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The impact of a lower order term in a Dirichlet
problem with a singular nonlinearity
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Abstract. In this paper we study the existence and regularity of solutions to the following
Dirichlet problem 

−div(a(x)|∇u|p−2∇u) + u|u|r−1 =
f(x)

uθ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

proving that the lower order term u|u|r−1 has some regularizing effects on the solutions.
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1. Introduction

In this paper we study the existence and regularity of weak solutions to the fol-
lowing nonlinear problem

−div(a(x)|∇u|p−2∇u) + u|u|r−1 =
f(x)

uθ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1)

Here Ω is a bounded open subset of RN , N ≥ 2, f is a positive (that is f(x) ≥ 0 and
not zero a.e.) function in L1(Ω) and 0 < θ < 1. Moreover a : Ω → R is Lipschitz
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continuous and we assume that there exist 0 < α < β such that α ≤ a(x) ≤ β a.e.
in Ω.

Due to the singularity in the right hand side, a solution of this problem is a
function u in W 1,1

0 (Ω) such that for all ω ⊂⊂ Ω there exists cω > 0 such that
u ≥ cω > 0 in ω, and satisfying∫

Ω

a(x)|∇u|p−2∇u · ∇ϕ+

∫
Ω

|u|r−1uϕ =

∫
Ω

f ϕ

uγ
∀ϕ ∈ C1

0 (Ω) . (2)

This paper is motivated by the results of [6], where the authors studied the ex-
istence, regularity and uniqueness of weak solutions to the singular semilinear
problem 

−div(M(x)∇u) =
f(x)

uθ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

M was supposed to be an elliptic bounded matrix, 0 ≤ f ∈ Lm(Ω), m ≥ 1, or f a
Radon measure and θ > 0.

In [11] a nonlinear version of the above problem was studied, considering an
operator as the p−laplacian instead of −div(M(x)∇u) (see also Remark 4.2). In
[14] the author added a lower order term growing as |u|r−1u, and studied existence,
regularity and uniqueness of solutions to problem (1). Although the right hand
side is singular at u, the lower order term in the left hand side has a regularizing
effect. In the right hand side, f is assumed to belong to Lm(Ω) with m > 1 in the
case θ < 1. In this paper we will analyse the limit case f ∈ L1(Ω) showing that
the lower order term |u|r−1u has still a regularizing effect on the solutions.

We observe that the regularizing effect of the lower order term |u|r−1u is well
known for similar problems. It was pointed out in [7, 5, 8] for elliptic problems.
Later it was showed for elliptic problems with degenerate coercivity in [9, 2, 3].

In this paper we will show the following result.

Theorem 1.1. Let f ∈ L1(Ω) be a positive function (f(x) ≥ 0 and not zero a.e.).

Assume that r > (1−θ)(p−1)N
N−p , p ≥ 1+ 1−θ

r , 0 < θ < 1. Then there exists a function

u ∈ W 1,q
0 (Ω), with q = p

1+ 1−θ
r

which is a solution to problem ( 1) in the sense of

( 2). Moreover ur+θ belongs to L1(Ω).

In order to prove this result, we will work by approximation, “truncating” the
singular term 1

uθ
so that it becomes not singular at the origin. We will get some

a priori estimates on the solutions un of the approximating problems, which will
allow us to pass to the limit and find a solution to problem (1). In order to obtain
a solution in the sense described above, we will apply a suitable form of the Strong
Maximum Principle.

We observe that the regularity of the above theorem implies that q can be equal
to 1, that is, u can belong to the non-reflexive space W 1,1

0 (Ω). This will demand
the proof of the equi-integrability of |∇un|q.
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We will then analyse the regularity obtained and point out the regularizing
effects of the term |u|r−1u.

2. Approximating problems

In this section we prove the existence of a solution to the following approximating
problems: −div(a(x)|∇un|p−1∇un)+un|un|r−1 =

fn

(un + 1
n )θ

in Ω,

un = 0 on ∂Ω.

(3)

Due to the nature of the approximation, the sequence un will be increasing with n,
so that the (strict) positivity of the limit will be derived from the (strict) positivity
of any of the un (which in turn will follow by the standard maximum principle for
elliptic equations).

Let f be a nonnegative measurable function (not identically zero), let n ∈ N,
let fn(x) = min{f(x), n}.
Lemma 2.1. Problem (3) has a nonnegative solution un in W 1,p

0 (Ω) ∩ L∞(Ω).

Proof. Let n in N be fixed, let v be a function in L2(Ω), and define w = S(v) to
be the unique solution of−div(a(x)|∇w|p−2∇w) + |w|r−1w =

fn

(|v|+ 1
n )γ

in Ω,

w = 0 on ∂Ω.

(4)

The existence of a solution w ∈W 1,p
0 (Ω) follows from the classical results of [13].

Taking w as test function, we have, using the ellipticity of a,

α

∫
Ω

|∇w|p ≤
∫
Ω

a(x)|∇w|p−2∇w · ∇w =

∫
Ω

fn w

(|v|+ 1
n )γ
≤ nγ+1

∫
Ω

|w| .

By the Sobolev inequality on the left hand side and the Hölder inequality on the
right hand side one has∫

Ω

|w|p
∗

p/p
∗

≤ C nγ+1

∫
Ω

|w|p
∗

 1
p∗

,

for some constant C independent on v. This implies

||w||Lp∗ (Ω) ≤ C nγ+1 ,



4 L. Boccardo and G.Croce

so that the ball of Lp
∗
(Ω) of radius C nγ+1 is invariant for S. It is easy to prove,

using the Sobolev embedding, that S is both continuous and compact on Lp
∗
(Ω),

so that by Schauder’s fixed point theorem there exists un in W 1,p
0 (Ω) such that

un = S(un), i.e., un solves−div(a(x)|∇un|p−2∇un) + |un|r−1un =
fn

(|un|+ 1
n )θ

in Ω,

un = 0 on ∂Ω.

By using as a test funtion −u−n , one has un ≥ 0. Since the right hand side of (3)
belongs to L∞(Ω), classical regularity results (see [12] or Théorème 4.2 of [16] in
the linear case) imply that un belongs to L∞(Ω) (although its norm in L∞(Ω) may
depend on n).

Lemma 2.2. The sequence un is increasing with respect to n, un > 0 in Ω, and
for every ω ⊂⊂ Ω there exists cω > 0 (independent on n) such that

un(x) ≥ cω > 0 for every x in ω, for every n in N. (5)

Moreover there exists the pointwise limit u ≥ cω of the sequence un.

Proof. Since 0 ≤ fn ≤ fn+1 and γ > 0, one has (distributionally)

−div(a(x)|∇un|p−2∇un) + |un|r−1un =
fn

(un + 1
n )γ
≤ fn+1

(un + 1
n+1 )γ

,

so that

−div(a(x)(|∇(un)|p−2∇(un)− |∇(un+1)|p−2∇(un+1)))+

+|un|r−1un − |un+1|r−1un+1 ≤ fn+1

(un+1 + 1
n+1 )γ − (un + 1

n+1 )γ

(un + 1
n+1 )γ (un+1 + 1

n+1 )γ
.

We now choose (un − un+1)+ as test function. In the left hand side we use the
monotonicity of the p-laplacian operator as well as the monotonicity of the function
t→ |t|r−1t. For the right hand side we observe that[(

un+1 +
1

n+ 1

)γ
−
(
un +

1

n+ 1

)γ]
(un − un+1)+ ≤ 0 ;

recalling that fn+1 ≥ 0, we thus have

0 ≤ α
∫
Ω

|∇(un − un+1)+|p ≤ 0 .

Therefore (un − un+1)+ = 0 almost everywhere in Ω, which implies un ≤ un+1.



The impact of a lower order term in a Dirichlet problem with a singular nonlinearity 5

Since u1 belongs to L∞(Ω) (see Lemma 2.1), and there exists a constant (only
depending on Ω and N) such that

||u1||L∞(Ω) ≤ C ||f1||L∞(Ω) ≤ C ,

one has
−div(a(x)|∇u1|p−2∇u1) + |u1|r−1u1

=
f1

(u1 + 1)γ
≥ f1

(||u1||L∞(Ω) + 1)γ
≥ f1

(C + 1)γ
.

Since f1
(C+1)γ is not identically zero, the strong maximum principle implies that

u1 > 0 in Ω (see [17]; observe that u1 is differentiable by chapter 4 of [12]), and
that (5) holds for u1 (with cω only depending on ω, N , f1 and γ). Since un ≥ u1 for
every n in N, (5) holds for un (with the same constant cω which is then independent
on n).

3. A priori estimates

Let k > 0. We denote by Tk(x) the function max{−k,min{s, k}}.

Lemma 3.1. Let k > 0 be fixed. The sequence {Tk(un)}, where un is a solution
to ( 3), is bounded in W 1,p

0 (Ω).

Proof. It is sufficient to take Tk(un) as a test function in problems (3).

Theorem 3.2. Assume r > (1−θ)(p−1)N
N−p , p ≥ 1 + 1−θ

r . The sequence of solutions

{un} to ( 3) is bounded in in W 1,q
0 (Ω), with q = p

1+ 1−θ
r

. Moreover the sequence

{ur+θn } is bounded in L1(Ω).

Proof. We use (un + h)θ − hθ as a test function in (3): we get

α

∫
Ω

|∇un|p

(un + h)1−θ +

∫
Ω

urn[(un + h)θ − hθ] ≤
∫
Ω

f .

At the limit as h→ 0 we get

α

∫
Ω

|∇un|p

u1−θ
n

+

∫
Ω

ur+θn ≤
∫
Ω

f .

Then∫
Ω

|∇un|q =

∫
Ω

|∇un|q

u
(1−θ) qp
n

u
(1−θ) qp
n ≤

[ ∫
Ω

|∇un|p

u
(1−θ)
n

] p
q
[ ∫

Ω

u
(1−θ) qp

p
p−q

n

] p−q
p

≤
[

1

α

∫
Ω

f

] p
q
[ ∫

Ω

u
(1−θ) q

p−q
n

] p−q
p

.

(6)
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Observe that q is such that (1− θ) q
p−q = r. Thus

∫
Ω

|∇un|q ≤
[

1

α

∫
Ω

f

] p
q
[ ∫

Ω

f

] p−q
p

=

[
1

α

] p
q
∫
Ω

f .

Lemma 3.3. Let un be a solution to problem ( 3). Then∫
{k<un}

urn ≤
1

kθ

∫
{k<un}

f

and lim
|E|→0

∫
E

urn = 0 uniformly with respect to n.

Proof. Let k > 0 and ψi be a sequence of increasing, positive, C∞(Ω) functions,
such that

ψi(s)→
{

1, s ≥ k
0, 0 ≤ s < k .

Choosing ψi(un) in (3), we get∫
Ω

ur−1
n un ψi(un) ≤

∫
Ω

fn

(un + 1
n )θ

ψi(un) .

The limit on i gives ∫
{k<un}

urn ≤
∫
{k<un}

f

(un + 1
n )θ

.

Therefore we have ∫
{k<un}

urn ≤
1

(k + 1
n )θ

∫
{k<un}

f .

This implies that∫
E

urn ≤ kr |E|+
∫

E∩{un>k}

urn ≤ kr |E|+
1

kθ

∫
{un>k}

f .

By the above theorem, the sequence {un} is bounded in Lr+θ(Ω) and therefore in
L1(Ω). This implies that there exists a constant C > 0 such that

kµ({un ≥ k}) ≤
∫

{un≥k}

un ≤ C .
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Since f ∈ L1(Ω) for any given ε > 0, there exists kε such that

∫
{|un|>kε}

|f | ≤ ε.

Therefore ∫
E

urn ≤ krε |E|+
ε

kθε

and the statement of this lemma is thus proved.

Proposition 3.4. Let un be a solution to problem ( 3). Let q = p

1+ 1−θ
r

. Then

lim
|E|→0

∫
E

|∇un|q = 0 uniformly with respect to n.

Proof. From (6) and Lemma 3.3 we infer∫
{k<un}

|∇un|q =

∫
{k<un}

|∇un|q

u
(1−θ) qp
n

u
(1−θ) qp
n ≤

[ ∫
Ω

|∇un|p

u
(1−θ)
n

] p
q
[ ∫
{k<un}

u
(1−θ) qp

p
p−q

n

] p−q
p

≤
[

1

α

∫
Ω

f(x)

] p
q
[ ∫
{k<un}

u
(1−θ) q

p−q
n

] p−q
p

≤
[

1

α

∫
Ω

f(x)]
p
q

[ ∫
{k<un}

f(x)

] p−q
p

which gives the equiintegrability of |∇un|q, with the same technique as in the
previous result.

4. Proof of the main theorem

To prove Theorem 1.1 we are going to pass to the limit in problems (3). By Lemma
3.1 Tk(un) → Tk(u) weakly in W 1,p

0 (Ω), where u is the pointwise limit of un (see
Lemma 2.2). We will use the a.e. convergence of ∇un to ∇u, stated in theorem
2.3 of [11], that we recall:

Proposition 4.1. Let un be a sequence of functions such that Tk(un) → Tk(un)
weakly in W 1,p

0 (Ω) and un → u ≤ un a.e. in Ω. Assume that −div(a(x)|∇un|p−2∇un) ≥
0. Then Tk(un)→ Tk(u) in W 1,p

0 (Ω). In particular ∇un → ∇u a.e. in Ω.

We are now in position to prove Theorem 1.1.

Proof. It is easy to pass to the limit in the right hand side of problems (3): indeed
un → u a.e. and un ≤ u ∈ W 1,1

0 (Ω). Therefore one can apply the Lebesgue
theorem.

By the same argument, the second term of the left hand side converges to∫
Ω

urϕ (recall that by Theorem 3.2 the sequence {ur+θn } is bounded in L1(Ω)).

For the first term, we have that a(x)|∇un|p−2∇un converges almost everywhere
in Ω to a(x)|∇u|p−2∇u by Theorem 4.1. Furthermore, this term is dominated by



8 L. Boccardo and G.Croce

β|∇un|p−1. Observe that p− 1 ≤ q. The limit follows by Vitali’s theorem, which
can be applied thanks to Proposition 3.4.

Remark 4.2. We now compare the regularity found in [11] (that is the same
problem without lower order term) with q, as defined in Theorem 1.1.

The solution found in [11] belongs to W 1,p̃
0 (Ω), p̃ = N(p+θ−1)

N+θ−1 , for 2−θ+ θ−1
N ≤

p < N . One has p̃ ≤ q if r > N(p+θ−1)
N−p which is larger than the lower bound

(1−θ)(p−1)N
N−p , p ≥ 1 + 1−θ

r for r of Theorem 1.1.

Remark 4.3. We observe that the uniqueness of the solutions cannot be inferred
as in [14], since we are not dealing with finite energy solutions. We recall that even
in the linear case the distributional solutions are not unique, as J. Serrin showed
in [15].
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