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In this paper we study the existence and regularity of solutions to the following Dirichlet problem

proving that the lower order term u|u| r-1 has some regularizing effects on the solutions.

Introduction

In this paper we study the existence and regularity of weak solutions to the following nonlinear problem

       -div(a(x)|∇u| p-2 ∇u) + u|u| r-1 = f (x) u θ in Ω, u > 0 in Ω, u = 0 on ∂Ω. (1) 
Here Ω is a bounded open subset of R N , N ≥ 2, f is a positive (that is f (x) ≥ 0 and not zero a.e.) function in L 1 (Ω) and 0 < θ < 1. Moreover a : Ω → R is Lipschitz continuous and we assume that there exist 0 < α < β such that α ≤ a(x) ≤ β a.e. in Ω.

Due to the singularity in the right hand side, a solution of this problem is a function u in W 1,1 0 (Ω) such that for all ω ⊂⊂ Ω there exists c ω > 0 such that u ≥ c ω > 0 in ω, and satisfying Ω a(x)|∇u| p-2 ∇u • ∇ϕ

+ Ω |u| r-1 uϕ = Ω f ϕ u γ ∀ϕ ∈ C 1 0 (Ω) . ( 2 
)
This paper is motivated by the results of [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF], where the authors studied the existence, regularity and uniqueness of weak solutions to the singular semilinear problem

       -div(M (x)∇u) = f (x) u θ in Ω, u > 0 in Ω, u = 0 on ∂Ω.
M was supposed to be an elliptic bounded matrix, 0 ≤ f ∈ L m (Ω), m ≥ 1, or f a Radon measure and θ > 0.

In [START_REF] Cave | Nonlinear elliptic equation with singular nonlinearities[END_REF] a nonlinear version of the above problem was studied, considering an operator as the p-laplacian instead of -div(M (x)∇u) (see also Remark 4.2). In [START_REF] Oliva | Regularizing effect of absorption terms in singular problems[END_REF] the author added a lower order term growing as |u| r-1 u, and studied existence, regularity and uniqueness of solutions to problem (1). Although the right hand side is singular at u, the lower order term in the left hand side has a regularizing effect. In the right hand side, f is assumed to belong to L m (Ω) with m > 1 in the case θ < 1. In this paper we will analyse the limit case f ∈ L 1 (Ω) showing that the lower order term |u| r-1 u has still a regularizing effect on the solutions.

We observe that the regularizing effect of the lower order term |u| r-1 u is well known for similar problems. It was pointed out in [START_REF] Brezis | Semi-linear second-order elliptic equations in L 1[END_REF][START_REF] Boccardo | Nonlinear elliptic equations in R N without growth restrictions on the data[END_REF][START_REF] Cirmi | Regularity of the solutions to nonlinear elliptic equations with a lowerorder term[END_REF] for elliptic problems. Later it was showed for elliptic problems with degenerate coercivity in [START_REF] Croce | The regularizing effects of some lower order terms in an elliptic equation with degenerate coercivity[END_REF]2,[START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 (Ω) solutions[END_REF].

In this paper we will show the following result. Theorem 1.1. Let f ∈ L 1 (Ω) be a positive function (f (x) ≥ 0 and not zero a.e.). Assume that r > (1-θ)(p-1)N N -p , p ≥ 1 + 1-θ r , 0 < θ < 1. Then there exists a function u ∈ W 1,q 0 (Ω), with q = p 1+ 1-θ r which is a solution to problem ( 1) in the sense of ( 2). Moreover u r+θ belongs to L 1 (Ω).

In order to prove this result, we will work by approximation, "truncating" the singular term 1 u θ so that it becomes not singular at the origin. We will get some a priori estimates on the solutions u n of the approximating problems, which will allow us to pass to the limit and find a solution to problem (1). In order to obtain a solution in the sense described above, we will apply a suitable form of the Strong Maximum Principle.

We observe that the regularity of the above theorem implies that q can be equal to 1, that is, u can belong to the non-reflexive space W 1,1 0 (Ω). This will demand the proof of the equi-integrability of |∇u n | q .

We will then analyse the regularity obtained and point out the regularizing effects of the term |u| r-1 u.

Approximating problems

In this section we prove the existence of a solution to the following approximating problems:

   -div(a(x)|∇u n | p-1 ∇u n )+u n |u n | r-1 = f n (u n + 1 n ) θ in Ω, u n = 0 on ∂Ω. (3) 
Due to the nature of the approximation, the sequence u n will be increasing with n, so that the (strict) positivity of the limit will be derived from the (strict) positivity of any of the u n (which in turn will follow by the standard maximum principle for elliptic equations).

Let f be a nonnegative measurable function (not identically zero), let n ∈ N,

let f n (x) = min{f (x), n}. Lemma 2.1. Problem (3) has a nonnegative solution u n in W 1,p 0 (Ω) ∩ L ∞ (Ω).
Proof. Let n in N be fixed, let v be a function in L 2 (Ω), and define w = S(v) to be the unique solution of

   -div(a(x)|∇w| p-2 ∇w) + |w| r-1 w = f n (|v| + 1 n ) γ in Ω, w = 0 on ∂Ω. (4) 
The existence of a solution w ∈ W 1,p 0 (Ω) follows from the classical results of [START_REF] Leray | Quelques résultats de Višik sur les problèmes elliptiques semilinéaires par les méthodes de Minty et Browder[END_REF]. Taking w as test function, we have, using the ellipticity of a, α

Ω |∇w| p ≤ Ω a(x)|∇w| p-2 ∇w • ∇w = Ω f n w (|v| + 1 n ) γ ≤ n γ+1 Ω |w| .
By the Sobolev inequality on the left hand side and the Hölder inequality on the right hand side one has

  Ω |w| p *   p/p * ≤ C n γ+1   Ω |w| p *   1 p * ,
for some constant C independent on v. This implies

||w|| L p * (Ω) ≤ C n γ+1 ,
so that the ball of L p * (Ω) of radius C n γ+1 is invariant for S. It is easy to prove, using the Sobolev embedding, that S is both continuous and compact on L p * (Ω), so that by Schauder's fixed point theorem there exists u n in W 1,p 0 (Ω) such that u n = S(u n ), i.e., u n solves

   -div(a(x)|∇u n | p-2 ∇u n ) + |u n | r-1 u n = f n (|u n | + 1 n ) θ in Ω, u n = 0 on ∂Ω.
By using as a test funtion -u - n , one has u n ≥ 0. Since the right hand side of (3) belongs to L ∞ (Ω), classical regularity results (see [START_REF] Ladyzhhenskaya | tseva, Linear and Quasilinear Elliptic Equations[END_REF] or Théorème 4.2 of [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF] in the linear case) imply that u n belongs to L ∞ (Ω) (although its norm in L ∞ (Ω) may depend on n).

Lemma 2.2. The sequence u n is increasing with respect to n, u n > 0 in Ω, and for every ω ⊂⊂ Ω there exists c ω > 0 (independent on n) such that

u n (x) ≥ c ω > 0
for every x in ω, for every n in N.

(
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Moreover there exists the pointwise limit u ≥ c ω of the sequence u n .

Proof. Since 0 ≤ f n ≤ f n+1 and γ > 0, one has (distributionally)

-div(a(x)|∇u n | p-2 ∇u n ) + |u n | r-1 u n = f n (u n + 1 n ) γ ≤ f n+1 (u n + 1 n+1 ) γ , so that -div(a(x)(|∇(u n )| p-2 ∇(u n ) -|∇(u n+1 )| p-2 ∇(u n+1 )))+ +|u n | r-1 u n -|u n+1 | r-1 u n+1 ≤ f n+1 (u n+1 + 1 n+1 ) γ -(u n + 1 n+1 ) γ (u n + 1 n+1 ) γ (u n+1 + 1 n+1 ) γ .
We now choose (u n -u n+1 ) + as test function. In the left hand side we use the monotonicity of the p-laplacian operator as well as the monotonicity of the function t → |t| r-1 t. For the right hand side we observe that

u n+1 + 1 n + 1 γ -u n + 1 n + 1 γ (u n -u n+1 ) + ≤ 0 ; recalling that f n+1 ≥ 0, we thus have 0 ≤ α Ω |∇(u n -u n+1 ) + | p ≤ 0 .
Therefore (u n -u n+1 ) + = 0 almost everywhere in Ω, which implies u n ≤ u n+1 .

Since u 1 belongs to L ∞ (Ω) (see Lemma 2.1), and there exists a constant (only depending on Ω and N ) such that

||u 1 || L ∞ (Ω) ≤ C ||f 1 || L ∞ (Ω) ≤ C , one has -div(a(x)|∇u 1 | p-2 ∇u 1 ) + |u 1 | r-1 u 1 = f 1 (u 1 + 1) γ ≥ f 1 (||u 1 || L ∞ (Ω) + 1) γ ≥ f 1 (C + 1) γ .
Since f1 (C+1) γ is not identically zero, the strong maximum principle implies that u 1 > 0 in Ω (see [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]; observe that u 1 is differentiable by chapter 4 of [START_REF] Ladyzhhenskaya | tseva, Linear and Quasilinear Elliptic Equations[END_REF]), and that (5) holds for u 1 (with c ω only depending on ω, N , f 1 and γ). Since u n ≥ u 1 for every n in N, (5) holds for u n (with the same constant c ω which is then independent on n).

A priori estimates

Let k > 0. We denote by T k (x) the function max{-k, min{s, k}}.

Lemma 3.1. Let k > 0 be fixed. The sequence {T k (u n )}, where u n is a solution to ( 3), is bounded in W 1,p 0 (Ω). Proof. It is sufficient to take T k (u n ) as a test function in problems (3). Theorem 3.2. Assume r > (1-θ)(p-1)N N -p , p ≥ 1 + 1-θ r . The sequence of solutions {u n } to ( 3) is bounded in in W 1,q 0 (Ω), with q = p 1+ 1-θ r . Moreover the sequence {u r+θ n } is bounded in L 1 (Ω). Proof. We use (u n + h) θ -h θ as a test function in (3): we get α Ω |∇u n | p (u n + h) 1-θ + Ω u r n [(u n + h) θ -h θ ] ≤ Ω f .
At the limit as h → 0 we get

α Ω |∇u n | p u 1-θ n + Ω u r+θ n ≤ Ω f .
Then

Ω |∇u n | q = Ω |∇u n | q u (1-θ) q p n u (1-θ) q p n ≤ Ω |∇u n | p u (1-θ) n p q Ω u (1-θ) q p p p-q n p-q p ≤ 1 α Ω f p q Ω u (1-θ) q p-q n p-q p . (6) 
Observe that q is such that (1 -θ) q p-q = r. Thus Proof. Let k > 0 and ψ i be a sequence of increasing, positive, C ∞ (Ω) functions, such that

Ω |∇u n | q ≤ 1 α Ω f p q Ω f p-q p = 1 α p q Ω f .
ψ i (s) → 1, s ≥ k 0, 0 ≤ s < k . Choosing ψ i (u n ) in (3), we get Ω u r-1 n u n ψ i (u n ) ≤ Ω f n (u n + 1 n ) θ ψ i (u n ) .
The limit on i gives

{k<un} u r n ≤ {k<un} f (u n + 1 n ) θ .
Therefore we have

{k<un} u r n ≤ 1 (k + 1 n ) θ {k<un} f .
This implies that

E u r n ≤ k r |E| + E∩{un>k} u r n ≤ k r |E| + 1 k θ {un>k} f .
By the above theorem, the sequence {u n } is bounded in L r+θ (Ω) and therefore in L 1 (Ω). This implies that there exists a constant C > 0 such that

kµ({u n ≥ k}) ≤ {un≥k} u n ≤ C .
Since f ∈ L 1 (Ω) for any given ε > 0, there exists k ε such that

{|un|>kε} |f | ≤ ε. Therefore E u r n ≤ k r ε |E| + ε k θ ε
and the statement of this lemma is thus proved. |∇u n | q = 0 uniformly with respect to n.

Proof. From ( 6) and Lemma 3.3 we infer

{k<un} |∇u n | q = {k<un} |∇u n | q u (1-θ) q p n u (1-θ) q p n ≤ Ω |∇u n | p u (1-θ) n p q {k<un} u (1-θ) q p p p-q n p-q p ≤ 1 α Ω f (x) p q {k<un} u (1-θ) q p-q n p-q p ≤ 1 α Ω f (x)] p q {k<un} f (x) p-q p
which gives the equiintegrability of |∇u n | q , with the same technique as in the previous result.

Proof of the main theorem

To prove Theorem 1.1 we are going to pass to the limit in problems [START_REF] Boccardo | Nonlinear degenerate elliptic problems with W 1,1 0 (Ω) solutions[END_REF]. By Lemma 3.1 T k (u n ) → T k (u) weakly in W 1,p 0 (Ω), where u is the pointwise limit of u n (see Lemma 2.2). We will use the a.e. convergence of ∇u n to ∇u, stated in theorem 2.3 of [START_REF] Cave | Nonlinear elliptic equation with singular nonlinearities[END_REF], that we recall: Proposition 4.1. Let u n be a sequence of functions such that T k (u n ) → T k (u n ) weakly in W 1,p 0 (Ω) and u n → u ≤ u n a.e. in Ω. Assume that -div(a(x)|∇u n | p-2 ∇u n ) ≥ 0. Then T k (u n ) → T k (u) in W 1,p 0 (Ω). In particular ∇u n → ∇u a.e. in Ω. We are now in position to prove Theorem 1.1.

Proof. It is easy to pass to the limit in the right hand side of problems (3): indeed u n → u a.e. and u n ≤ u ∈ W 1,1 0 (Ω). Therefore one can apply the Lebesgue theorem.

By the same argument, the second term of the left hand side converges to Ω u r ϕ (recall that by Theorem 3.2 the sequence {u r+θ n } is bounded in L 1 (Ω)). For the first term, we have that a(x)|∇u n | p-2 ∇u n converges almost everywhere in Ω to a(x)|∇u| p-2 ∇u by Theorem 4.1. Furthermore, this term is dominated by

Lemma 3 . 3 .

 33 Let u n be a solution to problem ( 3). Then {k<un} uniformly with respect to n.
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 34 Let u n be a solution to problem ( 3). Let q =
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β|∇u n | p-1 . Observe that p -1 ≤ q. The limit follows by Vitali's theorem, which can be applied thanks to Proposition 3.4. Remark 4.2. We now compare the regularity found in [START_REF] Cave | Nonlinear elliptic equation with singular nonlinearities[END_REF] (that is the same problem without lower order term) with q, as defined in Theorem 1.1.

The solution found in [START_REF] Cave | Nonlinear elliptic equation with singular nonlinearities[END_REF] belongs to W 1, p 0 (Ω), p = N (p+θ-1)

N -p which is larger than the lower bound

, p ≥ 1 + 1-θ r for r of Theorem 1.1. Remark 4.3. We observe that the uniqueness of the solutions cannot be inferred as in [START_REF] Oliva | Regularizing effect of absorption terms in singular problems[END_REF], since we are not dealing with finite energy solutions. We recall that even in the linear case the distributional solutions are not unique, as J. Serrin showed in [START_REF] Serrin | Pathological solutions of elliptic differential equations[END_REF].