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On the didactical function of some items from the history of calculus 
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The article draws attention to some individual results from the history of calculus and explains their 

appearance in a course on the didactics of analysis for future high school mathematics teachers. 

Specifically it is shown how these results may serve as a vehicle to address and reflect on three 

major didactical challenges: determining the meaning of a result, concept or topic to be taught, 

teaching mathematics as a coherent subject and understanding the source of misconceptions.  
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Why do we have to learn this historical stuff, although this is a course on didactics? This is a 

question frequently posed by future high school mathematics teachers taking my third semester 

course on the didactics of analysis at the university of Duisburg-Essen. In this course we consider 

and compare several different approaches to differentiation and integration, uncover some of the 

relationships of analysis with other mathematical subdomains and try to settle the role and meaning 

of analysis within the high school curriculum. Although the students have mastered a typical first 

semester university course on real analysis before taking my course on the didactics, I feel obliged 

to incorporate several mathematical digressions into this course. These digressions especially 

include some episodes from the history of calculus that weren’t discussed in the course on real 

analysis. I teach these episodes, however, not as an end in itself or as an introduction to the history 

of mathematics, but as a means in order to be able to seriously address the didactical issues at stake. 

In the following article I will mention some of those episodes and I will try to point out their 

relevance and value from a didactical point of view.   

Three didactical challenges – meaning, coherence and misconceptions 

Let us consider a typical first semester university course on real analysis. With such a course we 

may associate the following keywords: axioms for the real numbers, convergence of sequences and 

series, Heine-Borel, Bolzano-Weierstrass, differentiability, monotony, continuity, integrability, 

intermediate value theorem, mean value theorem, fundamental theorem of calculus and epsilon-

delta proofs. This course has a lot to offer to its students. It introduces them to the mathematical 

quest for rigor, generality and structural results. It shows that the knowledge about differentiation 

and integration learned at school can be embedded into a beautiful large-scale deductive system, 

and thereby exemplifies the architectural nature of mathematics.  

One might believe that this course would form a sufficient background regarding the mathematical 

content knowledge with respect to analysis for a future high school mathematics teacher. However, 

teaching analysis at school may serve quite different aims than the university course we considered. 

For instance one might want to teach analysis as a tool to formulate and understand some 

Newtonian physics or more generally speaking, on might want to teach analysis as an example 

showing the applicability of mathematics and its role for the other sciences. In any case, in contrast 

to the university course, analysis nowadays usually isn’t taught architecturally at school and 
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according to Freudenthal (1973) and his legacy it wouldn’t be a good idea to do so either. One 

should be acquainted with a subject, with local orderings of its results and concepts before one 

should work on or be confronted with a global ordering of that subject. From this situation, namely 

teaching analysis in a different way, a didactical challenge arises: Find the role and meaning of the 

concepts and results to be taught with respect to the overall approach chosen, e.g. genetic, 

applicational or problem-oriented. In the axiomatic approach the concepts and results receive their 

meaning from their place within the system. The mean value theorem for instance occupies a central 

position within the system. It can be seen as the linchpin of the theory. Continuity is treated as a 

central concept. In a different approach, however, the roles and meanings of the concepts and 

results might be completely different.  

A central concept developed and used by the German-speaking educational sciences in order to 

direct the discussion of school curricula is called `Allgemeinbildung´. The concept elaborates on the 

functions of school and thereby it serves as a framework and a benchmark for the development and 

analysis of curricula. Each school subject is then requested to determine its individual contribution 

to the Allgemeinbildung. In Heymann’s (1997, p.2) version of the concept, which is especially 

prominent in mathematics education, one major task of school is to teach the subjects in such a way 

as to endow cultural coherence, meaning not only the relationship between past, presence and 

future, which Heymann would rather have called `cultural continuity´, but also the interrelations of 

different subcultures. Analysis seems the perfect choice when trying to reveal the interrelations of 

mathematics and physics. However, even in mathematics itself there are subcultures or rather 

subdomains, whose relationship one should uncover. The didactical challenge, therefore, consists in 

discussing the unity of mathematics and asks the following questions: How is analysis related to 

geometry, how is it related to algebra? The first semester course on real analysis imagined hardly 

addresses this issue, since it rather focuses on presenting analysis as a self-contained subject. 

Teacher students are usually keen to learn about pupils’ misconceptions and the best recipes on how 

to treat them. It is important for them to notice, however, that the instruction itself may cause some 

of those misconceptions and that a different instruction, using for instance a different approach, may 

again cause quite different misconceptions. Thus, some misconceptions may be ‘typical’ in general, 

whereas some of them may only be ‘typical’ relative to a given instruction. It is an important 

didactical challenge to determine the misconceptions belonging to a certain instruction. Since every 

mathematics teacher student shares the experience of roughly the same first semester course on real 

analysis, it appears to be a good exercise to think about misconceptions that this course might favor.  

In the preceding passages I have formulated three didactical challenges (‘meaning’, ‘coherence’ and 

‘misconceptions’) and I have tried to indicate their importance for mathematics teacher students. 

These challenges form an integral part of my course on the didactics of analysis. My students, when 

confronted with these issues in the beginning of the course, have a hard time dealing with them. 

This is understandable, considering that their analytical background consists solely of a first 

semester course on real analysis. However, teaching a few episodes from the history of calculus, 

already helps them to handle the challenges in a much more appropriate and satisfying way. I will 

now, for each challenge separately, mention the results from the history of calculus that I teach and 

I will explain how they may contribute to the discussion on the respective challenge.  



 

 

Meaning – the integral integrates, the calculus calculates 

What is the meaning of the integral? What is the meaning of the calculus in general? What is the 

meaning of the fundamental theorem of calculus? A mathematics teacher needs to be able to answer 

these questions in a satisfying way, since ‘how’ he teaches a certain subject or course should of 

course highly depend on ‘why’ he regards the content as being worth to be taught in the first place. 

In my view, the best way to approach these questions is to look at the prehistory of the calculus. Let 

us consider Roberval’s determination of the area (see Whitman, 1943) under the cycloid (Figure 1) 

and his comparison of the length (see Pedersen, 1971) of an Archimedean spiral with that of a 

certain parabola (Figure 2).  

 

Figure 1: Roberval – The area of the cycloid 

 

Figure 2: Roberval – The length of the Archimedean spiral 

To solve the ‘area’ problem Roberval uses Cavalieri’s principle. To solve the ‘length’ problem he 

employs his kinematic approach to tangents (see Pedersen, 1969). Thus, the two solutions are based 

on two completely different methods. This is interesting, since in the world of calculus both, the 

length problem and the area problem, have become one and the same, in the sense that both ask you 

to compute some integral. Apparently the integral does what it promises. It integrates the two basic 

problems associated with a curve. Determine its length and its area. Of course the concept of the 

integral incorporates ‘volumes’, ‘centers of gravity’ and many other things as well. Wouldn’t this be 

one possible meaning of the integral that we might wish to convey to learners of mathematics? 

After all Poincaré once said (see Verhulst, 2012):  



 

 

Mathematics is the art of giving the same name to different things. (Poincaré, 1914, p.23) 

Let us now think about the meaning of calculus and its fundamental theorem. To this end, let us in 

addition to Roberval’s two results consider Archimedes’ quadrature of the parabola (see Dörrie, 

1965, p.239) and Huygens’ determination of the area (see Maanen van, 2003) between the cissoid 

of Diocles and its asymptote (Figure 3). After looking at these four problems and their solutions one 

might get the impression that before calculus every curve was treated individually, that at that time 

people were extremely well acquainted with the geometrical properties of these curves and that one 

had to come up with a new ingenious idea for every other curve. Today, on the other hand, it needs 

no ingenuity to solve these questions. With the calculus at hand, these problems have become more 

or less straightforward routine exercises. The routine goes like this: Formulate the problem in terms 

of an integral and apply the fundamental theorem, that is, look for an antiderivative and plug in the 

limits of integration. Finding an antiderivative might be a problem, but that is where the calculus 

with its powerful tools, integration by parts or by substitution, sets in. We could therefore view the 

calculus as a facilitation of a major part of mathematics. With calculus everyone has the chance to 

learn how to handle areas under curves. It seems to be exactly this meaning that Leibniz himself 

saw in his calculus:  

For what I love most in this calculus is that it gives us the same advantage over the ancients in 

the geometry of Archimedes as Viete and Descartes gave us in the geometry of Euclid and 

Apollonius; by relieving us of working with the imagination. (as cited in Blåsjö, 2016, p.17) 

 

Figure 3: Huygens – The area of Diocles’ cissoid 



 

 

Coherence – calculus seen as the algebra for transcendental curves 

Which of the following terms does not fit with the others?  

‘Similarity of triangles’, ‘Thales’ theorem’, ‘Pythagoras’ theorem’, ‘differential equation’.  

Of course the last term does not fit, since the first three terms belong to geometry, whereas the last 

term belongs to calculus. Huygens’ determination of the area of the cissoid, however, may cast 

some doubts about this decision. To the modern eye his problem might appear as a ‘calculus 

problem’. His method, on the other hand, is purely geometrical. Thales, Pythagoras and similarity 

(compare Figure 3), these are exactly the tools that Huygens employs. Calculus and geometry, this 

is the morale of Huygens’ result, are not as divorced from each other as the typical courses on these 

subjects might let one think. By looking for instance at Johann Bernoulli’s lectures on the calculus 

(Bernoulli, 1924) one realizes that differentials and their equations were just an additional tool 

incorporated into the old game of geometry. Thales, Pythagoras, similarity and a differential 

equation, in Bernoulli’s determination of the tangents to a cycloid (Figure 4) we have all this at one 

place.  

 

Figure 4: Bernoulli – The tangent of the cycloid 

We now turn to the relationship between calculus and algebra. A major challenge in teaching these 

two subjects coherently is to show where the algebra ends and where the calculus begins, that is, to 



 

 

reveal their line of demarcation. At least according to Leibniz the line runs precisely between the 

algebraic curves and the transcendental curves: 

As far as the differential calculus is concerned, I admit that there is much in common between it 

and the things which were explored by both you [Wallis] and Fermat and others, indeed already 

by Archimedes himself. Yet now the matter is perhaps carried much further, so that now those 

things can be accomplished which in the past seemed closed even to the greatest geometers as 

Huygens himself recognized. The matter is almost the same in the analytical calculus applied to 

conical curves or higher: Who does not consider Apollonius and other ancients to have had 

theorems which present material for the equations by which Descartes later preferred to 

designate curves. In the meantime the matter has been reduced to calculation by the method of 

Descartes, so that now conveniently and without trouble that can be done which formerly 

required much effort of contemplation and imagination. In the same way, by our differential 

calculus, transcendentals too, which Descartes himself excluded in the past, are subjected to 

analytical operations. (as cited in Blåsjö, 2016, pp.16-17) 

In this picture the relationship between geometry, algebra and calculus is beautifully simple. At first 

we have the Euclidean geometry with compass and ruler only. Then Descartes allows some other 

kinds of construction tools, which on the side of the equations correspond exactly with the algebraic 

curves. This world can be studied by means of algebra. Leibniz, finally, goes even further and 

includes modes of constructions that allow also transcendental curves to enter geometry. Algebra 

falls short of these curves and calculus is needed. A good way to experience this situation is by 

starting with Descartes’ double-root method for finding normals and tangents and by trying to get as 

far as possible with this method. This is performed in detail in (Range, 2011). One first of all shows 

that there is a unique line through each point of the graph which intersects the graph at that point 

with multiplicity at least 2. Then one generalizes this fact to rational functions and finally to 

algebraic functions. When it comes to transcendental functions, of course, one gets stuck. It is at 

that point, that one has to generalize one’s definition of tangent. It is at that point, where the ‘limits’ 

come into play.   

Misconceptions – tangents require limits, areas require rectangles 

Instead of Descartes’ double-root method we might also consider the notion of tangent that Euclid 

employed in his third book when dealing with the circle: 

 A straight line is said to touch a circle which, meeting the circle and being produced, does not 

cut the circle. (Euclid, 1956, p.1) 

How far can we get with this notion? If we take the notion literally, it already fails when confronted 

with a parabola, since through each point of a parabola there are two different lines that have only 

one point in common with the parabola, one of them being a line parallel to the axis of symmetry of 

the parabola. We can, however, rule out these parallels by requiring the tangents to stay on one side 

of the parabola. This leads to the following modification of Euclid’s definition: A line, which has a 

common point with a curve, is called tangent to that curve, if the curve lies on one side of the line 

and if it is the only line through the common point with that property. Huygens, for instance, 



 

 

worked with this notion, as one can see in his work on the cycloid (see Aarts, 2015, pp.3-4). For 

convex curves this notion works fine, but already in the case of such a simple non-convex curve as 

the cubical parabola (       ) not one single point would have a tangent according to this 

notion. However, for all but one point on the cubical parabola, the problem is easily resolved by 

only requiring the curve to stay locally on one side of the line. The point not covered by this 

extended notion is the inflection point. It seems that we have to give up on Euclid’s notion of 

tangents ultimately when it comes to inflection points. Arnold Kirsch, however, has shown in 

(Kirsch, 1960a) how to overcome this obstacle. After defining smoothness of convex functions by 

means of the modified version of Euclid’s notion of tangent, he goes on to define smoothness of 

functions in general essentially as follows: A function is smooth in some point, if the function lies 

locally between two smooth convex functions that both go through that point and that share a 

common tangent at that point. In (Kirsch, 1960b), Arnold Kirsch shows that this notion of 

smoothness is equivalent to our usual notion of differentiability. This is certainly an interesting 

result, since it clashes with the widespread belief that one needs the concept of limit in order to 

define differentiability and tangents in general.  

Another major misconception I come across among teacher students more often than one might 

imagine is the belief that one can determine areas associated with curves only by means of the 

Riemann integral or rather by exhausting the relevant area with rectangles. This conception seems 

to consolidate itself in the course of the received instruction, since children, which have not yet 

been ‘enlightened’ by a course on calculus, apparently still use all kinds of figures, triangles, 

trapezoids, squares or whatever suits, in order to cover the area in question. Against this background 

it seems important to elaborately discuss examples such as Archimedes’ quadrature of the parabola 

(see Dörrie, 1965, p.239), which uses triangles, or Huygens’ determination of the area of the cissoid 

(see Maanen van, 2003), which uses trapezoids and triangles instead of the notorious rectangles. 

Summary and discussion  

In this article I have shared my approach on how to address three major challenges (‘meaning’, 

‘coherence’ and ‘misconceptions’) in a course on the didactics of calculus for future high school 

mathematics teachers. In order to discuss the meaning of the calculus I provided the students with 

results from Roberval and Huygens, which show firstly, what can be done even without calculus 

and secondly, how much insight is needed for this. In this way the students may see and appreciate 

the calculus, just as Leibniz apparently does, as a ‘mechanization’ of geometry. It should be 

critically noted that the historical episodes chosen play within geometry and due to this we have left 

the meaning of calculus for other branches of mathematics and especially its role in Newtonian 

physics completely untouched. In order to show the coherence between calculus and geometry I 

offered some examples from Bernoulli’s lectures on the differential calculus. To this end it is also 

worthwhile to consider two different rather recent geometrical approaches (Apostol & 

Mnatsakanian, 2002 and Kaenders & Kirfel, 2017) to the integration of the basic functions, treated 

in high school. Both of them, the sweeping-tangent approach by Apostol and Mnatsakanian and the 

approach using geometrical transformations by Kaenders and Kirfel link calculus and geometry 

each in their own way. To show the coherence between calculus and algebra I focused on the 



 

 

difference between algebraic and transcendental curves, especially by maxing out Descartes’ 

double-root method. Finally, regarding the misconceptions, I tried to point out that some of them 

might be ‘instruction-generated’. For example, I showed that generalizing Euclid’s notion of 

tangent can lead to a ‘limit-free’ general notion of tangent, a fact that seems to clash with the 

calculus related beliefs of many students. By way of the three didactical challenges I tried to show 

that and to indicate how courses on the didactics of mathematics may benefit from a selective and 

targeted recourse to the history of mathematics.  
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