.3,
0 for y ≤ (x − 0.4) / 0.3,

are now successively remapped on the non-orthogonal meshes sequence. Isolines of velocity and internal energy are
plotted both with and without corrections in Figure 5. It is no surprise that with corrections the monotonicity is lost
both on velocity and internal energy. Errors around 1 % to 3 % on upper and lower bounds are observed for the x-
component of the velocity while for internal energy, the lower bound is strictly respected and the upper bound has a
variation of approximatively 2 %.

4.3. Sod-like problem in axisymmetric geometry

A Sod-like problem [48] in axisymmetric geometry is considered in this subsection. It corresponds to a two-states
Riemann problem where the initial discontinuity is defined such that the three classical waves (expansion fan, contact
discontinuity and shock) are: (i) planar along the axial direction ez; (ii) cylindrical along the radial direction er; and
(iii) spherical along the diagonal.

Figure 6 represents the final density map on an ALE 55 × 55 mesh. Density profiles on the r = 0 axis are plotted
in Figure 7 showing a good agreement with the analytical planar solution for all formulations.
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Figure 3: Cyclic remapping: most distorded mesh during the computation.
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Figure 4: Cyclic remapping with smooth fields: L2-error on the velocity with numerical orders estimated at 1.3 (without correction) and 0.66 (with
corrections) and on the density (lower curve, not affected by correction step ) with numerical orders estimated at 1.5 .
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(a) ux, ranging from 1.0 to 2.0 (b) ux, ranging from 1.0 to 1.99 (c) ux, ranging from 0.966 to 2.022

(d) e, ranging from 0.0 to 1.0 (e) e, ranging from 0.0 to 1.013 (f) e, ranging from 0.0 to 1.017

Figure 5: Cyclic remapping with non-smooth fields: isolines for (N , kmax) = (64 , 320) of (a) initial x-component of the velocity; (b) final x-
component of the velocity without corrections; (c) final x-component of the velocity with corrections; (d) initial internal energy; (e) final internal
energy without correction; and (f) final internal energy with corrections.

Figure 6: Sod-like problem in axisymmetric geometry: final density map on an ALE 55 × 55 mesh.
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(a) (b)

Figure 7: Sod-like problem in axisymmetric geometry. Density profiles on the axis r = 0 for the CSTS scheme for Euler, ALE and Lagrangian
runs: (a) global view; and (b) zoom around the shock.

4.4. Isentropic vortex

The isentropic vortex [49–52] is used here to assess the accuracy of our numerical scheme. A mean flow
(ρ̄0 , p̄0 , ū0) is perturbed in an isentropic way with (δρ0 , δp0 , δu0) such that

(ρ̄0, p̄0, ū0) = (1 , 1 , 0),
δρ0 = T 1/(γ−1)

0 − 1,
δp0 = T γ/(γ−1)

0 − 1,
δu0,x =

β
2 πe(1−r2)/2 (y0 − y) and δu0,y =

β
2 πe(1−r2)/2 (x − x0) ,

(47)

where (x0 , y0) = (5 , 0), r =
√

(x − x0)2 + (y − y0)2 and β = 5 are respectively the vortex center, the vortex radius
and the vortex strength. The initial temperature T0 is given by

T0 = 1 − (γ−1) β2

8 γ π2 e1−r2
. (48)

The initial conditions (47) correspond to the condition p
ργ

=
p0
ρ
γ
0

= 1 associated to a perfect isentropic flow. Here,

L2-errors are computed for the density in order to assess the second-order accuracy and for the ratio p
ργ

in order to
measure the isentropic property of the numerical solution. Figure 8 displays the final ALE 50×50 mesh: all quantities
vanish away from the center (x0 , y0)—including the velocity—to avoid the first-order remap at boundaries. Figure 9
shows a second-order accuracy both on density and entropy for ALE and Euler simulations. Exception is the velocity
where an order of around 1.2 is observed. As for the cyclic remapping, second-order errors O(∆x2) coming from (27)
accumulate during time causing a drop of almost one order on the convergence.

Figure 10 illustrates the contribution of the internal energy gradient (15) on the numerical isentropy compared to
a monotone gradient limited with the Van Leer method [32]. While the improvement on the numerical isentropy is
marginal in the ALE formulation (see Figure 10(a)), it has a significant impact for the Euler case (see Figure 10(b)):
we obtain a gain of one order on the numerical isentropy and the ratio p

ργ
error is ten times lower on the 400 × 400

grid when the isentropic internal energy gradient (15) is used.

4.5. Spherical Sedov blast wave

The spherical Sedov blast wave [53] corresponds to an expanding, infinitely strong shock generated by an instan-
taneous point source of energy and propagating in a cold perfect gas of initial pressure p0 = 10−14. The value of the
initial total energy Eblast—depending on the geometry and the initial density distribution [54, 55]—is chosen such that
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Figure 8: Isentropic vortex: final ALE 50 × 50 mesh.
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Figure 9: Isentropic vortex with correction: L2-errors both for the ALE and Euler simulations on (a) the density ρ with numerical orders estimated
at 2.0 (Euler) and at 1.8 (ALE); (b) the ratio p

ργ with numerical orders estimated at 2.8 (Euler) and 2.6 (ALE); and (c) the velocity u with numerical
orders estimated at 1.1 (Euler) and 1.2 (ALE). Because of a more regular mesh, the decrease in convergence due to velocity correction is less
pronounced than in the cyclic remapping test.
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Figure 10: Isentropic vortex: L2-errors on the ratio p
ργ both for a classical limited internal energy gradient and for the isentropic internal energy

gradient (15): (a) ALE with an estimated order around 2.4 when the gradient is limited; and (b) Euler with an estimated order around 1.7 when the
gradient is limited.

(a) Euler (b) ALE

Figure 11: Spherical Sedov blast wave: final density maps on 50 × 50 meshes for (a) Euler and (b) ALE simulations.

the shock wave reaches the position rshock = 1 at the final time t = 1. This test case is particularly sensitive to total
energy discrepancies and is thus often used to assess the strict total energy conservation.

For this case the rezoning step is performed every 20 time steps in order to obtain a quasi-Lagrangian mesh on
the shock, thus requiring an anti-hourglassing method. Figure 11 displays final density maps on 50 × 50 meshes and
compares the Eulerian and the ALE formulations. The quasi-Lagrangian mesh motion on the shock wave clearly
allows a better capture of the analytic density peak ρ1 = 4 for the ALE formulation. Figure 12(b) shows that our
algorithm conserves total energy up to machine precision.When the mesh is refined, we observe that our simulations
converge to the correct value (see Figure 12(c)) while the non-conservative STS scheme produces an error around 1 %
on the analytical shock position rshock = 1 for the 200 × 200 grid (see Figure 12(a)).

4.6. Axisymmetric multi-material triple point problem
The triple point problem is a two-material, three-states Riemann problem where two shock waves propagate at

different velocities in two different materials along the horizontal contact discontinuity generating a vortex at the
triple point.This test case is usually performed in plane geometry [34, 56]. Axisymmetric results are less frequent but
can be found in e.g. [57]. Initial and boundary conditions are given in Tab. 2 and are identical to those described
in [57]. An ALE mesh motion is here necessary since a Lagrangian computation fails to reach the final time t = 5
because of the strong mesh tangling in the vortex area [60].
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(a) (b) (c)

Figure 12: Spherical Sedov blast wave: (a) radial density profiles for the CSTS and STS schemes on a 200 × 200 ALE grid and for the reference
solution [54, 55]; (b) relative total energy variation |En+1/2 − En−1/2 | /E0 defined in (43) as a function of time for the CSTS and STS schemes on a
200 × 200 ALE grid; and (c) radial density profiles under mesh refinement, superposed with the reference solution, for the CSTS scheme with an
ALE mesh motion.

Figure 13 displays the final internal energy map on an ALE 140× 60 mesh. The material positions and the overall
behavior of the solution are consistent with the Eulerian numerical results shown in [57]. The main difference concerns
the vortex capture for which a smoother result—and thus a better roll-up capture—is shown in [57] due to a higher
numerical dissipation provided by the solver and the Eulerian mesh motion. This test case possesses no analytical
solution nor converged solution [16] and it is mainly used here as a robustness test. Kelvin-Helmhotz-like instabilities
grow without any control under mesh refinement—except from the numerical dissipation which is strongly dependent
on the numerical solver—because of the absence of a physical viscosity term in the Euler’s equations. Observe that
in this case, the algorithm becomes unstable and explodes numerically before the final time if we correct the internal
energy after remap without correcting the velocity.

4.7. Shocked Helium bubble
We consider here the numerical simulation of a shocked Helium bubble in Air. Experimental results are available

in [58, 59] both for plane and axisymmetric geometries. Numerical results are also provided in [2, 61]. Initial and
boundary conditions are identical to those described in [57].

4.7.1. Plane geometry
The domain [0 , 0.65] × [−0.0445 , 0.0445] is filled with Air at room pressure, except in a disc centered at C =

0.32 ex of radius R = 0.025 which is filled with Helium. A piston at velocity u?ex—where u? = −124.824 is
computed thanks to Rankine-Hugoniot relations—on the right boundary generated a Mach 1.22 shock, hitting the
bubble at ti = 668.153 × 10−6. The computation is running until the final time t = ti + 674 × 10−6.

Figure 14 shows the density map at different time ts after the shock-bubble interaction on a 180 × 50 ALE mesh.
The bubble shape is compared to the STS scheme and the experimental result of [58] in Figure 15. The bubble shape
provided by the CSTS scheme matches with the experimental result while the STS scheme produces a result closer
to those found in [2, 61], obtained on a finer grid. As mentioned in [61] and in Subsection 4.6, the lack of physical
dissipation explains the differences with experiments. However, remapping on the coarse mesh produces enough
numerical dissipation to be comparable with experiments for the CSTS scheme.

4.7.2. Axisymmetric geometry
The shock-bubble interaction is now computed on the domain [0 , 0.65]× [0 , 0.0445]. Helium bubble, surrounded

by Air, is centered at C = 0.32 ez with a radius of R = 0.0225. The shock is still generated by a piston of velocity
u?ez with u? = −140.312 given by Rankine-Hugoniot relations to have a 1.25 Mach shock. The final time is t =

ti + 600 × 10−6, where ti = 657.463 × 10−6 still corresponds to the interaction time between the shock and the bubble.
Numerical results on a 520 × 72 ALE mesh are displayed in Figures 16 and 17. While instabilites affect the

final bubble shape, Figure 17 shows a good agreement with the experimental result, especially concerning the roll-up
capture at the rear of the bubble for the CSTS scheme. These instabilities can be damped with a coarser grid but the
lack of cells prevents both the STS and CSTS schemes from capturing the bubble structures.
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(a) 140 × 60 ALE mesh

(b) 490 × 210 ALE mesh

Figure 13: Axisymmetric triple point problem: final internal energy maps obtained on (a) a 140×60 ALE grid (with representation of the underlying
mesh) and (b) on a 490 × 210 mesh.
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(a) ts = 32.127 × 10−6

(b) ts = 132.135 × 10−6

(c) ts = 182.058 × 10−6

(d) ts = 482.227 × 10−6

(e) ts = 674 × 10−6

Figure 14: Cylindrical shocked Helium bubble: density maps on a 180 × 50 ALE mesh for the CSTS scheme at times (a) ts = 32.127 × 10−6; (b)
ts = 132.135 × 10−6; (c) ts = 182.058 × 10−6; (d) ts = 482.227 × 10−6; and (e) ts = 674 × 10−6. Time ts corresponds to the elapsed time after the
shock-bubble interaction time ti.

(a) CSTS (b) STS (c) Schlieren diagram

Figure 15: Cylindrical shocked Helium bubble: zoom on the material interface on a 180 × 50 ALE mesh for (a) the CSTS scheme (b) the STS
scheme and (c) for the Schlieren diagram [58].
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(a) ts = 42.636 × 10−6

(b) ts = 142.589 × 10−6

(c) ts = 192.543 × 10−6

(d) ts = 442.577 × 10−6

(e) ts = 600 × 10−6

Figure 16: Spherical shocked Helium bubble: density maps on a 520 × 72 ALE mesh for the CSTS scheme at times (a) ts = 42.636 × 10−6; (b)
ts = 142.589 × 10−6; (c) ts = 192.543 × 10−6; (d) ts = 442.577 × 10−6; and (e) ts = 600 × 10−6.

(a) CSTS (b) STS (c) Schlieren diagram

Figure 17: Spherical shocked Helium bubble: zoom on the material interface on a 520×72 ALE mesh for (a) the CSTS scheme (b) the STS scheme
and (c) for the Schlieren diagram [58].
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5. Conclusions

This paper presents a simple attempt to extend entropic numerical space-staggered schemes to the ALE method-
ology. For that purpose, a conservative and thermodynamically consistent staggered-remapping method is developed.
This is achieved through instantaneous corrections, at a low computational cost, both of velocity and internal en-
ergy. The continuity with the Lagrangian step is preserved. However, the algorithm analysis shows that the strict
momentum conservation is lost—although it is still conserved to the scheme’s order—as well as some other classical
remapping properties: “DeBar consistency” [4] and monotonicity. The remapping method is then complemented with
the Lagrangian CSTS scheme of [24]. We emphasize the link between instantaneous corrections of Subsection 2.6
and the modification of momentum fluxes of [24]. They have the same role respectively in the remapping and the
Lagrangian steps: local corrections on linear momentum are introduced in order to be conservative and to control
entropy simultaneously. Several classical—but demanding—test cases are performed to assess the properties of the
whole ALE algorithm.

In a close future, different formulations of artificial viscosity will be tested. Some considerations on the symmetry
preservation are also planed by considering an interpolation-based method to remap the velocity, instead of the clas-
sical intersection-based remap. Let us note that this is also better in terms of computational cost. Finally, the ALE
algorithm will be coupled with elastic-plastic behavior. Space-staggered discretizations are well suited for solids since
it allows to accurately compute the stress. Therefore, following the hypoelasticity framework [5], τϕ can be easily
computed at half time tn+1/2 before being remapped.
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Appendix A. Isentropic gradient construction for internal energy

Starting from the Gibbs relation de = −p dv + T ds, one gets ∇e = −p∇v + T ∇s, where v = 1
ρ

is the specific
volume. Working with the density ρ instead of the specific volume v and making the assumption that ∇s = 0, the
previous relation becomes ∇e = −p∇v =

p
ρ2 ∇ρ. We finally multiply by the density ρ to get ρ∇e =

p
ρ
∇ρ and we add

e∇ρ
∇(ρ e) = ρ∇e + e∇ρ =

p
ρ
∇ρ + e∇ρ =

(
p
ρ

+ e
)
∇ρ. (A.1)

Appendix B. Analysis of the mass transfer error

Our objective in this appendix is to prove that in axisymmetric geometry, on a regular mesh, and when corner
masses mNew

cp and node masses mNew
p are built by (30), the mass transfer satisfies

mNew
p − mR

p = mR
p × O(∆x) × O( ∆r

r ), (B.1)

KNew
p − 1

2 mR
p

(
uR

p

)2
= KNew

p × O(∆x) × O( ∆r
r ). (B.2)

To simplify notations, we omit below the index “New” since all quantities are constructed on the regularized mesh.
On a regular mesh, the different sub-volumes introduced in the remap and in (30) satisfy

Vcp

Vc
= 1

4 + O(∆x) × O( ∆r
r ),

V M
cp

Vc
= 1

4 + O(∆x) × O( ∆r
r ), (B.3)

where Vcp = Vp ∩ Vc denotes the intersection of the dual cell volume Vp used in the remapping step with the cell

volume Vc. If we introduce βcp = 2
3

VM
cp

Vc
+ 1

3
VW

cp

Vc
and Vmass

p =
∑

c∈C(p)

βcpVc, we deduce from (B.3) that we have

Vmass
p

Vp
= 1 + O(∆x) × O( ∆r

r ). (B.4)
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By construction of the node mass in the Lagrangian step, we have

mp =
∑

c∈C(p)

βcp

∫
Vc

ρ̃1(x) r dr dz,

where ρ̃1(x) is the density field reconstructed from cell-centered values {ρc} on the Lagrangian mesh. Since this field
ρ̃1(x) is a second-order reconstruction of the solution ρ, we have

mp =
∑

c∈C(p)

βcp

∫
Vc

ρ(x) r dr dz + Vmass
p × O(∆x2)

=
∑

c∈C(p)

βcp

∫
Vc

[
ρ(xp) + (∇ρ)p ·

(
x − xp

)] [(
r − rp

)
+ rp

]
dr dz

+ Vmass
p × O(∆x2)

=

∑
c∈C(p)

βcp Vc

 ρ(xp) +
∑

c∈C(p)

1
4

∫
Vc

(∇ρ)p ·
(

x − xp
)

rp dr dz︸                                           ︷︷                                           ︸
Term A

+
∑

c∈C(p)

(
βcp −

1
4

) ∫
Vc

(∇ρ)p ·
(

x − xp
)

rp dr dz︸                                                       ︷︷                                                       ︸
Term B

+
∑

c∈C(p)

βcp

∫
Vc

(∇ρ)p ·
(

x − xp
) (

r − rp
)

dr dz︸                                                       ︷︷                                                       ︸
Term C

+ Vmass
p × O(∆x2).

On a regular mesh, the node xp is close to the 2D geometric center of ∪c∈C(p)Vc, and hence term A is high-order. From
(B.3) we have that term B is of order Vmass

p × O(∆x2) × O( ∆r
r ). And last, term C writes∑

c∈C(p)

βcp

∫
Vc

(∇ρ)p ·
(

x − xp
) (

r − rp
)

dr dz =
∑

c∈C(p)

βcp

∫
Vc

(∇ρ)p ·
(

x − xp
) r−rp

r r dr dz

=

∑
c∈C(p)

βcp Vc

 × O(∆x) × O( ∆r
r )

= Vmass
p × O(∆x) × O( ∆r

r ).

Altogether, we get

mp =

∑
c∈C(p)

βcp Vc

 ρ(xp) + Vmass
p × O(∆x) × O( ∆r

r ). (B.5)

If ρ̃2(x) now denotes the density field reconstructed from node-centered values
{
ρp
}

with ρp defined by (16), we have

ρ̃2(x) = ρ(x)
(
1 + O(∆x) × O( ∆r

r )
)
. (B.6)

Then, a direct calculation yields

mR
p =

∫
Vp

ρ̃2(x) r dr dz

=

∫
Vp

ρ(x) r dr dz + Vp × O(∆x) × O( ∆r
r )
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= Vp ρ(xp) +

∫
Vp

(∇ρ)p ·
(

x − xp
)

rp dr dz

+

∫
Vp

(∇ρ)p ·
(

x − xp
) (

r − rp
)

dr dz + Vp × O(∆x) × O( ∆r
r ).

We thus get
mR

p = Vp ρ(xp) + Vp × O(∆x) × O( ∆r
r ). (B.7)

By combining (B.5), (B.7) and (B.4), we deduce (B.1)

mp − mR
p = Vp × O(∆x) × O( ∆r

r ).

The same demonstration is valid for (B.2). We write the difference in (B.2) under the same integral using the
kinetic energy field K̃ reconstructed from node values

{
Kp
}

—defined in (16)—on the Lagrangian mesh and the
Definition (17) of mR

p to get

Kp −
1
2 mR

p

(
uR

p

)2
=

∫
Vp

[
K̃(x) − 1

2 ρ̃2(x)
(
uR

p

)2
]

r dr dz = Kp × O(∆x) × O( ∆r
r ),

since K̃(x) and 1
2 ρ̃2(x)

(
uR

p

)2 are two approximations of order O(∆x) × O( ∆r
r ) of the exact kinetic energy, at least in

average over Vp. Note that the residue in O( ∆r
r ) is due to the presence of ρ̃2(x)—see Relation (B.6).

Appendix C. Dissipative terms

The usual scalar artificial viscosity [62, 63] is used here for all test cases. Introducing linear and quadratic terms
in compression, it writes

qc = Q
[{

up
}
,
{

xp
}
, ec
]

= −q1 ρc cc `c
min{0,dt Vc}

Vc
+ q2 ρc

(
`c

min{0,dt Vc}

Vc

)2
, (C.1)

where `c is a characteristic length and cc is the sound speed of cell c. The volume derivative is given by

dt Vc =
∑

p∈P(c)

∂Vc
∂xp
· up. (C.2)

Inertial anti-hourglassing forces [24] derive from a per-cell dissipative potential Qc

Qc =
∑

p∈P(c)

1
2 mcp

(
up − ūcp

)2
≥ 0. (C.3)

The linear velocity ūcp is then computed to minimize the potential Qc—corresponding to the per-cell kinetic energy
holding by modes associated with velocities up − ūcp, p ∈ P(c). Hence, the linear velocity is given by

xc =

∑
p∈P(c)

mcp xp

/ ∑
p∈P(c)

mcp , uc =

∑
p∈P(c)

mcp up

/ ∑
p∈P(c)

mcp ,

δ xcp = xp − xc , δucp = up − uc ,

Jc =
∑

p∈P(c)

mcp δ xcp ⊗ δ xcp , Σc =
∑

p∈P(c)

mcp δucp ⊗ δ xcp ·
(
Jc
)−1

,

ūcp = uc + Σc · δ xcp , fcp = F
[{

up
}
,
{

xp
}
, ec
]

= −cΦ̄
cc
`c

∂Qc
∂up

= −cΦ̄
cc
`c

mcp
(
up − ūcp

)
. (C.4)

Anti-hourglassing magnitude is controled by coefficient cΦ̄ which is set to cΦ̄ = 1.
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