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THE IMPACT OF A LOWER ORDER TERM
IN A DIRICHLET PROBLEM

WITH A SINGULAR NONLINEARITY

LUCIO BOCCARDO AND GISELLA CROCE

Abstract. In this paper we study the existence and regularity of
solutions to the following Dirichlet problem






−div(a(x)|∇u|p−1∇u) + u|u|r−1 =
f(x)
uθ

in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

proving that the lower order term u|u|r−1 has some regularizing
effects on the solutions.

1. Introduction

In this paper we study the existence and regularity of weak solutions
to the following nonlinear problem

(1.1)






−div(a(x)|∇u|p−1∇u) + u|u|r−1 =
f(x)

uθ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

Here Ω is a bounded open subset of RN , N ≥ 2, f is a positive (that
is f(x) ≥ 0 and not zero a.e.) function in L1(Ω) and 0 < θ < 1. Due
to the singularity in the right hand side, a solution of this problem is
a function u in W 1,1

0 (Ω) such that for all ω ⊂⊂ Ω there exists cω > 0
such that u ≥ cω > 0 in ω, and satisfying

(1.2)

∫

Ω

a(x)|∇u|p−2∇u ∙ ∇ϕ +

∫

Ω

|u|r−1uϕ =

∫

Ω

f ϕ

uγ
∀ϕ ∈ C1

0 (Ω) .

This paper is motivated by the results of [6], where the authors stud-
ied the existence, regularity and uniqueness of weak solutions to the
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singular semilinear problem





−div(M(x)∇u) =
f(x)

uθ
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

M was supposed to be an elliptic bounded matrix, 0 ≤ f ∈ Lm(Ω),
m ≥ 1, or f a Radon measure and θ > 0.

In [11] a nonlinear version of the above problem was studied, con-
sidering an operator as the p−laplacian instead of −div(M(x)∇u) (see
also Remark 4.2). In [13] the author added a lower order term growing
as |u|r−1u, and studied existence, regularity and uniqueness of solutions
to problem (1.1). Although the right hand side is singular at u, the
lower order term in the left hand side has a regularizing effect. In the
right hand side, f is assumed to belong to Lm(Ω) with m > 1 in the
case θ < 1. In this paper we will analyse the limit case f ∈ L1(Ω)
showing that the lower order term |u|r−1u has still a regularizing effect
on the solutions.

We observe that the regularizing effect of the lower order term |u|r−1u
is well known for similar problems. It was pointed out in [7, 5, 8]
for elliptic problems. Later it was showed for elliptic problems with
degenerate coercivity in [9, 2, 3].

In this paper we will show the following result.

Theorem 1.1. Let f ∈ L1(Ω) be a positive function (f(x) ≥ 0 and

not zero a.e.). Assume that r > (1−θ)(p−1)N
N−p

, p ≥ 1 + 1−θ
r

, 0 < θ < 1.

Then there exists a function u ∈ W 1,q
0 (Ω), with q = p

1+ 1−θ
r

which is a

solution to problem (1.1) in the sense of (1.2). Moreover ur+θ belongs
to L1(Ω).

In order to prove this result, we will work by approximation, “trun-
cating” the singular term 1

uθ so that it becomes not singular at the
origin. We will get some a priori estimates on the solutions un of the
approximating problems, which will allow us to pass to the limit and
find a solution to problem (1.1). In order to obtain a solution in the
sense described above, we will apply a suitable form of the Strong
Maximum Principle.

We observe that the regularity of the above theorem implies that
q can be equal to 1, that is, u can belong to the non-reflexive space
W 1,1

0 (Ω). This will demand the proof of the equi-integrability of |∇un|q.
We will then analyse the regularity obtained and point out the reg-

ularizing effects of the term |u|r−1u.
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2. Approximating problems

In this section we prove the existence of a solution to the following
approximating problems:

(2.1)






−div(a(x)|∇un|p−1∇un)+un|un|r−1 =
fn

(un + 1
n
)θ

in Ω,

un = 0 on ∂Ω.

Due to the nature of the approximation, the sequence un will be in-
creasing with n, so that the (strict) positivity of the limit will be derived
from the (strict) positivity of any of the un (which in turn will follow
by the standard maximum principle for elliptic equations).

Let f be a nonnegative measurable function (not identically zero),
let n ∈ N, let fn(x) = min{f(x), n}.

Lemma 2.1. Problem (2.1) has a nonnegative solution un in W 1,p
0 (Ω)∩

L∞(Ω).

Proof. Let n in N be fixed, let v be a function in L2(Ω), and define
w = S(v) to be the unique solution of

(2.2)






−div(a(x)|∇w|p−2∇w) + |w|r−1w =
fn

(|v| + 1
n
)γ

in Ω,

w = 0 on ∂Ω.

The existence of a solution w ∈ W 1,p
0 (Ω) follows from the classical

results of [12].
Taking w as test function, we have, using the ellipticity of a,

α

∫

Ω

|∇w|p ≤
∫

Ω

a(x)|∇w|p−2∇w∙∇w =

∫

Ω

fn w

(|v| + 1
n
)γ

≤ nγ+1

∫

Ω

|w| .

By the Sobolev inequality on the left hand side and the Hölder inequal-
ity on the right hand side one has

[∫

Ω

|w|p
∗

]p/p∗

≤ C nγ+1

(∫

Ω

|w|p
∗

) 1
p∗

,

for some constant C independent on v. This implies

‖w‖
Lp∗ (Ω)

≤ C nγ+1 ,

so that the ball of Lp∗(Ω) of radius C nγ+1 is invariant for S. It is easy
to prove, using the Sobolev embedding, that S is both continuous and
compact on Lp∗(Ω), so that by Schauder’s fixed point theorem there
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exists un in W 1,p
0 (Ω) such that un = S(un), i.e., un solves






−div(a(x)|∇un|p−2∇un) + |un|r−1un =
fn

(|un| + 1
n
)θ

in Ω,

un = 0 on ∂Ω.

By using as a test funtion −u−
n , one has un ≥ 0. Since the right hand

side of (2.1) belongs to L∞(Ω), the result of [14], Théorème 4.2, imply
that un belongs to L∞(Ω) (although its norm in L∞(Ω) may depend
on n). �

Lemma 2.2. The sequence un is increasing with respect to n, un > 0
in Ω, and for every ω ⊂⊂ Ω there exists cω > 0 (independent on n)
such that

(2.3) un(x) ≥ cω > 0 for every x in ω, for every n in N.

Moreover there exists the pointwise limit u ≥ cω of the sequence un.

Proof. Since 0 ≤ fn ≤ fn+1 and γ > 0, one has (distributionally)

−div(a(x)|∇un|
p−2∇un) + |un|

r−1un =
fn

(un + 1
n
)γ

≤
fn+1

(un + 1
n+1

)γ
,

so that

−div(a(x)(|∇(un)|p−2∇(un) − |∇(un+1)|
p−2∇(un+1)))+

+|un|
r−1un − |un+1|

r−1un+1 ≤ fn+1

(un+1 + 1
n+1

)γ − (un + 1
n+1

)γ

(un + 1
n+1

)γ (un+1 + 1
n+1

)γ
.

We now choose (un − un+1)
+ as test function. In the left hand side we

use the monotonicity of the p-laplacian operator as well as the mono-
tonicity of the function t → |t|r−1t. For the right hand side we observe
that

[(

un+1 +
1

n + 1

)γ

−

(

un +
1

n + 1

)γ]

(un − un+1)
+ ≤ 0 ;

recalling that fn+1 ≥ 0, we thus have

0 ≤ α

∫

Ω

|∇(un − un+1)
+|p ≤ 0 .

Therefore (un − un+1)
+ = 0 almost everywhere in Ω, which implies

un ≤ un+1.
Since u1 belongs to L∞(Ω) (see Lemma 2.1), and there exists a con-

stant (only depending on Ω and N) such that

‖u1‖L∞(Ω)
≤ C ‖f1‖L∞(Ω)

≤ C ,
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one has
−div(a(x)|∇u1|

p−2∇u1) + |u1|
r−1u1

=
f1

(u1 + 1)γ
≥

f1

(‖u1‖L∞(Ω)
+ 1)γ

≥
f1

(C + 1)γ
.

Since f1

(C+1)γ is not identically zero, the strong maximum principle im-

plies that u1 > 0 in Ω (see [15]), and that (2.3) holds for u1 (with cω

only depending on ω, N , f1 and γ). Since un ≥ u1 for every n in N,
(2.3) holds for un (with the same constant cω which is then independent
on n). �

3. A priori estimates

Let k > 0. We denote by Tk(x) the function max{−k, min{s, k}}.

Lemma 3.1. Let k > 0 be fixed. The sequence {Tk(un)}, where un is
a solution to (2.1), is bounded in W 1,p

0 (Ω).

Proof. It is sufficient to take Tk(un) as a test function in problems
(2.1). �

Theorem 3.2. Assume r > (1−θ)(p−1)N
N−p

, p ≥ 1 + 1−θ
r

. The sequence

of solutions {un} to (2.1) is bounded in in W 1,q
0 (Ω), with q = p

1+ 1−θ
r

.

Moreover the sequence {ur+θ
n } is bounded in L1(Ω).

Proof. We use (un + h)θ − hθ as a test function in (2.1): we get

α

∫

Ω

|∇un|p

(un + h)1−θ
+

∫

Ω

ur
n[(un + h)θ − hθ] ≤

∫

Ω

f .

At the limit as h → 0 we get

α

∫

Ω

|∇un|p

u1−θ
n

+

∫

Ω

ur+θ
n ≤

∫

Ω

f .

Then
(3.1)
∫

Ω

|∇un|
q =

∫

Ω

|∇un|q

u
(1−θ) q

p
n

u
(1−θ) q

p
n ≤

[ ∫

Ω

|∇un|p

u
(1−θ)
n

] p
q
[ ∫

Ω

u
(1−θ) q

p
p

p−q
n

] p−q
p

≤

[
1

α

∫

Ω

f

] p
q
[ ∫

Ω

u
(1−θ) q

p−q
n

] p−q
p

.

Observe that q is such that (1 − θ) q
p−q

= r. Thus

∫

Ω

|∇un|
q ≤

[
1

α

∫

Ω

f

] p
q
[ ∫

Ω

f

] p−q
p

=

[
1

α

] p
q
∫

Ω

f .
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�

Lemma 3.3. Let un be a solution to problem (2.1). Then
∫

{k<un}
ur

n ≤
1

kθ

∫

{k<un}
f

and lim
|E|→0

∫

E

ur
n = 0 uniformly with respect to n.

Proof. Let k > 0 and ψi be a sequence of increasing, positive, uniformly
bounded C∞(Ω) functions, such that

ψi(s) →






1, s ≥ k

0, 0 ≤ s < k .

Choosing ψi(un) in (2.1), we get
∫

Ω

ur−1
n un ψi(un) ≤

∫

Ω

fn

(un + 1
n
)θ

ψi(un) .

The limit on i gives
∫

{k<un}
ur

n ≤
∫

{k<un}

f

(un + 1
n
)θ

.

Therefore we have
∫

{k<un}
ur

n ≤
1

(k + 1
n
)θ

∫

{k<un}
f .

This implies that
∫

E

ur
n ≤ kr |E| +

∫

E∩{un>k}

ur
n ≤ kr |E| +

1

kθ

∫

{un>k}

f .

Since f ∈ L1(Ω) for any given ε > 0, there exists kε such that

∫

{|un|>kε}

|f | ≤

ε . Therefore ∫

E

ur
n ≤ kr

ε |E| +
ε

kθ

and the statement of this lemma is thus proved. �
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Proposition 3.4. Let un be a solution to problem (2.1). Let q = p

1+ 1−θ
r

.

Then lim
|E|→0

∫

E

|∇un|
q = 0 uniformly with respect to n.

Proof. From (3.1) and Lemma 3.3 we infer
∫

{k<un}
|∇un|

q =

∫

{k<un}

|∇un|q

u
(1−θ) q

p
n

u
(1−θ) q

p
n ≤

[ ∫

Ω

|∇un|p

u
(1−θ)
n

] p
q
[ ∫

{k<un}
u

(1−θ) q
p

p
p−q

n

] p−q
p

≤

[
1

α

∫

Ω

f(x)

] p
q
[ ∫

{k<un}
u

(1−θ) q
p−q

n

] p−q
p

≤

[
1

α

∫

Ω

f(x)]
p
q

[ ∫

{k<un}
f(x)

] p−q
p

which gives the equiintegrability of |∇un|q, with the same technique as
in the previous result. �

4. Proof of the main theorem

To prove Theorem 1.1 we are going to pass to the limit in problems
(2.1). By Lemma 3.1 Tk(un) → Tk(u) weakly in W 1,p

0 (Ω), where u is the
pointwise limit of un (see Lemma 2.2). We will use the a.e. convergence
of ∇un to ∇u, stated in theorem 2.3 of [11], that we recall:

Proposition 4.1. Let un be a sequence of functions such that Tk(un) →
Tk(un) weakly in W 1,p

0 (Ω) and un → u ≤ un a.e. in Ω. Assume that
−div(a(x)|∇un|p−2∇un) ≥ 0. Then Tk(un) → Tk(u) in W 1,p

0 (Ω). In
particular ∇un → ∇u a.e. in Ω.

We are now in position to prove Theorem 1.1.
Proof. It is easy to pass to the limit in the right hand side of problems
(2.1): indeed un → u a.e. and un ≤ u ∈ W 1,1

0 (Ω). Therefore one can
apply the Lebesgue theorem.

By the same argument, the second term of the left hand side con-

verges to

∫

Ω

urϕ.

For the first term, we have that a(x)|∇un|p−2∇un converges almost
everywhere in Ω to a(x)|∇u|p−2∇u by Theorem 4.1. Furthermore, this
term is majorised by β|∇un|p−1. Observe that p − 1 ≤ q. The limit
follows by Vitali’s theorem, which can be applied thanks to Proposition
3.4. �

Remark 4.2. We now compare the regularity found in [11] (that is the
same problem without lower order term) with q, as defined in Theorem

1.1. The solution found in [11] belongs to W 1,p̃
0 (Ω), p̃ = N(p+θ−1)

N+θ−1
, for

2 − θ + θ−1
N

≤ p < N . One has p̃ ≤ q if r > N(p+θ−1)
N−p

which is larger

than the lower bound (1−θ)(p−1)N
N−p

, p ≥ 1 + 1−θ
r

for r of Theorem 1.1.
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0 (Ω)-solutions in some borderline cases of
Calderon-Zygmund theory. J. Differential Equations 253 (2012), 2698-2714.
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