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RESSAYRE’S PAIRS IN THE KÄHLER SETTING

PAUL-EMILE PARADAN

Abstract. The aim of this article is to explain how to parameterize the equations
of the facets of the Kirwan polyhedron using the notion of Ressayre’s pairs.
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1. Introduction

Let M be a complex manifold, not necessarily compact, and let KC be a connected
reductive complex Lie group acting holomorphically on M . We think of KC as being
the complexification of a connected compact real Lie group K. We will denote by J

the complex structure on the tangent space TM .
Let Ω be a K-invariant Kähler form on M . It means that Ω is a closed 2-form

and that the bilinear map (v, w) 7→ Ω(v, Jw) defines a Riemannian metric on M . We
suppose that the K-action on (M,Ω) is Hamiltonian, so there exists a moment map
Φ : M → k∗ satisfying the relations

(1) ι(XM)Ω = d〈Φ, X〉, ∀X ∈ k.

Here XM : m 7→ X ·m := d
dt
|t=0e

tX ·m is the vector field generated by X ∈ k.
We assume that the moment map Φ is proper. Let T ⊂ K be a maximal torus with

Lie algebra t, and let t∗≥0 ⊂ t∗ be a closed Weyl chamber. The Convexity Theorem
[1, 11, 18, 22] tells us that the set

∆(Φ) := Φ(M) ∩ t∗≥0

is a convex, locally polyhedral set, called the Kirwan polyhedron. The purpose of
the present paper is to explain how to parameterize the equations of the facets of the
Kirwan polyhedron using the notion of Ressayre’s pairs [27].

Date: December 20, 2019.
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2 PAUL-EMILE PARADAN

We start by introducing the notion of admissible elements. The group Hom(U(1), T )
admits a natural identification with the lattice ∧ := 1

2π
ker(exp : t → T ). A vector

γ ∈ t is called rational if it belongs to the Q-vector space tQ generated by ∧.
The stabilizer subgroup of m ∈ M is denoted by Km := {k ∈ K; km = m}, and its

Lie algebra by km.

Definition 1.1. Let us define dimK(X ) := minm∈X dim(km) for any subset X ⊂ M .
A non-zero element γ ∈ t is called admissible if γ is rational, and if dimK(M

γ) −
dimK(M) ∈ {0, 1}.

Remark 1.2. dimK(M) = 0 when the infinitesimal generic stabilizer of the K-action
is reduced to {0}. In this case, a rational element γ is admissible if dimK(M

γ)=1.

For anym ∈ M , the infinitesimal action of kC onM defines aKm-equivariant complex
linear map

ρm : kC −→ TmM(2)

X 7−→ X ·m.

Definition 1.3. a) Consider the linear action ρ : G → GLC(E) of a compact Lie
group on a complex vector space E. For any (γ, a) ∈ g × R, we define the
vector subspace Eγ=a = {v ∈ E, dρ(γ)v = iav}. Thus, for any γ ∈ g, we have
the decomposition E = Eγ>0 ⊕ Eγ=0 ⊕ Eγ<0 where Eγ>0 =

∑
a>0E

γ=a, and
Eγ<0 =

∑
a<0E

γ=a.
b) The real number Trγ(E

γ>0) is defined as the sum
∑

a>0 a dim(Eγ=a).
c) Let ϕ : E → F be a linear equivariant morphism between two G-module. For

any γ ∈ g, the linear map ϕ specializes to a linear map Eγ>0 −→ F γ>0.

A choice of positive roots R+, induces a decomposition kC = n ⊕ tC ⊕ n where n =∑
α∈R+(kC)α. We denote by B ⊂ KC the Borel subgroup with Lie algebra b := tC ⊕ n.
Consider (x, γ) ∈ M × t such as x ∈ Mγ . The Kx-equivariant morphism (2) induces

a complex linear map

(3) ργx : nγ>0 −→ (TxM)γ>0.

Definition 1.4. Let γ ∈ t be a non-zero element, and let C ⊂ Mγ be a connected
component. The data (γ, C) is called an infinitesimal B-Ressayre’s pair if ∃x ∈ C,
such as ργx is an isomorphism. If furthermore we have dimK(C)− dimK(M) ∈ {0, 1},
and λ is rational, we call (γ, C) a regular infinitesimal B-Ressayre’s pair.

Remark 1.5. Since we work with rational vectors, for any q ∈ Q>0, we will identify
the pairs (γ, C) and (qγ, C).
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The first result of this article is the following theorem.

Theorem 1.6. Let (M,Ω) be a Kähler K-manifold, equipped with a proper moment
map Φ. For ξ ∈ t∗≥0, the following statements are equivalent:

(1) ξ ∈ ∆(Φ).
(2) For any regular infinitesimal B-Ressayre’s pair (γ, C), we have 〈ξ, γ〉 ≥ 〈Φ(C), γ〉.
(3) For any regular infinitesimal B-Ressayre’s pair (γ, C) such as Φ(C) ∩ t∗≥0 6= ∅,

we have 〈ξ, γ〉 ≥ 〈Φ(C), γ〉.

Vergne and Walter obtained the same kind of result when M is a vector space [29].
Let us now introduce a more restrictive notion, that of B-Ressayre’s pair. Let γ ∈ t

be a non-zero element, and let C ⊂ Mγ be a connected component. We consider the
Bialynicki-Birula’s complex submanifold

(4) C− := {m ∈ M, lim
t→∞

exp(−itγ)m ∈ C}.

We see that for any x ∈ C, (TxM)γ≤0 = TxC
−. Consider now the parabolic subgroup

Pγ ⊂ KC defined by

(5) Pγ = {g ∈ KC, lim
t→∞

exp(−itγ)g exp(itγ) exists}.

Note that C− is invariant under the action of Pγ , hence we can consider the complex
manifold B ×B∩Pγ

C− and the holomorphic map

qγ : B ×B∩Pγ
C− → M

that sends [b, x] to bx. We immediately see that for any x ∈ C, the tangent map Tqγ |x
is an isomorphism if and only if ργx is an isomorphism.

Definition 1.7. Let γ ∈ t be a non-zero element, and let C ⊂ Mγ be a connected
component. The data (γ, C) is called a B-Ressayre’s pair if the following conditions
hold

• The holomorphic map qγ : B ×B∩Pγ
C− → M is dominant1.

• There exists a B ∩ Pγ-invariant, open and dense subset U ⊂ C−, intersecting
C, so that qγ defines a diffeomorphism B ×B∩Pγ

U ≃ BU .

If furthermore we have dimK(C)−dimK(M) ∈ {0, 1}, and λ is rational, we call (γ, C)
a regular B-Ressayre’s pair.

The second result of this article is the following theorem

Theorem 1.8. Let (M,Ω) be a Kähler K-manifold, equipped with a proper moment
map Φ. For ξ ∈ t∗≥0, the following statements are equivalent:

(1) ξ ∈ ∆(Φ).
(2) For any regular B-Ressayre’s pair (γ, C), we have 〈ξ, γ〉 ≥ 〈Φ(C), γ〉.
(3) For any regular B-Ressayre’s pair (γ, C) such as Φ(C) ∩ t∗≥0 6= ∅, we have

〈ξ, γ〉 ≥ 〈Φ(C), γ〉.

In §4.5, we will explain under which circumstances the notions of infinitesimal B-
Ressayre’s pair and B-Ressayre’s pair coincide. Let us denote by t∗>0 the interior of
the Weyl chamber t∗≥0.

1The image of qγ contains a dense open subset.
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Theorem 1.9. Let (γ, C) be a infinitesimal B-Ressayre’s pair of a complex KC-variety
M . Let (Ω,Φ) be a Kähler-Hamiltonian structure on M such as Φ(C)∩ t∗>0 6= ∅. Then
(γ, C) is a B-Ressayre’s pair.

Acknowledgements. This article, which is strongly influenced by the work of Nicolas
Ressayre, takes up several of his ideas in the differential setting. I wish to thank
Michèle Vergne for our discussions on this subject and for pointing me out an error
in a preliminary work where I was trying to develop the notion of Ressayre’s pairs in
symplectic geometry. Thanks to her, I understood that the Kählerian framework was
the right one to carry out this project.

Notations. Throughout the paper, by Kähler Hamiltonian K-manifold we mean a
complex manifold M equipped with an action of KC by holomorphic transformations
and a K-invariant Kähler 2-form Ω: we suppose furthermore that the K-action on
(M,Ω) is Hamiltonian.

2. Ressayre’s pairs

2.1. The Bialynicki-Birula’s complex submanifolds. Let M be a Kähler Hamil-
tonian K-manifold.

Let us consider an element γ ∈ k and a connected component C of the complex
submanifold Mγ := {m ∈ M, γ ·m = 0}. As in the introduction, we define the subset
C− := {m ∈ M, limt→∞ exp(−itγ)m ∈ C} and the projection pC : C− → C that sends
m ∈ C− to limt→∞ exp(−itγ)m ∈ C.

Proposition 2.1. C− is a locally closed complex submanifold of M , and the projection
pC : C− → C is an holomorphic map.

Proof. Let T ⊂ K be the torus equal to the closure of exp(Rγ), and let TC ⊂ KC be
its complexification. Let m ∈ C− and let x = pC(m) ∈ C ⊂ MTC . A theorem of Koras
[20, 25] tells us that TC-action can be linearized near x. In other words, there exists
an holomorphic TC-equivariant diffeomorphism ϕ : U → V where U is a TC-invariant
open neighborhood of 0 in TxM and V is a TC-invariant open neighborhood of x in M .

By definition exp(−itγ)m tends to x, when t goes to infinity. Then exp(−itγ)m ∈ V
when t is large enough. But since V is TC-invariant, we have then m ∈ V. Throught ϕ,
we see that C−∩V is diffeomorphic to (TxM)γ≤0∩U , and that the map pC : C−∩V →
C ∩ V corresponds to the projection (TxM)γ≤0 ∩ U → (TxM)γ=0 ∩ U . It should be
noted here that (TxM)γ≤0 ∩ U = (TxM)γ=0 ∩ U ⊕ (TxM)γ<0. �

When M is a projective variety, Bialynicki-Birula shows that C− is a subvariety
Zariski dense in its closure [7]. We will not need this result here.

We finish this section with a remark that we will need later. Consider an holomorphic
line bundle L → C− that is equivariant relatively to the action of the torus T. We
consider its restriction L|C . If θ ∈ H0(C−,L)T is an equivariant holomorphic section,
we can consider its restriction θ|C .

Lemma 2.2. Let θ ∈ H0(C−,L)T.

(1) If the T-action on L|C is not trivial, then θ|C = 0.
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(2) If the T-action on L|C is trivial, then

{m ∈ C−; θ(m) 6= 0} = p−1
C ({x ∈ C; θ|C(x) 6= 0}) .

Proof. The first point is obvious to see.
Let m ∈ C− and x = pC(m). In the previous proposition, we have explained that a

T-invariant neighborhood W of m in C− admits an holomorphic diffeomorphism with

W̃ := U0 × (TxM)γ<0 where U0 is an open neighborhood of 0 in (TxM)γ=0. In this

model, the projection pC is (v0, v<0) ∈ W̃ 7→ v0.
For any T-equivariant holomorphic line bundle L on C−, we have a T-equivariant

isomorphism between L|W and U0 × (TxM)γ<0 × Lx. Then, a section θ ∈ H0(C−,L)T

defines a T-equivariant map θ|W : U0×(TxM)γ<0 → Lx. If the T-action on Lx is trivial,
we see that θ|W(vo, v<0) = θ|W(vo, 0), because t 7→ θ|W(vo, e

−itγv<0) is a constant map.
�

2.2. KC-Ressayre’s pairs. Let N be a Kähler Hamiltonian K-manifold, and let γ ∈ t

be a non-zero element. When x ∈ Nγ , the Kx-equivariant morphism (2) induces a
complex linear map

(6) (kC)
γ>0 −→ (TxN)γ>0.

Definition 2.3. Let CN ⊂ Nγ be a connected component. The data (γ, CN) is called
an infinitesimal KC-Ressayre’s pair if ∃x ∈ CN , such as (6) is an isomorphism. If
furthermore we have dimK(C)− dimK(N) ∈ {0, 1}, and λ is rational, we call (γ, CN)
a regular infinitesimal KC-Ressayre’s pair.

Consider the Bialynicki-Birula’s complex submanifold C−
N defined by (4). We denote

by p : C−
N → CN the projection. As C−

N is invariant under the action of the parabolic
subgroup Pγ , we may consider the holomorphic map

πγ : KC ×Pγ
C−

N → N

that sends [g, x] to gx. Let (C−
N)reg be the open subset formed by the point n ∈ C−

N

such as the tangent map Tπγ |[e,n] is an isomorphism. We immediatly see that x ∈
CN ∩ (C−

N)reg if and only if (6) is an isomorphism.

Lemma 2.4. Let (γ, CN) be an infinitesimal KC-Ressayre’s pair. Then (C−
N)reg is a

dense, Pγ-invariant, open subset of C−
N such as (C−

N)reg = p−1(CN ∩ (C−
N)reg).

Proof. The tangent map Tπγ |[e,n] is an isomorphism if
{
kC · n+TnC

−
N = TnM

kC · n ∩TnC
−
N ≃ pγ,

where pγ = (kC)
γ≤0 is the Lie algebra of Pγ.

As (γ, CN) is an infinitesimal KC-Ressayre’s pair, the previous relations are satisfied
on some points of CN . Then, the rank r of the holomorphic bundle E := TM |C−

N
/TC−

N

is equal to the dimension of kC/pγ. We consider now the Pγ-holomorphic line bundle
L → C−

N defined by L := hom (∧r(kC/pγ),∧
rE). We have a canonical Pγ-equivariant

section θ : C−
N → L defined by

θ(n) : X1 ∧ · · · ∧Xr −→ X1 · n ∧ · · · ∧Xr · n.
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We notice that (C−
N)reg = {n; θ(n) 6= 0} and that the torus T = exp(Rγ) acts

trivially on L|CN
. Thanks to Lemma 2.2, we can conclude that n ∈ (C−

N)reg if and only
if p(n) ∈ (C−

N)reg. �

Let us now introduce a more restrictive notion, that of KC-Ressayre’s pair.

Definition 2.5. The data (γ, CN) is called a KC-Ressayre’s pair if the following
conditions hold

• The holomorphic map πγ is dominant.
• There exists a Pγ-invariant, open and dense subset U ⊂ C−

N , intersecting CN ,
so that πγ defines a diffeomorphism KC ×Pγ

U ≃ KCU .

If furthermore we have dimK(C)−dimK(N) ∈ {0, 1}, and λ is rational, we call (γ, CN)
a regular KC-Ressayre’s pair.

2.3. KC-Ressayre’s pairs versus B-Ressayre’s pairs. Let M be a Kähler Hamil-
tonian K-manifold. We associate to it the complex manifold N := M ×KC/B. To a
connected component C of Mγ we associate the connected component

CN := C ×Kγ
C/K

γ
C ∩B

of Nγ .

Proposition 2.6. (1) (γ, C) is a B-Ressayre’s pair on M if and only if (γ, CN) is
a KC-Ressayre’s pair on N .

(2) (γ, C) is an infinitesimal B-Ressayre’s pair on M if and only if (γ, CN) is an
infinitesimal KC-Ressayre’s pair on N .

Proof. Let us prove the first point. The Bialynicki-Birula’s complex manifold C−
N is

equal to C− × Pγ/Pγ ∩B. We have to compare the maps qγ : B ×B∩Pγ
C− → M , and

πγ : KC ×Pγ
C−

N → N . Consider the canonical isomorphism CN = C− × Pγ/Pγ ∩ B ≃
Pγ ×Pγ∩B C−. More generaly, for any Pγ-invariant open subset UN ⊂ C−

N we have an
isomorphism UN ≃ Pγ ×Pγ∩B U where U is the open Pγ ∩ B-invariant subset of C−

defined by the relation U := {x ∈ C−; (x, [e]) ∈ UN}. Note that UN intersects CN if
and only if U intersects C.

Now, we notice that qγ defines a diffeomorphism B ×B∩Pγ
U ≃ BU if and only if

πγ defines a diffeomorphism KC ×Pγ
UN ≃ KCUN . It can be seen easily through the

commutative diagram

KC ×Pγ
UN

πγ

��

∼
// KC ×B (B ×B∩Pγ

U)

qγ

��

N
∼

// KC ×B M.

The second point is immediate since for any x ∈ C, the tangent map Tqγ |x is an
isomorphism if and only if Tπγ |(x,[e]) is an isomorphism

�
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2.4. Ressayre’s pairs and semi-stable points I. Let N be a Kähler Hamiltonian
K-manifold with proper moment map ΦN . In this section we suppose that Φ−1

N (0) 6= ∅,
and we consider the subset of analytical semi-stable points:

N ss = {n ∈ N ;KC n ∩ Φ−1
N (0) 6= ∅}.

In §3.1, we will explain the well-known fact that2 N ss is a dense open subset of N .
Let (γ, x) ∈ k × N , such as the limit xγ := limt→∞ e−itγx exists in N . Recall that

t ≥ 0 7→ e−itγx corresponds to the gradient flow of the Morse-Bott fonction −〈Φ, γ〉.
The result of the next proposition is classical in the projective case (see [27], Lemma

2).

Proposition 2.7. Let (γ, x) ∈ k × N , such as the limit xγ := limt→∞ e−itγx exists.
Then, the following hold

(1) If x ∈ N ss, then 〈ΦN (xγ), γ〉 ≤ 0.
(2) If x ∈ N ss and 〈ΦN (xγ), γ〉 = 0, then xγ ∈ N ss.

Proof. Let Pγ ⊂ KC be the parabolic subgroup associated to γ (see (5)). Since
KC = KPγ, the fact that x ∈ N ss means that Pγx ∩ Φ−1

N (0) 6= ∅: in other words
minn∈Pγx ‖ΦN(n)‖ = 0.

Consider now the function t ≥ 0 7→ 〈ΦN (e
−itγn), γ〉 attached to n ∈ Pγx. Since

d
dt
〈ΦN(e

−itγn), γ〉 = −‖γM‖2(e−itγn) ≤ 0, we have

(7) 〈ΦN (n), γ〉 ≥ 〈ΦN (e
−itγn), γ〉, ∀t ≥ 0.

Let CN ⊂ N be the connected component of Nγ containing xγ : it is a complex
submanifold of N , stable by the Kγ

C-action. Moreover, the function n 7→ 〈ΦN (n), γ〉 is
constant when restricted to CN , equal to 〈ΦN(xγ), γ〉. Let’s take p ∈ Pγ and n = px.
Then, the limit limt→∞ e−itγn is equal to kxγ ∈ CN where k = limt→∞ e−itγp eitγ ∈ Kγ

C.
If we take the limit in (7) as t → ∞, we obtain 〈ΦN (n), γ〉 ≥ 〈ΦN (xγ), γ〉 for any n ∈
Pγx. Since minn∈Pγx ‖ΦN(n)‖ = 0, we can conclude that 0 ≥ minn∈Pγx〈ΦN (n), γ〉 ≥
〈ΦN(xγ), γ〉.

The second point is proved in the Appendix. �

3. The Kirwan-Ness stratification

3.1. The square of the moment map. Let us now choose a rational invariant inner
product on k∗. By rational we mean that for a maximal torus T ⊂ K with Lie algebra
t, the inner product takes integral values on the lattice ∧ := 1

2π
ker(exp : t → T ). Let

us denote by ∧∗ ⊂ t∗ the dual lattice : ∧∗ = hom(∧,Z). We associate to the lattices ∧
and ∧∗ the Q-vector space tQ and t∗Q generated by them: the vectors belonging to tQ
and t∗Q are designed as rational.

The invariant scalar product on k induces an identification k∗ ≃ t, ξ 7→ ξ̃ such as
tQ ≃ t∗Q. To simplify our notation, we will not distinguish between ξ and ξ̃: for

example we write Mλ for the submanifold fixed by the subgroup generated by λ̃, and
we denote by Kγ ⊂ K the subgroup that leaves λ̃ invariant.

2The set Nss is denoted by N0 in §3.1.
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Let M be a Kähler Hamiltonian K-manifold with proper moment map Φ : M → k∗.
Let

f :=
1

2
(Φ,Φ) : M −→ R

denote the norm-square of the moment map. Notice that f is a proper function on M .

Definition 3.1. The Kirwan vector field on M is defined by the relation

κΦ(m) = Φ(m) ·m, ∀m ∈ M.

We consider the gradient grad(f) of the function f relatively to the Riemannian
metric Ω(−, J−). We recall the following well-known facts [30].

Proposition 3.2. (1) The set of critical points of the function f is crit(f) = {κΦ =
0}.

(2) The gradient of f is grad(f) = J(κΦ).
(3) We have the decomposition Φ(crit(f)) =

⋃
λ∈BΦ

Kλ where the set BΦ ⊂ t∗≥0 is
discrete. BΦ is called the set of types of M .

(4) We have the decomposition crit(f) =
⋃

λ∈BΦ
Zλ where Zλ = crit(φ) ∩ Φ−1(Kλ)

is equal to K(Mλ ∩ Φ−1(λ)).

Let ϕt : M → M be the flow of −grad(f); since f is proper, ϕt exists for all times
t ∈ [0,∞[, and according to a result of Duistermaat [21] we know that any trajectory
of ϕt has a limit when t → ∞. For any m ∈ M , let us denote m∞ := limt→∞ ϕt(m).

The construction of the Kirwan-Ness stratification goes as follows. For each λ ∈ BΦ,
let Mλ denote the set of points of M flowing to Zλ,

Mλ := {m ∈ M ;m∞ ∈ Zλ}.

From its very definition, the set Mλ is contained in {m ∈ M,φ(m) ≥ 1
2
‖λ‖2}.

The Kirwan-Ness stratification is the decomposition [17], [24]:

M =
⋃

λ∈BΦ

Mλ.

When 0 belongs to the image of Φ, the strata M0 corresponds to the open subset of
analytical semi-stable points: M0 = {m ∈ M ;KC m ∩ Φ−1(0) 6= ∅}.

Let us now explain the geometry of Mλ for a non-zero type λ. Let Cλ be the union of
the connected components ofMλ intersecting Φ−1(λ). Then Cλ is a Kähler Hamiltonian
Kλ-manifold with proper moment map Φλ := Φ|Cλ

− λ.
The Bialynicki-Birula’s complex submanifold

C−
λ := {m ∈ M, lim

t→∞
exp(−itλ) ·m ∈ Cλ}

corresponds to the set of points of M flowing to Cλ under the flow ϕλ,t of −grad〈Φ, λ〉,
as t → ∞. The limit of the flow defines a projection C−

λ → Cλ. Notice that C−
λ is

invariant under the action of the parabolic subgroup Pλ.
Consider now the Kirwan-Ness stratification of the Kähler Hamiltonian Kλ-manifold

Cλ. Let Cλ,0 be the open strata of Cλ corresponding to the 0-type:

Cλ,0 = {x ∈ Cλ; Kλ
C x ∩ Φ−1

λ (0) 6= ∅}.

Let C−
λ,0 denotes the inverse image of Cλ,0 in C−

λ .
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Theorem 3.3 (Kirwan [17]). Let M be a Kähler Hamiltonian K-manifold with proper
moment map Φ : M → k∗. For each non zero type λ, Mλ is a KC-invariant complex
submanifold, and KC ×Pλ

C−
λ,0 → Mλ, [g, z] 7→ g · z is an isomorphism of complex

KC-manifolds.

Remark 3.4. Kirwan gave a proof when M is a compact Kähler Hamiltonian K-
manifold. When M is non-compact but the moment map is proper, a proof is given in
[13] (see also [30]).

Theorem 3.3 gives a useful corollary.

Corollary 3.5. For any m ∈ M , we have ‖Φ(m∞)‖ = infx∈KCm ‖Φ(x)‖.

3.2. The minimal type. Let ∆(Φ) ⊂ t∗≥0 be the Kirwan polyhedron, and let BΦ be
the set of types of our Kähler Hamiltonian K-manifold M with proper moment map
Φ. Let λs be the orthogonal projection of 0 on the closed convex polyhedron ∆(Φ).

We start with the following basic facts.

Lemma 3.6. a) λs is the unique element of BΦ with minimal norm.
b) The critical subset Zλs is equal to Φ−1(Kλs).
c) The submanifold Cλs is the connected component of Mλs containing Φ−1(λs).
d) The strata Mλs is connected.

Proof. Any element m ∈ Φ−1(Kλs) is a critical point of f , as
1
2
‖λs‖2 = f(m) = minM f .

It proves that λs is an element of BΦ, that Φ
−1(λs) ⊂ M λ̃s and that Zλs = Φ−1(Kλs).

Moreover since BΦ ⊂ ∆(Φ), λs is the unique element of BΦ with minimal norm.
Since Φ−1(λs) is connected, there exists a unique connected component Cλs of

Mλs containing Φ−1(λs). Since Φ−1(Kλs) is connected, the strata Mλs := {m ∈
M ; limt→∞ ϕt(m) ∈ Φ−1(Kλs)} is also connected. �

It should be noted that λs is not rational in general, as shown in the following
example.

Example 3.7. Consider a regular element ξ ∈ t∗≥0, and the Kähler Hamiltonian K-

manifold M := K(2ξ)×Kξ. Here the minimal type is λs = ξ. So the minimal type of
M is not rational if ξ /∈ t∗Q.

We recall the following fundamental fact.

Proposition 3.8. The strata Mλ has a non-empty interior if and only if λ = λs.

Corollary 3.9. The strata Mλs is an open, dense and KC-invariant subset of M .

Proof. For any type λ, the strata Mλ is contained in the closed subset M(‖λ‖) := {m ∈
M,φ(m) ≥ 1

2
‖λ‖2}. If we take r = inf{‖λ‖, λ ∈ BΦ − {λs}} > ‖λs‖, we see that the

union ∪λ6=λsMλ is contained in M(r). Hence the non-empty open subset M −M(r) is
contained in the strata Mλs : thus Mλs is an open subset of M .

Consider a strata Mλ with a non-empty interior. This means that a connected
component Mo

λ of the submanifold Mλ is an open subset of M . By definition, Mo
λ

intersects Φ−1(λ): so let’s take xo ∈ Φ−1(λ) ∩ Mo
λ. We have f ≥ 1

2
‖λ‖2 on Mo

λ and
f(xo) =

1
2
‖λ‖2: hence xo is a local minimum of the function f .

We finish the proof of Proposition 3.8 with the
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Lemma 3.10. Let xo ∈ M be a local minimum of f . Then f(xo) ∈ Kλs.

Proof. For any K-invariant open subset U ⊂ M , we consider ∆(U) = Φ(U)∩ t∗≥0 which
is a subset of the Kirwan polyhedron ∆(Φ). Up to a change by the K-action, we can
assume that µ := Φ(xo) belongs to the Weyl chamber. Let us denote by Bµ(r) ⊂ t∗

the open ball centered at µ and of radius r > 0.
The local convexity theorem of Sjamaar [26] (Theorems 6.5 and 6.7) tells us that for

any K-invariant open subset U containing xo, there exists r > 0 such as

∆(Φ) ∩Bµ(r) = ∆(U) ∩Bµ(r).

If xo ∈ M is a local minimum of f , there exists a K-invariant open neighborhood Uo

of xo so that ‖ξ‖ ≥ ‖µ‖ for any ξ ∈ ∆(Uo). Thus for ro > 0 small enough, ∆(Φ)∩Bµ(ro)
is contained in {ξ ∈ t∗, ‖ξ‖ ≥ ‖µ‖}. Since ∆(Φ) ∩ Bµ(ro) is convex, it implies that

(8) (ξ, µ) ≥ ‖µ‖2, ∀ξ ∈ ∆(Φ) ∩Bµ(ro).

Using now the convexity of ∆(Φ), we see that (8) forces ∆(Φ) to be contained in the
half-space (ξ, µ) ≥ ‖µ‖2: hence µ is the smallest element of ∆(Φ). �

�

Let us finish this section by considering the particular situation where the strata M0

is empty. In other words, we suppose that the minimal type λs is non-zero. Let Cλs

be the connected component of Mλs containing Φ−1(λs). We consider the Bialynicki-
Birula’s complex submanifold C−

λs
and the holomorphic map πλs : KC ×Pλs

C−
λs

→ M .
Theorem 3.3 gives us the following important fact.

Proposition 3.11. When λs 6= 0,

• The map πλs is dominant.
• There exists a Pλs-invariant open and dense subset U ⊂ C−

λs
, intersecting Cλs,

so that πλs defines a diffeomorphism KC ×Pλs
U ≃ KCU .

In other words, the data (λs, Cλs) is a KC-Ressayre’s pairs on M .

3.3. Construction of B-Ressayre’s pairs. Let (M,Ω,Φ) be a Kähler Hamiltonian
K-manifold with proper moment map. We consider a regular element a ∈ t∗>0 such as
a /∈ ∆(Φ). Let a′ be the orthogonal projection of a on ∆(Φ).

We consider the Kähler Hamiltonian K-manifold M × Ka. Here Ka denotes the
coadjoint orbit Ka equipped with the opposite symplectic structure: the complex
structure is defined through the identifications Ka ≃ K/T ≃ KC/B, where B is the
Borel subgroup with Lie algebra b = tC ⊕ n. The moment map Φa : M ×Ka → k∗ is
defined by the relation Φa(m, ξ) = Φ(m)− ξ.

We start with a basic result.

Lemma 3.12. The function ‖Φa‖ : M×Ka → R reaches its minimum on K(Φ−1(a′)×
{a}).

So the minimal type of M ×Ka is

γa := a′ − a 6= 0.
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The corresponding critical set is Φ−1
a (Kγa) = K(Φ−1(a′) × {a}). Let Cγa be the

connected component of (M ×Ka)γa containing Φ−1
a (γa) : we have Cγa = Ca ×Kγaa,

where Ca is the connected component of Mγa containing Φ−1(a′).
The Bialynicki-Birula’s complex submanifold C−

γa
⊂ M ×KC/B is then

C−
γa

≃ C−
a × Pγa/B ∩ Pγa .

We know from the previous section that (γa, Cγa) is a KC-Ressayre’s pair on N ≃
M ×KC/B. Thanks to Proposition 2.6, we can translate this property on the manifold
M .

Proposition 3.13. Let a ∈ t∗≥0 be a regular element such as a /∈ ∆(Φ). Then (γa, Ca)
is a B-Ressayre’s pair of the complex KC-manifold M . If furthermore, γa is rational
and dimK(Ca)− dimK(M) ∈ {0, 1}, then (γa, Ca) is a regular B-Ressayre’s pair

4. Proofs of the main theorems

This section is devoted to the proofs of Theorems 1.6 and 1.8. Let ∆(Φ) := Φ(M)∩
t∗≥0 be the Kirwan polyhedron of a Kähler Hamiltonian K-manifold (M,Ω) with proper
moment map Φ.

We define the following subsets of the Weyl chamber.

• ∆inf-RP is the set of points ξ ∈ t∗≥0 satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φ(C), γ〉,
for any infinitesimal B-Ressayre’s pair (γ, C).

• ∆
reg

inf-RP is the set of points ξ ∈ t∗≥0 satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φ(C), γ〉,
for any regular infinitesimal B-Ressayre’s pair (γ, C).

• ∆RP is the set of points ξ ∈ t∗≥0 satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φ(C), γ〉,
for any B-Ressayre’s pair (γ, C).

• ∆
reg

RP is the set of points ξ ∈ t∗≥0 satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φ(C), γ〉,
for any regular B-Ressayre’s pair (γ, C).

• ∆ is the set of points ξ ∈ t∗≥0 satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φ(C), γ〉, for
any regular B-Ressayre’s pair (γ, C) satisfying Φ(C) ∩ t∗≥0.

By definition, we have the commutative diagram, where all the maps are inclusions:

∆inf-RP� _

��

� � // ∆
reg

inf-RP� _

��

∆RP
� � // ∆

reg

RP
� � // ∆·

In §4.1, we prove the inclusions ∆RP ⊂ ∆(Φ) ⊂ ∆inf-RP. It follows then that

∆(Φ) = ∆inf-RP = ∆RP.

In §4.2, we prove the inclusion ∆ ⊂ ∆(Φ), and since ∆(Φ) ⊂ ∆
reg

RP ⊂ ∆, we get
finally that ∆(Φ) = ∆

reg

RP = ∆. At this stage, the proof of Theorem 1.8 is completed,
together with the equivalence of the points 1. and 2. in Theorem 1.6.

In §4.4, we explain geometrically the equivalence of the points 2. and 3. in Theorem
1.6.

In §4.5, we expose in which circumstances an infinitesimal B-Ressayre’s pair is a
B-Ressayre’s pair.
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4.1. ∆RP ⊂ ∆(Φ) ⊂ ∆inf-RP. Let us check the two inclusions.

∆RP ⊂ ∆(Φ)

Let ξ ∈ t∗≥0 that does not belong to ∆(Φ). Let r > 0 be the distance between ξ and
∆(Φ), also let a ∈ t∗>0 be a regular element such as ‖ξ − a‖ < r

2
. Since a /∈ ∆(Φ), we

can exploit the result of §3.3. Let a′ be the orthogonal projection of a on ∆(Φ). We
consider γa := a′ − a, and the connected component Ca of Mγa containing Φ−1(a′).
Proposition 3.13 tells us that (γa, Ca) is a B-Ressayre’s pair.

Now, we compute

〈ξ, γa〉 − 〈Φ(Ca), γa〉 = 〈ξ, γa〉 − 〈a′, γa〉

= 〈ξ − a, γa〉 − ‖γa‖
2

≤ −‖γa‖(‖γa‖ − ‖ξ − a‖)

< 0 .

The last inequality comes from the fact that ‖ξ − a‖ < r
2
and that ‖γa‖ > r

2
since it

represents the distance between a and ∆(Φ). The inequality 〈ξ, γa〉 − 〈Φ(Ca), γa〉 < 0
shows that ξ /∈ ∆RP.

∆(Φ) ⊂ ∆inf-RP

Let ξ ∈ ∆(Φ), and consider the Kähler manifold N := M ×Kξ. By definition the
set N ss of analytical semi-stable points is dense in N .

Let (γ, C) be an infinitesimal B-Ressayre’s pair onM , and let CN := C×Kγ
C/Pξ∩K

γ
C

be the corresponding connected component of Nγ . Here Pξ ⊂ KC is the parabolic sub-

group associated to ξ ∈ t∗≥0, so that Kξ ≃ KC/Pξ. Let C
−
N := {n ∈ N, limt→∞ e−itγn ∈

CN} be the Bialynicki-Birula’s submanifold.

Lemma 4.1. (1) The set KCC
−
N as a non-empty interior.

(2) C−
N ∩N ss 6= ∅.

Proof. The second point follows from the first one since N ss is a dense KC-invariant
subset of N .

Let x ∈ C so that nγ>0 · x ≃ (TxM)γ>0. The point n = (x, [e]) ∈ CN is in the
interior of KCC

−
N if we show that kC · n +TnC

−
N = TnN . Since TnC

−
N = (TnN)γ≤0 it

is sufficient to check that (TnN)γ>0 ⊂ kC · n. We have the decomposition (TnN)γ>0 =
(TxM)γ>0 ⊕ k

γ>0
C · [e]. It means that for any v ∈ (TnN)γ>0, there exists X ∈ k

γ>0
C so

that v −X · (x, [e]) ∈ (TxM)γ>0. But nγ>0 · x ≃ (TxM)γ>0, so there exists Y ∈ nγ>0

such as v − X · (x, [e]) = Y · x. The Lie algebra n is contained in the Lie algebra
of the parabolic subgroup Pξ: hence Y · [e] = 0. Finally we have proved that v =
(X + Y ) · (x, [e]) ∈ kC · n. �

Take n ∈ C−
N ∩N ss, and consider nγ = limt→∞ e−itγn ∈ C ×{[e]}. The first point of

Proposition 2.7 tells us that 〈ΦN (nγ), γ〉 ≤ 0, and this inequality means 〈Φ(C), γ〉 ≤
〈ξ, γ〉. We have proved that any point ξ ∈ ∆(Φ) satisfies 〈Φ(C), γ〉 ≤ 〈ξ, γ〉, for any
infinitesimal B-Ressayre’s pair (γ, C). So, ∆(Φ) ⊂ ∆inf-RP.
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4.2. ∆ ⊂ ∆(Φ). The aim of this section is the proof of the following

Theorem 4.2. Let ξ ∈ t∗≥0 satisfying the inequalities 〈ξ, γ〉 ≥ 〈Φ(C), γ〉, for any regular
B-Ressayre’s pair (γ, C) such as Φ(C) ∩ t∗≥0 6= ∅. Then ξ ∈ ∆(Φ).

Our arguments go as follows: we will show that there exists a collection (γi, Ci)i∈I
of regular Ressayre’s pairs satisfying Φ(Ci) ∩ t∗≥0 6= ∅, and for which we have

⋂

i∈I

{
ξ ∈ t∗≥0, 〈ξ, γi〉 ≥ 〈Φ(Ci), γi〉

}
= ∆(Φ).

The set I will be finite when M is compact.
We start with the following remark concerning admissible elements

Lemma 4.3. dimK(M
γ) = dimK(M) if and only if K ·Mγ = M .

Proof. If K ·Mγ = M , we have obviously dimK(M
γ) = dimK(M). Suppose now that

there exists xo ∈ Mγ such as dim(kxo
) = dimK(M). Then a neighborhood of Kxo is of

the form U = K×Kxo
V where kxo

acts trivially on V and γ ∈ kxo
. Then a neighborhood

of Kγxo in Mγ is V = Kγ ×K
γ
xo

V . We see then that KV = U : in other words K ·Mγ

contains xo in its interior.
To any subalgebra h ⊂ k we associate the sub-manifolds Mh = {m ∈ M, h = km} and

Mh = {m ∈ M, h ⊂ km}. There exists a subalgebra ho, unique up to conjugation, such
as K ·Mho = M , and K ·Mho is a dense open subset in M . The set K ·Mγ ∩K ·Mho

is non-empty, hence, up to a change of ho by conjugation, we have Mγ ∩Mho 6= ∅: in
other words γ ∈ ho. Finally we see that Mho ⊂ Mγ and K ·Mγ = M . �

Before starting the description of the collection (γi, Ci)i∈I , we need to recall the
following facts. There exists a unique open face τ of the Weyl chamber t∗≥0 such as
∆(Φ) ∩ τ is dense in ∆(Φ) : τ is called the principal face [22]. All points in the open
face τ have the same connected centralizer Kτ . Let Aτ be the identity component of
the center of Kτ and [Kτ , Kτ ] its semi-simple part. Note that we have an identification
between the dual of the Lie algebra aτ of Aτ and the linear span Rτ of the face τ . The
Principal-cross-section Theorem [22] tells us that Yτ := Φ−1(τ) is a symplectic Kτ -
manifold, with a trivial action of [Kτ , Kτ ]. So, the restriction of Φ on Yτ is a moment
map Φτ : Yτ → Rτ for the Hamiltonian action of the torus Aτ .

As the following example shows, the slice Yτ is not always a complex submanifold of
M .

Example 4.4. Let λ be a regular element in the Weyl chamber, and consider the
Kähler manifold M = K(2λ) × Kλ. The moment map is defined by the relations
Φ(η, ξ) = η − ξ, and the principal face τ is the interior of the Weyl chamber. The
element x := (2λ, λ) belongs to Yτ := Φ−1(τ). Let q ⊂ k be the image of n by the map
ℜ : kC → k. We view q as a complex T -module through the isomorphism ℜ : nC ≃ q.
Then, the tangent space TxM is equal to q × q and the subspace TxYτ corresponds to
V := {(X, 2X), X ∈ q}. We see that V is not a complex subspace of q× q.

The Ressayre’s pair (γτ , Cτ). In this section, we show that a Ressayre’s pair describes
the fact that ∆(Φ) is contained in τ̄ . Let us denote by Hα ∈ t the coroot associated to
a root α. Let R+

τ ⊂ R+ be the set of positive roots that are orthogonal to τ .
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Definition 4.5. Consider the following rational vector

γτ := −
∑

α∈R+
τ

Hα.

Lemma 4.6. The element γτ satisfies the following properties:

• 〈ξ, γτ〉 ≤ 0 for any ξ ∈ t∗≥0.
• For any ξ ∈ t∗≥0, 〈ξ, γτ〉 = 0 if and only if ξ ∈ τ̄ .
• γτ acts trivially on Yτ .
• 〈α, γτ〉 < 0 for any α ∈ R+

τ .

Proof. The first two points follow from the fact that 〈ξ,Hα〉 ≥ 0 for any ξ ∈ t∗≥0 and
any positive roots α. The third point is due to the fact that γτ ∈ [kτ , kτ ].

Let αo be a simple root of R+
τ . Let σαo

: t → t and σ̃αo
: t∗ → t∗ be the associated

orthogonal symmetries: σαo
(X) = X − 〈αo, X〉Hαo

, and σ̃αo
(ξ) = ξ − 〈ξ,Hαo

〉αo. We
have σαo

(Hβ) = Hσ̃αo (β) for any root β. We also have σ̃αo
(R+

τ − {αo}) = R+
τ − {αo}

and σ̃αo
(αo) = −αo. We then see that

σαo

( ∑

α∈R+
τ

Hα

)
=

∑

α∈R+
τ

Hα − 2Hαo
.

In other words 〈αo,
∑

α∈R+
τ
Hα〉 = 2. Thus 〈αo, γτ 〉 < 0. This implies that 〈α, γτ〉 < 0

for any α ∈ R+
τ . �

Let Cτ be the connected component of Mγτ containing Yτ . We start with the fol-
lowing basic result.

Lemma 4.7. • γτ is an admissible element.
• For any ξ ∈ t∗≥0, the inequality 〈ξ, γτ〉 ≥ 〈Φ(Cτ ), γτ〉 is equivalent to ξ ∈ τ̄ .

Proof. Since K · Mγτ = M , γτ is an admissible element (see Lemma 4.3). Now we
consider the inequality 〈ξ, γτ〉 ≥ 〈Φ(Cτ ), γτ〉 for an element ξ ∈ t∗≥0. First we notice
that 〈Φ(Cτ ), γτ 〉 = 0, and the first two points of the previous Lemma tell us that
〈ξ, γτ〉 ≥ 0 is equivalent to ξ ∈ τ̄ . �

Proposition 4.8. (γτ , Cτ ) is a regular B-Ressayre’s pair such as Φ(Cτ ) ∩ t∗≥0 6= ∅.

Proof. Using the identification t ≃ t∗, we view γτ as a rational element of t∗ orthogonal
to τ . Let a′ ∈ ∆(Φ) ∩ τ and consider the elements a(n) := a′ − 1

n
γτ for n ≥ 1. We

notice that for n large enough

(1) a(n) is a regular element of the Weyl chamber,
(2) a(n) /∈ ∆(Φ),
(3) a′ is the orthogonal projection of a(n) on ∆(Φ).

So we can exploit the results of §3.3 with the elements a(n) for n >> 1. Proposition
3.13 and Lemma 4.7 tell us that (γτ , Cτ ) is a regular B-Ressayre’s pair. �

The Ressayre’s pairs (γ±
l , C

±
l ). Let Sτ be the identity component of the principal sta-

bilizer for the action of Aτ on Yτ : let sτ be its Lie algebra. The convex polyhedron
∆(Φ) ⊂ τ̄ generates an affine subspace Π of Rτ with direction (sτ )

⊥. In this section,
we show that a finite family of Ressayre’s pairs describe the fact that ∆(Φ) is contained
in the affine subspace Π.
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Let (ηl)l∈L be a rational basis of sτ . We consider then the rational elements

γ±
l := ±ηl + γτ , l ∈ L.

For any l ∈ L, we denote by C±
l the connected component of Mγ±

l containing Yτ .

Lemma 4.9. • Any γ±
l is an admissible element.

• The set of elements ξ ∈ Rτ satisfying the inequalities

(9) 〈ξ, γ±
l 〉 ≥ 〈Φ(C±

l ), γ
±
j 〉, ∀l ∈ L

corresponds to the affine subspace Π.

Proof. Since K ·MSτ = M , we have K ·Mγ±

l = M for any l ∈ L. Hence, (γ±
l )l∈L are

admissible elements. Let ξo ∈ Φ(Yτ ) ⊂ Π. Since 〈ξ, γτ〉 = 0, ∀ξ ∈ Rτ , the inequalities
(9) are equivalent to ±〈ξ − ξo, ηl〉 ≥ 0, ∀l ∈ L: in other words ξ − ξo ∈ (sτ )

⊥, so
ξ ∈ Π. �

Proposition 4.10. For any l ∈ L, (γ±
l , C

±
l ) is a regular B-Ressayre’s pair such as

Φ(C±
l ) ∩ t∗≥0 6= ∅.

Proof. The proof follows the lines of the proof of Proposition 4.8. Let a′ ∈ ∆(Φ) ∩ τ
and consider the elements a±l (n) := a′ − 1

n
γ±
l for n ≥ 1. We notice that for n is large

enough

(1) a±l (n) is a regular element of the Weyl chamber,
(2) a±l (n) /∈ ∆(Φ),
(3) a′ is the orthogonal projection of a±l (n) on ∆(Φ).

So we can exploit the results of §3.3 with the element a±l (n) for n >> 1. Proposition
3.13 tells us that (γ±

l , C
±
l ) is a B-Ressayre’s pair. �

The Ressayre’s pairs (γF , CF ). In this section, we show that the polyhedron ∆(Φ),
viewed as a subset of the affine subspace Π, is the intersection of the cone Π∩ t∗≥0, with
a collection of half spaces parametrized by a family of B-Ressayre’s pairs.

Definition 4.11. An open facet F of ∆(Φ) is called non trivial if F ⊂ τ . We denote
by F(Φ) the set of non trivial open facets of ∆(Φ).

Let F ∈ F(Φ). There exists ηF ∈ aτ \ sτ such as the affine space generated by F
is ΠF = {ξ ∈ Π, 〈ξ, ηF 〉 = 〈ξF , ηF 〉} for any ξF ∈ F . The vector ηF is chosen so that
∆(Φ) ⊂ {ξ ∈ Π, 〈ξ, ηF 〉 ≥ 〈ξF , ηF 〉}.

By definition of the set F(Φ), we have the following description of the Kirwan poly-
hedron

(10) ∆(Φ) =
⋂

F∈F(Φ)

{ξ ∈ Π, 〈ξ, ηF 〉 ≥ 〈ξF , ηF 〉}
⋂

t∗≥0.

The pull-back ZF := Φ−1
τ (F ) is a connected component of the submanifold Y ηF

τ fixed
by ηF . Here, the generic infinitesimal stabilizer of the Aτ -action on ZF is sτ ⊕ RηF ,
hence the element ηF can be chosen in ∧. Consider an element xF ∈ ZF with stabilizer
subalgebra kxF

equal sτ ⊕ RηF ⊕ [kτ , kτ ].
We consider now the rational elements

γF = ηF + γτ , F ∈ F(Φ).



16 PAUL-EMILE PARADAN

Let CF be the connected component of MγF containing ZF .

Lemma 4.12. • γF is an admissible element, for any F ∈ F(Φ).
• The set of elements ξ ∈ Π ∩ t∗≥0 satisfying the inequalities

(11) 〈ξ, γF 〉 ≥ 〈Φ(CF ), γF 〉, ∀F ∈ F(Φ)

corresponds to ∆(Φ).

Proof. The element xF belongs to CF , and the stabilizer subalgebra kxF
is equal to

sτ ⊕ RγF ⊕ [kτ , kτ ]. Hence dimK(CF ) = dimK(M) + 1. The first point is settled. The
last assertion of the proposition is a consequence of (10). �

Proposition 4.13. For any F ∈ F(Φ), the couple (γF , CF ) is a regular B-Ressayre’s
pair such as Φ(CF ) ∩ t∗≥0 6= ∅.

Proof. The proof follows the lines of the proof of Proposition 4.8. Let a′F ∈ F and
consider the elements aF (n) := a′ − 1

n
γF for n ≥ 1. We notice that for n is large

enough

(1) aF (n) is a regular element of the Weyl chamber,
(2) aF (n) /∈ ∆(Φ),
(3) a′F is the orthogonal projection of aF (n) on ∆(Φ).

So we can exploit the results of §3.3 with the elements aF (n) for n >> 1. Proposition
3.13 tells us that (γF , CF ) is a B-Ressayre’s pair. �

4.3. Ressayre’s pairs and semi-stable points II. Let N be a Kähler Hamiltonian
K-manifold with proper moment map ΦN . The aim of this section is the following
proposition that completes the results of Proposition 2.7.

Proposition 4.14. Let CN be a connected component of Nγ. Then, the following holds

(1) If N ss ∩ C−
N 6= ∅, then 〈ΦN (CN), γ〉 ≤ 0.

(2) If N ss ∩ C−
N 6= ∅ and 〈ΦN(CN), γ〉 = 0, then CN ∩ Φ−1

N (0) 6= ∅.

Proof. Let x ∈ C−
N ∩N ss, and let denote by xγ ∈ CN the limit of e−itγx when t → ∞.

In Proposition 2.7, we proved that 〈ΦN(xγ), γ〉 ≤ 0, and also that xγ ∈ N ss when
〈ΦN (xγ), γ〉 = 0. Our first point is then settled.

Suppose that xγ ∈ N ss: it remains to show that CN ∩ Φ−1
N (0) 6= ∅. Let z ∈ Φ−1

N (0)
so that KCz is the closed orbit contained in KCxγ ⊂ KCx. We will use now the
Holomorphic Slice Theorem of Sjamaar [25] in order to describe a neighbourhood of
KCz. First recall that the stabilizer subgroup (KC)z is equal to the complexification
of H := Kz. Let E ⊂ TzN be the orthogonal complement (relatively to the Kähler
metric) of the subspace kC · z. We see that E is a Hermitian vector space equipped
with a linear action of HC. Sjamaar proved in [25] that a KC-invariant neighbourhood
W of the orbit KC z admits a KC-equivariant holomorphic diffeomorphism with

W̃ := KC ×HC
E0,

where E0 is a HC-invariant neighborhood of 0 ∈ E.
By definition, the orbits KC x and KC xγ intersect W, so the points x and xγ belong

to W. Let us write by x̃, x̃γ, z̃ ∈ W̃ the image of x, xγ , z ∈ W. Here z̃ = [e, 0].
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Lemma 4.15. (1) There exists (a, pγ , kγ, v) ∈ K × Pγ ×Kγ
C ×E such as

x̃ = [pγa, v] and x̃γ = [kγa, vo].

The data (a, pγ, kγ, v) satisfies the following relations: γ′ := a−1γ ∈ h, v ∈
Eγ′≤0, vo := limt→∞ e−itγ′

v ∈ Eγ′=0, and kγ := limt→∞ e−itγpγe
itγ.

(2) 0 ∈ HC v and 0 ∈ Hγ′

C vo.

(3) K z̃ ∩Kγ
C x̃γ 6= ∅.

The third point of the lemma says that Kz ∩ Kγ
Cxγ 6= ∅. But Kγ

Cxγ ⊂ CN and
Kz ⊂ Φ−1

N (0), so we have proved that CN ∩Φ−1
N (0) 6= ∅. The proof of Proposition 4.14

is completed.

Proof. Consider the projection T : W̃ → KC/HC. Since limt→∞ e−itγ x̃ = x̃γ , we have
limt→∞ e−itγT (x̃) = T (x̃γ) ∈ (KC/HC)

γ . It is not difficult to check that there exists
(a, pγ, kγ) ∈ K × Pγ ×Kγ

C so that

T (x̃) = [pγa] and T (x̃γ) = [kγa],

where kγ := limt→∞ e−itγpγe
itγ and γ′ := a−1γ ∈ h.

Now let v, vo ∈ E such as x̃ = [pγa, v] and x̃γ = [kγa, vo]. Since limt→∞ e−itγ x̃ = x̃γ ,
we have limt→∞ e−itγ′

v = vo, and this implies that v ∈ Eγ′≤0 and vo ∈ Eγ′=0. The first
point of the lemma is settled.

Since z̃ belongs to KCx̃, we must have 0 ∈ HC v. Let Pγ′ be the parabolic subgroup

of KC attached to γ′, and take PH
γ′ := Pγ′ ∩HC. Since HC = H PH

γ′ , we have 0 ∈ PH
γ′ v.

Let ǫ > 0, and let w = p v ∈ PH
γ′ v such as ‖w‖ ≤ ǫ. Since w belongs to Eγ′≤0, we have

‖e−itγ′

w‖ ≤ ǫ for any t ≥ 0. Hence the vector wo := limt→∞ e−itγ′

w satisfies ‖wo‖ ≤ ǫ

and wo = hvo, where h = limt→∞ e−itγ′

p eitγ
′

∈ Hγ′

C . We have proved that 0 ∈ Hγ′

C vo,

and this fact implies that az̃ = [a, 0] belongs to Kγ
C x̃γ . The last point is proved. �

�

Remark 4.16. In the proof of Lemma 4.15, we have seen that the element z ∈ KC x∩

Φ−1(0) can be chosen in Kγ
C xγ∩Φ−1(0). If we do so, the expression in W̃ are x̃ = [p, v]

and x̃γ = [k, vo], where p ∈ Pγ and k := limt→∞ e−itγp eitγ ∈ Kγ
C.

4.4. 2. ⇔ 3. in Theorem 1.6. Let M be a Kähler Hamiltonian K-manifold with
proper moment map Φ. We denote by R the set of infinitesimal B-Ressayre’s pair on
M , and by R′ ⊂ R the subset formed by the infinitesimal B-Ressayre’s pair (γ, C)
satisfying Φ(C) ∩ t∗≥0.

In §4.1 and §4.2, we proved that ∆inf-RP = ∆(Φ). The aim of this section is to
explain why ∆inf-RP coincides with

∆′
inf-RP =

{
ξ ∈ t∗≥0; 〈ξ, γ〉 ≥ 〈Φ(C), γ〉, ∀(γ, C) ∈ R′

}
.

To any (γ, C) ∈ R, we associate the hyperplane of t∗ : Π(γ,C) :=
{ξ ∈ t∗; 〈ξ, γ〉 = 〈Φ(C), γ〉}. Let R0 ⊂ R be the subset formed by the infinitesimal
B-Ressayre’s pair (γ, C) satisfying Π(γ,C) ∩∆(Φ) 6= ∅.

The equality ∆inf-RP = ∆′
inf-RP follows from the following proposition.
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Proposition 4.17. (1) ∆inf-RP is equal to

∆0
inf-RP =

{
ξ ∈ t∗≥0; 〈ξ, γ〉 ≥ 〈Φ(C), γ〉, ∀(γ, C) ∈ R0

}
.

(2) R′ = R0.

Proof. We have obviously ∆inf-RP ⊂ ∆0
inf-RP. Let us consider ξ0 ∈ ∆0

inf-RP and ξ1 ∈
∆inf-RP. For any t ∈ [0, 1], let’s ξt = tξ1 + (1− t)ξ0. Let s = inf{t ∈ [0, 1], ξt ∈ ∆(Φ)}.
If s > 0, there exists (γ, C) ∈ R such as 〈ξs, γ〉 = 〈Φ(C), γ〉 and 〈ξs−ǫ, γ〉 < 〈Φ(C), γ〉
for ǫ > 0 small enough. The first equality means that ξs ∈ Π(γ,C) ∩ ∆(Φ), hence
(γ, C) ∈ R0. Then the second inequality is in contradiction with the fact that 〈ξ0, γ〉 ≥
〈Φ(C), γ〉 and 〈ξ1, γ〉 ≥ 〈Φ(C), γ〉. So, s = 0 which means that ξ0 ∈ ∆inf-RP. The first
point is settled.

By definition, we have R′ ⊂ R0. Let us prove the opposite inclusion. Let (γ, C) ∈
R0. The hyperplane Π(γ,C) intersects ∆(Φ) and we want to prove that Φ(C)∩ t∗≥0 6= 0.

Let us consider ξ ∈ Π(γ,C) ∩ ∆(Φ) and the associated manifold N := M × Kξ. We

consider the connected component CN = C ×Kγξ of Nγ , and the Bialynicki-Birula’s
submanifold C−

N . We prove in Lemma 4.1 that C−
N ∩N ss 6= ∅ and the relation 〈ξ, γ〉 =

〈Φ(C), γ〉 means that 〈ΦN(CN), γ〉 = 0. We can conclude, thanks to Proposition 4.14,
that 0 ∈ ΦN (CN): in other words ξ ∈ Φ(C). �

4.5. Ressayre’s pairs = infinitesimal Ressayre’s pairs. LetM be a Kähler Hamil-
tonian K-manifold with proper moment map Φ. The main purpose of this section is
the following proposition.

Proposition 4.18. Let (γ, C) be an infinitesimal B-Ressayre’s pair on M satisfying
both conditions:

(1) KCC
− is dense in M ,

(2) Φ(C) ∩ t∗>0 6= ∅.

Then (γ, C) be a B-Ressayre’s pair on M .

Remark 4.19. Ressayre obtained a similar result in the algebraic setting (see [27], §6).

Proof. Let ξ ∈ Φ(C) ∩ t∗>0, and consider the Kähler Hamiltonian K-manifold N :=

M × Kξ. We work with the connected component CN := C × Kγξ. Thanks to
Proposition 2.6, we know that it is sufficient to check that (γ, CN) is a KC-Ressayre’s
pair on N . We will use here, as a key fact, that the stabilizer subgroups for the K-
action on N are abelian: in particular, for any n ∈ CN , the stabilizer subgroup Kn is
an abelian subgroup contained in Kγ .

By definition the set N ss is non-empty and 〈ΦN (CN), γ〉 = 0. Let p : C−
N → CN be

the canonical projection. We have proved in Proposition 4.14 thatN ss∩C−
N = p−1(Css

N ),

where Css
N = {n ∈ CN ;K

γ
C n ∩ Φ−1

N (0)} is a dense open subset of CN .

Lemma 4.20. Let g ∈ KC and x ∈ N ss ∩ C−
N , such as gx ∈ C−

N . Then g ∈ Pγ.

Proof. Let x′ = gx. Let xγ := limt→∞ e−itγx and x′
γ := limt→∞ e−itγx′ be the corre-

sponding point in Css
N . The orbits KCxγ and KCx

′
γ are both contained in the closure

of the orbit KCx ⊂ N ss. Thanks to Proposition 4.14 and Remark 4.16, we know that
there exists z ∈ CN ∩ Φ−1

N (0), such as z ∈ Kγ
Cxγ ∩Kγ

Cx
′
γ .
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As in the proof of Proposition 4.14, we use now the Holomorphic Slice Theorem of
Sjamaar [25] in order to describe a neighbourhood of KCz. The stabilizer subgroup
(KC)z, which is equal to the complexification of H := Kz, is an abelian group contained
in Kγ

C. A KC-invariant neighbourhood W of the orbit KCz admits a KC-equivariant

holomorphic diffeomorphism with W̃ := KC ×HC
E0.

The points x, x′ belong to W. Let us write by x̃, x̃′ the corresponding points in W̃.
Lemma 4.15 and Remark 4.16 say that there exists (p, p′) ∈ P 2

γ such as x̃ = [p, v], and
x̃′ = [p′, v′]. But x′ = gx, so there exists h ∈ HC satisfying gp = p′h. Finally, we see
that g = p′hp−1 ∈ Pγ because h ∈ Kγ

C. �

Let us finish the proof of Proposition 4.18. The map πγ : KC ×Pλ
C−

N → N has a
dense image by hypothesis, and it is injective when restricted to KC ×Pλ

(N ss ∩ C−
N).

Let (C−
N)reg be the open subset formed by the point n ∈ C−

N such as the tangent
map Tπγ |[e,n] is an isomorphism. We have seen in Lemma 2.4 that (C−

N)reg is a dense,
Pγ-invariant, open subset of C−

N such as (C−
N)reg = p−1(CN ∩ (C−

N)reg).
Finally, let’s take U = (C−

N)reg∩N ss. We have U = p−1(V ) where V = Css
N ∩ (C−

N)reg
is a dense open subset of CN . The map πγ defines then an holomorphic diffeomorphism
between KC ×Pλ

U and the dense open subset KCU ⊂ N . �

5. Hörn conditions

Let γ ∈ t be a non-zero element, and let C ⊂ Mγ be a connected component. Let
C− be the Bialynicki-Birula’s complex manifold associated to C (see (4)). In order
to analyse the fibers of the map qγ : B ×B∩Pγ

C− → M , we introduce the maps
rgγ : B ×B∩Pγ

C− → KC/Ad(g)Pγ that sends [b, x] to [bg−1].

5.1. Characterization of B-Ressayre’s pairs. We start with the following basic
remark.

Lemma 5.1. Let g ∈ KC. For any m ∈ M , the map rgγ is injective when restricted to

q−1
γ (m).

We have the following characterization of B-Ressayre’s pairs.

Proposition 5.2. Let g ∈ KC.

• If (γ, C) is an infinitesimal B-Ressayre’s pair then :
A) dimC(n

γ>0) = rankC(TM |C)γ>0,
B) Trγ(n

γ>0) = Trγ((TM |C)γ>0).
• If (γ, C) satisfies conditions A), B), and furthermore the set

(12) Image(qγ) = {m ∈ M, rgγ(q
−1
γ (m)) 6= ∅} has a nonempty interior,

then (γ, C) is an infinitesimal B-Ressayre’s pair.
• Suppose that M is an algebraic variety equipped with an algebraic action of KC.
If (γ, C) satisfies relations A), B), and furthermore the set

(13) {m ∈ M, cardinal(rgγ(q
−1
γ (m))) = 1} has a nonempty interior,

then (γ, C) is a B-Ressayre’s pair.
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Proof. Let x ∈ C such as ργx := nγ>0 → (TxM)γ>0 is bijective. Since the map ργx
commutes with the action of γ we get A) and B). The first point is proved.

Suppose now that (γ, C) satisfies conditions A) and B). Condition A) insures that
the manifolds B×B∩Pγ

C− and M have the same dimension. Either (12) or (13) imply
that Image(qγ) has a non-empty interior, so it must contains a regular value of the
map qγ. We see then that the set (C−)reg formed by the point m ∈ C− for which the
tangent map Tqγ |[e,m] is an isomorphism, is a dense open subset of C−.

As we did in Lemma 2.4, let us check that equality B) implies that (C−)reg ∩C 6= ∅.
The rank s of the holomorphic bundle E := TM |C−/TC− is equal to the dimension
of b/pγ ∩ b. We consider now the B ∩ Pγ-holomorphic line bundle L → C− defined
by L := hom (∧r(b/pγ ∩ b),∧rE). We have a canonical B ∩ Pγ-equivariant section

θ : C− → L defined by θ(m) : X1 ∧ · · · ∧Xs −→ X1 ·m ∧ · · · ∧Xs ·m. We notice that

(C−)reg = {m; θ(m) 6= 0} and condition B) tell us that the torus T = exp(Rγ) acts
trivially on L|C . Thanks to Lemma 2.2, we can conclude that m ∈ (C−)reg if and only
if p(m) ∈ (C−)reg. The set C ∩ (C−)reg is not empty, and for any x ∈ C ∩ (C−)reg, the
map ργx is an isomorphism. At this stage, we have proved that (γ, C) is an infinitesimal
B-Ressayre’s pair.

Suppose now that M is an algebraic variety. We have an algebraic map qγ between
smooth algebraic varieties of same dimension. Moreover, on the open subset B ×B∩Pγ

(C−)reg, the differential qγ is always bijective. If (13) holds, we can conclude that qγ
defines an isomorphism between B ×B∩Pγ

(C−)reg and B(C−)reg. We have proved that
(γ, C) is a B-Ressayre’s pair since (C−)reg ∩ C 6= ∅. �

5.2. Highest weight vector.

Definition 5.3. We associate to an infinitesimal Ressayre’s pair (γ, C) the holomor-
phic line bundle L(γ,C) := det ((TM |C)γ>0) on C.

Take a basis Y1, · · · , Yp of n
γ>0. We define an holomorphic section of the line bundle

L(γ,C) as follows : Θ(γ,C)(x) := Y1 · x ∧ · · · ∧ Yp · x, ∀x ∈ C.
The vector space of holomorphic sections H0(C,L(γ,C)) is a Kγ-module, and we will

now see that Θ(γ,C) ∈ H0(C,L(γ,C)) is a highest weight vector. Let

ρ(γ,C) :=
∑

α>0

〈α,γ〉<0

α.

The following property is immediate.

Proposition 5.4. We have X ·Θ(γ,C) = 0 for any X ∈ nγ=0 and

t ·Θ(γ,C) = tρ(γ,C) Θ(γ,C), ∀t ∈ T.

6. Examples

6.1. K̃C ×KC acting on K̃C. In this section, we work out the example of a complex
reductive group K̃C equipped with the following action of K̃C×KC : (k̃, k) ·a = k̃ak−1.

Here K →֒ K̃ is a closed connected subgroup, and KC is the corresponding reductive
subgroup of K̃C.
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There is a diffeomorphism of the cotangent bundle T∗K̃ with K̃C defined as follows.
We identify T∗K̃ with K̃×k̃∗ by means of left-translation and then with K̃×k̃ by means
of an invariant inner product on k̃. The map ϕ : K̃× k̃ → K̃C given by ϕ(a,X) = aeiX is
a diffeomorphism. If we use ϕ to transport the complex structure of K̃C to T∗K̃, then
the resulting complex structure on T∗K̃ is compatible with the symplectic structure on
T∗K̃, so that T∗K̃ becomes a Kähler Hamiltonian K̃×K-manifold (see [12], §3). The
moment map relative to the K̃×K-action is a proper map Φ = ΦK̃⊕ΦK : T∗K̃ → k̃∗⊕k∗

defined by

(14) ΦK̃(a, ξ̃) = −aξ̃, ΦK(a, ξ̃) = π(ξ̃).

Here π : k̃∗ → k∗ is the projection dual to the inclusion k →֒ k̃ of Lie algebras.
Select maximal tori T in K and T̃ in K̃ such as T ⊂ T̃ , and Weyl chambers t̃∗≥0 in

t̃∗ and t∗≥0 in t∗, where t and t̃ denote the Lie algebras of T , resp. T̃ .

Let ∆(T∗K̃) ⊂ t̃∗≥0 × t∗≥0 be the Kirwan polytope associated to Φ. Equations (14)
show that

∆(T∗K̃) =
{
(ξ̃, ξ) ∈ t̃∗≥0 × t∗≥0 | − ξ ∈ π

(
K̃ξ̃

)}
.

We recall from general principle that the Kirwan polyhedron ∆(T∗K̃) has a non zero

interior in t̃∗ × t∗ if and only if the generic stabilizer of the K̃ ×K-action on T∗K̃ is
finite. To simplify the exposition, we assume from now on that no non-zero ideal of k
is an ideal of k̃. It implies the following

Lemma 6.1. The intersection of ∆(T∗K̃) with t̃∗>0 × t∗>0 has a non empty interior,

and the generic stabilizer of the K̃ ×K-action on K̃C ≃ T∗K̃ is finite.

In the next section, we look after the B-Ressayre’s pairs of the complex manifold
K̃C relative to the K̃C ×KC-action.

6.1.1. Admissible elements. Let (X̃,X) be an element of t̃× t. In the following lemma,

which follows by direct checking, we describe the manifold N (X̃,X) of zeroes of the
vector field (X̃,X) on N = T∗K̃. We denote K̃X ⊂ K̃ the subgroup that fixes X . The

cotangent bundle T∗K̃X ≃ K̃X
C is then a submanifold of T∗K̃ ≃ K̃C.

Lemma 6.2. • If X̃ is not conjugate to X in k̃ , then N (X̃,X) = ∅
• If X̃ = aX with a ∈ K̃, then N (X̃,X) = a ·T∗K̃X .

Let W̃ = N(T̃ )/T̃ be the Weyl group. We notice that if X̃ = aX for some a ∈ K̃,
then there exists w̃ ∈ W̃ such as X̃ = w̃X . So, the admissible elements relative to the
action of K̃C×KC on K̃C are of the form (w̃γ, γ) where γ ∈ t is a rational element and

w̃ ∈ W̃ .
We consider now a K-invariant decomposition at the level of Lie algebras:

k̃ = k⊕ q

Let qγ ⊂ q be the subspace fixed by the adjoint action of γ. We let R̃ ⊂ t̃∗ denote the
set of roots for the group K̃C, and R̃γ=0 denote the subset of roots vanishing on γ.

Lemma 6.3. Let γ ∈ t be a rational element and let w̃ ∈ W̃ .

(1) The element (w̃γ, γ) is admissible if and only if dimT (q
γ) = 1.
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(2) If (w̃γ, γ) is admissible, then the projection of R̃γ=0 on t∗ generates (Rγ)⊥.

Corollary 6.4. The K̃×K-action on K̃C admits a finite number of admissible elements
(modulo identifications (w̃qγ, qγ) ∼ (w̃γ, γ) for any q ∈ Q>0).

Proof. Since the generic stabilizer of the K̃ × K-action on K̃C is finite, we have
dimK̃×K(K̃C) = 0. The submanifold fixed by (w̃γ, γ) is w̃K̃γ

C and a direct compu-
tation gives

dimK̃×K(w̃K̃
γ
C) = dimK̃×K(K̃

γ
C) = dimK̃×K(K̃

γ × k̃γ) = dimK̃×K({1} × k̃γ)

= dimK(k̃
γ)

= dimK(k
γ × qγ) = dimT (q

γ).

As dimK̃×K(K̃C) = 0, a rational element (w̃γ, γ) is admissible if and only if dimT (q
γ) =

dimK̃×K(w̃K̃
γ
C) is equal to 1 (see Remark 1.2). The first point is proved.

The projection of R̃γ=0 on t∗ is equal to Rγ=0 ∪R(qγ) where Rγ=0 denotes the set
of roots for the group K vanishing on γ and R(qγ) denotes the set of weights for the
T -action on qγ ⊗ C. The equality dimT (q

γ) = 1 means that the set R(qγ) generates

(Rγ)⊥. So, the first point tells us that the projection of R̃γ=0 on t∗ generates (Rγ)⊥,
when (w̃γ, γ) is admissible. �

6.1.2. Ressayre’s pairs of K̃C. At any element (w̃, γ) ∈ W̃ × t, we associate γw̃ :=

(w̃γ, γ) and the submanifold Cw̃,γ := w̃K̃γ
C ⊂ K̃C fixed by γw̃. The Bialynicki-Birula’s

complex submanifold associated to Cw̃,γ is C−
w̃,γ := w̃P̃γ where P̃γ is the parabolic

subgroup of K̃C associated to γ (see (5)). The parabolic subgroup of K̃C×KC associated
to the weight γw̃ is

Pw̃,γ := Ad(w̃)(P̃γ)× Pγ.

Let B ⊂ KC (resp. B̃ ⊂ K̃C) be the Borel subgroup associated to the choice of the
Weyl chamber t∗≥0 (resp. t̃∗≥0). We can now consider the holomorphic map

qw̃,γ : (B̃ × B)×(B̃×B)∩Pw̃,γ
C−

w̃,γ −→ K̃C

that sends [b̃, b; w̃p̃] to b̃w̃p̃b−1.
In our context, Relations A) and B) of Proposition 5.2 can be computed as follows.

Lemma 6.5. • Relation A) is dimC(ñ
w̃γ>0) + dimC(n

γ>0) = dimC(k̃C)
w̃γ>0.

• Relation B) corresponds to

(15)
∑

α∈R+

〈α,γ〉>0

〈α, γ〉 =
∑

α̃∈R̃−

〈α̃,w̃γ〉>0

〈α̃, w̃γ〉.

In the next section, we will see that the B-Ressayre’s pair on K̃C have a nice carac-
terisation in terms of Schubert calculus.
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6.1.3. Schubert calculus. For any γ ∈ t, we consider the projective varieties Fγ :=

KC/Pγ, F̃γ := K̃C/P̃γ, and the map

rw̃,γ : (B̃ × B)×(B̃×B)∩Pw̃,γ
C−

w̃,γ −→ F̃γ ×Fγ

that sends [b̃, b; w̃p̃] to ([b̃w̃], [b]). Here rw̃,γ corresponds to the map rgγ introduced in
§5, with g = (w̃−1, e).

We associate to any w̃ ∈ W̃ , the Schubert cell

X̃o
w̃,γ := B̃[w̃] ⊂ F̃γ.

and the Schubert variety X̃w̃,γ := X̃o
w̃,γ. If W̃

γ denotes the subgroup of W̃ that fixes γ,

we see that the Schubert cell X̃o
w̃,γ and the Schubert variety X̃w̃,γ depends only of the

class of w̃ in W̃/W̃ γ.
On the variety Fγ, we consider the Schubert cell X

o
γ := B[e] and the Schubert variety

Xγ := Xo
γ. Notice that we have a canonical embedding ι : Fγ → F̃γ since KC∩ P̃γ = Pγ.

Lemma 6.6. • (γw̃, Cw̃,γ) satisfies Relations A) if and only if dimC(F̃γ) =

dimC(X̃
o
w̃,γ) + dimC(X

o
γ).

• For any k̃ ∈ K̃C, we have a bijective correspondance q−1
w̃,γ(k̃) ≃ k̃−1X̃o

w̃,γ ∩ ι(Xo
γ).

Proof. The first point is consequence of the first point of Lemma 6.5. Thanks to Lemma
5.1, we know that rw̃,γ is injective when restricted to q−1

w̃,γ(k̃). Now, it is an easy matter

to check that rw̃,γ

(
q−1
w̃,γ(k̃)

)
corresponds to the set {(x, y) ∈ X̃o

w̃,γ × Xo
γ, x = k̃y}. The

second point is completed. �

We consider the cohomology3 ring H∗(F̃γ,Z) of F̃γ. If Y is an irreducible closed

subvariety of F̃γ, we denote by [Y ] ∈ H2nY (F̃γ,Z) its cycle class in cohomology :

here nY = codimC(Y ). Let ι∗ : H∗(F̃γ,Z) → H∗(Fγ,Z) be the pull-back map in
cohomology. Recall that the cohomology class [pt] (resp. [p̃t]) associated to a singleton

Y = {pt} ⊂ Fγ (resp. Ỹ = {p̃t}) is a basis of Hmax(Fγ,Z) (resp. H
max(F̃γ,Z)).

We recall some classical properties.

Lemma 6.7. (1) Let X̃, Ỹ be two irreducible closed subvarieties of F̃γ. Let’s X̃
o, Ỹ o

be their smooth part.
• We have [X̃ ] · [Ỹ ] = [X̃ ∩ gỸ ] for g ∈ K̃C belonging to a dense open subset.

• The relation [X̃ ] · [Ỹ ] = n[p̃t] holds if and only if the set X̃o ∩ gỸ o is of
cardinal n, for g ∈ K̃C belonging to a dense open subset.

(2) Let Y (resp. Ỹ ) be an irreducible closed subvariety of Fγ (resp. F̃γ). The

relation [ι(Y )] · [Ỹ ] = n[p̃t] in H∗(F̃γ,Z) is equivalent to the relation [Y ] ·
ι∗([Ỹ ]) = n[pt] in H∗(Fγ,Z).

Proof. The first point is a consequence of Kleiman transversality theorem [19] (see [3],
Proposition 3). The second point is left to the reader. �

Lemmas 6.6, 6.7 and Proposition 5.2 give us the following corollary.

3Here, we use singular cohomology with integer coefficients.
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Corollary 6.8. • (γw̃, Cw̃,γ) is a B-Ressayre’s pair on K̃C if and only if (15)

holds and [Xγ] · ι∗([X̃w̃,γ]) = [pt].

• (γw̃, Cw̃,γ) is an infinitesimal B-Ressayre’s pair on K̃C if and only if (15) holds

and [Xγ] · ι∗([X̃w̃,γ]) = n[pt] for n ≥ 1.

We can finally describe the Kirwan polyhedron ∆(T∗K̃).

Theorem 6.9. Let K ⊂ K̃ be a closed connected subgroup such as no non-zero ideal
of k is an ideal of k̃. Let (ξ̃, ξ) ∈ t̃∗≥0 × t∗≥0. We have −ξ ∈ π

(
K̃ξ̃

)
if and only if

〈ξ̃, w̃γ̃〉+ 〈ξ, γ〉 ≥ 0

for any (γ, w̃) ∈ t× W̃ satisfying the following properties:

a) γ is rational and dimT (q
γ) = 1.

b) [Xγ] · ι∗([X̃w̃,γ]) = [pt] in H∗(Fγ,Z).
c)

∑
α∈R+

〈α,γ〉>0
〈α, γ〉 =

∑
α̃∈R̃−

〈α̃,w̃γ〉>0

〈α̃, w̃γ〉.

The previous theorem has a long story. The first input was given by Klyachko
[15] with a refinement by Belkale [2], when KC = SL(n) and K̃C = (SL(n))s. The
case K̃C = (KC)

s was treated by Kapovich-Leeb-Millson [14] following an analogous
slightly weaker result proved by Berenstein-Sjamaar [4]. Condition c) is related to
the notion of Levi-movability introduced by Belkale-Kumar [3]. It is recalled that
the notion of Ressayre’s pair is an adaptation of Belkale-Kumar’s Levi-movability.
Finally, the general case was treated by Ressayre [27], where he proves furthermore the
irredundancy of the list of inequalities.

6.2. K̃C × KC acting on K̃C × V . Let (V, h) be an Hermitian K-vector space. The
linear action of KC on V is denoted ρ : KC → GL(V ).

Let ΩV = −Im(h) be the corresponding 2-form on V . The moment map ΦV : V → k∗

associated to the action of K on (V,ΩV ) is defined by the relation

〈ΦV (v), X〉 =
1

2
Ω(Xv, v), X ∈ k.

We suppose here that the moment map ΦV is proper. It is like saying that the algebra
Sym(V ∗)K of invariant polynomial functions on V is reduced to the constants.

In this section, we study the action of K̃C × KC on K̃C × V ≃ T∗K̃ × V that
is defined as follows : (k̃, k) · (a, v) = (k̃ak−1, kv). The corresponding moment map

Φ : T∗K̃ × V → k̃∗ ⊕ k∗, which is defined by the relations

(16) Φ(k̃, ξ̃, v) =
(
−k̃ξ̃, π(ξ̃) + ΦV (v)

)
,

is proper.
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6.2.1. Admissible elements. In this example, Lemmas 6.3 and 6.5 become

Lemma 6.10. Let γ ∈ t be a rational element and let w̃ ∈ W̃ .

(1) The element γw̃ := (w̃γ, γ) is admissible if and only if dimT (q
γ × V γ) = 1.

(2) Relation A) means dimC(ñ
w̃γ>0) + dimC(n

γ>0) = dimC(k̃C)
w̃γ>0 + dimC(V

γ>0).
(3) Relation B) corresponds to

(17)
∑

α∈R+

〈α,γ〉>0

〈α, γ〉 =
∑

α̃∈R̃−

〈α̃,w̃γ〉>0

〈α̃, w̃γ〉+ Trγ(V
γ>0).

6.2.2. Ressayre’s pairs of K̃C×V . The submanifold fixed by γw̃ is w̃K̃γ
C×V γ , and the

corresponding Bialynicki-Birula’s complex submanifold is w̃P̃γ × V γ≤0. So, we work
with the holomorphic map

qVw̃,γ : (B̃ ×B)×(B̃×B)∩Pw̃,γ
(w̃P̃γ × V γ≤0) −→ K̃C × V

that sends [b̃, b; w̃p̃, v] to (b̃w̃p̃b−1, ρ(b)v).
In order to analyse the fibers of the map qVw̃,γ, we use, as in §6.1, the map rVw̃,γ :

(B̃ × B)×(B̃×B)∩Pw̃,γ
(w̃P̃γ × V γ≤0) −→ F̃γ × Fγ that sends [b̃, b; w̃p̃, v] to ([b̃w̃], [b]).

We start with

Lemma 6.11. The map rVw̃,γ is injective when it is restricted to the fibers of qVw̃,γ.

In order to obtain a criteria based on Schubert calculus, we replace V by the pro-
jective manifold P(C× V ) = G/Q. Here G = GL(C× V ), and Q ⊂ G is the parabolic
subgroup of G that fixes [1, 0] ∈ P(C × V ). Let PG

γ ⊂ G be the parabolic subgroup

associated to γ. Then V γ (resp. V γ≤0) is a dense open part of P(C× V γ) = Gγ · [1, 0]
(resp. P(C× V γ≤0) = PG

γ · [1, 0]).
Let us work with the holomorphic map

q̂Vw̃,γ : (B̃ × B)×(B̃×B)∩Pw̃,γ
(w̃P̃γ × PG

γ /Q ∩ PG
γ ) −→ K̃C ×G/Q

that sends [b̃, b; w̃p̃, [p]] to (b̃w̃p̃b−1, [ρ̂(b)p]). Here we denote ρ̂ : KC → GL(C× V ) the
composition of ρ : KC → GL(V ), with the morphism GL(V ) → GL(C× V ) that sends

g to

(
1 0
0 g

)
.

By an argument of density, we can replace qVw̃,γ by q̂Vw̃,γ, and obtain the following

adaptation of Proposition 5.2. Let N := K̃C ×G/Q.

Proposition 6.12. Suppose that γw̃ = (w̃γ, γ) satisfies Conditions A) and B).

• If the set Image(q̂Vw̃,γ) = {n ∈ N, rVw̃,γ((q̂
V
w̃,γ)

−1(n)) 6= ∅} has a nonempty inte-

rior, then (γw̃, w̃K̃
γ
C × V γ) is an infinitesimal B-Ressayre’s pair.

• If the set {n ∈ N, cardinal(rVw̃,γ((q̂
V
w̃,γ)

−1(n)) = 1} has a nonempty interior, then

then (γw̃, w̃K̃
γ
C × V γ) is a B-Ressayre’s pair.

6.2.3. Schubert calculus. To an oriented real vector bundle E → N of rank r, we can
associate its Euler class Eul(E) ∈ H2r(N,Z). When V → N is a complex vector bundle,
then Eul(VR) corresponds to the top Chern class cp(V), where p is the complex rank of
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V, and VR means V as a real vector bundle oriented by its complex structure (see [5],
§21).

We will need the following result.

Lemma 6.13. Let M be a smooth complex projective variety. Let Y ⊂ M be a sub-
variety and let Y o ⊂ M be it’s smooth part. Let ιX : X → M be a smooth compact
oriented submanifold contained in Y o. Then

ι∗X([Y ]) = Eul(N|X),

where N is the normal bundle of Y o in M .

Proof. We will give a proof of this equality in the de Rham cohomology of M . If η
is a closed form on M , the cycle class [Y ] is defined through the relation

∫
M
[Y ] · η =∫

Y o η|Y o .The convergence of the right hand side is a consequence Lelong integrability’s
theorem of algebraic cycles. Let N(X,M) be the normal bundle ofX inM . The de Rham
cohomology with compact support H∗

c (N(X,M)) is freely generated, as a H∗
c (X)-module,

by the Thom class Thom(X,M). We denote by Thom(X,M) ∈ H∗
c (UX), the image of

Thom(X,M) through a diffeomorphism between N(X,M) and a tubular neighborhood
UX ofX inM . If θ ∈ H∗

c (X), we denote simply by Thom(X,M)·θ ∈ H∗
c (UX) the image

of Thom(X,M) · p∗(θ) ∈ H∗
c (N(X,M)): here p : N(X,M) → X denotes the projection.

Now, we compute
∫
M
[Y ] · Thom(X,M) · θ in two different ways. Since Thom(X,M)

is the de Rham class that represents the oriented submanifold X , we have
∫
M
[Y ] ·

Thom(X,M) · θ =
∫
X
ι∗X([Y ]) · θ. On the other hand, we have

∫
M
[Y ] · Thom(X,M) ·

θ =
∫
Y o(Thom(X,M) · θ)|Y o . As Thom(X,M) = Thom(X, Y o) · Thom(Y o,M), we

obtain Thom(X,M)|Y o = Thom(X, Y o) ·Eul(N ) because Thom(Y o,M)|Y o = Eul(N ).
Finally,∫

X

ι∗X([Y ]) · θ =

∫

M

[Y ] · Thom(X,M) · θ =

∫

X

Eul(N )|X · θ, ∀θ ∈ H∗(X).

This relation completes the proof. �

The isomorphism V γ>0 ≃ V/V γ≤0 shows that V γ>0 can be viewed as a Pγ-module.
Let Vγ>0 = KC ×Pγ

V γ>0 be the corresponding complex vector bundle on Fγ. In

the following proposition, we denote simply Eul(V γ>0) the Euler class Eul(Vγ>0
R ) ∈

H∗(Fγ,Z)

Proposition 6.14. • (γw̃, w̃K̃
γ
C × V γ) is a B-Ressayre’s pair on K̃C × V if and

only if (17) holds and [Xγ] · ι∗([X̃w̃,γ]) · Eul(V γ>0) = [pt] in H∗(Fγ,Z).

• (γw̃, w̃K̃
γ
C × V γ) is an infinitesimal B-Ressayre’s pair on K̃C × V if and only if

(17) holds and [Xγ ] · ι∗([X̃w̃,γ]) · Eul(V γ>0) = n[pt] for n ≥ 1.

Proof. As we noticed in Proposition 6.12, we have to analyse the sets θ(k̃, g) :=

rVw̃,γ((q̂
V
w̃,γ)

−1(k̃, g[e])) ⊂ F̃γ × Fγ associated to (k̃, g) ∈ K̃C ×G.

Consider the maps ι : Fγ → F̃γ and j : Fγ → FG
γ : here FG

γ := G/PG
γ and

j([k]) = [ρ̂(k)]. Let Y o ⊂ FG
γ be the orbit Q · [e] and let Y := Y o. A direct computation

shows that we have a bijective correspondance

θ(k̃, g) ≃ (ι× j)(Xo
γ)
⋂

k̃−1X̃o
w̃,γ × gY o.
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As in Lemma 6.8, we see that (γw̃, w̃K̃
γ
C×V γ) is a B-Ressayre’s pair if and only if (17)

holds and

[(ι× j)(Xγ)] · ([X̃w̃,γ]× [Y ]) = [pt]× [pt] ∈ H∗(F̃γ,Z)×H∗(FG
γ ,Z)

The former relation is equivalent to [Xγ]·ι∗([X̃w̃,γ])·j∗([Y ]) = [pt] ∈ H∗(Fγ,Z). In order
to compute the form j∗([Y ]), we decompose the map j : Fγ → FG

γ in j = ιX ◦ jX . Here
X = GL(V )[e] ⊂ FG

γ is a smooth projective submanifold contained in Y o, jX : Fγ → X

is the canonical map and ιX : X →֒ FG
γ is the inclusion. Finally

j∗([Y ]) = j∗X(ι
∗
X([Y ])) = j∗X (Eul(N|X)) = Eul(j−1

X (N|X)),

where N is the normal bundle of Y o in FG
γ . We leave it to readers to verify that the

vector bundle j−1
X (N|X) → Fγ corresponds to Vγ>0

R . The first point is settled and the
proof of the second point is similar. �

We can finally describe the Kirwan polyhedron ∆(T∗K̃ × V ).

Theorem 6.15. Let K ⊂ K̃ be a closed connected subgroup such as no non-zero ideal
of k is an ideal of k̃. Let V be a K-module such as the algebra Sym(V ∗)K of invariant
polynomial functions on V is reduced to the constants.

An element (ξ̃, ξ) ∈ t̃≥0 × t≥0 belongs to ∆(T∗K̃ × V ) if and only if

〈ξ̃, w̃γ̃〉+ 〈ξ, γ〉 ≥ 0

for any (γ, w̃) ∈ t× W̃ satisfying the following properties:

a) γ is rational and dimT (q
γ × V γ) = 1.

b) [Xγ] · ι∗([X̃w̃,γ]) · Eul(V γ>0) = [pt] in H∗(Fγ,Z).
c)

∑
α∈R+

〈α,γ〉>0
〈α, γ〉 =

∑
α̃∈R̃−

〈α̃,w̃γ〉>0

〈α̃, w̃γ〉+ Trγ(V
γ>0).

Similar results were obtained by Deltour in his thesis [8, 9], in the case where K̃ =
K ×K.

7. Appendix

Let (M,Ω) be a Kähler Hamiltonian K-manifold with proper moment map Φ. The
aim of this section is to explain how we can characterize the subset of analytical semi-
stable points in terms of the Kempf-Ness function. The result is well-known in the
compact case [28, 23, 10], and we will explain why it still holds when the moment map
is proper.

Let f := 1
2
‖Φ‖2 be the square of the moment map, and let ∇f ∈ Vect(M) be its

gradient vector field. We start with the following result (see Theorem 4.1 in [10]).

Proposition 7.1. Fix an element x ∈ M .

(1) There exists a unique function Ψx : KC → R such as

(18) dΨx(g)v := −〈Φ(g−1x), Im(g−1v)〉, Ψx(gk) = Ψx(g), Ψx(e) = 0,

for all g ∈ KC, v ∈ TgKC, and all k ∈ K.
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(2) Define a map ϕx : KC → M by ϕx(g) = g−1x. Then ϕx intertwines the gradient
vector field ∇Ψx ∈ Vect(KC) and the gradient vector field ∇f ∈ Vect(M) :

(19) Tϕx|g (∇Ψx|g) = ∇f |ϕx(g).

By equation (18) we have for all X ∈ k

Ψx(e
−itX) =

∫ t

0

〈Φ(eisXx), X〉ds, ∀ t ≥ 0.

Consider the homogeneous space X = KC/K : it is a complete Riemannian manifold
with non-positive sectional curvature.

Definition 7.2. The function Ψx : KC → R is called the lifted Kempf-Ness function
based at x. It is K-invariant and hence descends to a function Ψx : X → R denoted by
the same symbol and called the Kempf-Ness function.

Now, let us summarize the properties satisfied by the Kempf-Ness functions. The
proof given in [10][Theorem 4.3] still works when the moment map is proper.

Theorem 7.3. • The Kempf-Ness function Ψx : X → R is Morse-Bott and is
convex along geodesics.

• Every negative gradient flow line θ : R≥0 → X of Ψx satisfies

(20) lim
t→∞

Ψx(θ(t)) = inf
X
Ψx.

• The Kempf-Ness functions satisfy

(21) Ψh−1x(g) = Ψx(hg)−Ψx(h),

for x ∈ M and h, g ∈ KC.

Proof. The first point and the relations (21) are valid without compactness assumption
on M. We have seen in Proposition 7.1 that the map ϕx : KC → M intertwines the
gradient vector fields ∇Ψx and ∇f . As f is proper, every negative gradient flow line
of f are well-defined on R≥0. Thus every negative gradient flow line of Ψx are also
well-defined on R≥0. Then, one checks easily that the rest of the proof given in [10]
works. �

We can now state the generalized Kempf-Ness Theorem (see Theorem 7.3 in [10]).

Theorem 7.4. Let (M,Ω,Φ) be a Kähler Hamiltonian K-manifold with proper moment
map. Let x ∈ M and denote by Ψx : X → R the Kempf-Ness function of x. Then

KC x ∩ Φ−1(0) 6= ∅ ⇐⇒ Ψx is bounded below.

Proof. We follow the line of the proof given in [10][Theorem 7.3]. Fix a point x0 ∈ M
and denote by Ψ : X → R the Kempf-Ness function of x0. Let x : R≥0 → M be the
negative flow line relatively to f :

x′ = −J(Φ(x) · x), and x(0) = x0.

Notice that x(t) is well defined for any t ≥ 0 because f : M → R is proper. Let
g : R≥0 → KC be the unique solution of the differential equation g(t)−1g′(t) = iΦ(x(t)),
with initial condition g(0) = e. Then x(t) = g(t)−1x0 for all t ∈ R≥0. The limit
x∞ = limt→∞ x(t) exists and ‖Φ(x∞)‖ = infKCx ‖Φ‖ (see Corollary 3.5).
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If KC x ∩ Φ−1(0) = ∅, then ‖Φ(x∞)‖ > 0. Let θ : R≥0 → X denotes the composition
of g with the projection KC → X. By definition of the Kempf-Ness function, we have

d

dt
(Ψ ◦ θ) = −〈Φ(g(t)−1x0), Im(g(t)−1g′(t))〉 = −‖Φ(x(t))‖2 ≤ −‖Φ(x∞)‖2

for all t ≥ 0. We get then Ψ(θ(t)) ≤ −t ‖Φ(x∞)‖2, ∀t ≥ 0. Thus Ψ is unbounded
below.

Suppose now KC x ∩ Φ−1(0) 6= ∅. Then Φ(x∞) = 0. By the Lojasiewicz gradient
inequality, we know that there exists to > 0, and a, b > 0 such as f(x(t)) ≤ ae−bt

for t ≥ to. Thus d
dt
(Ψ ◦ θ) = −‖Φ(x(t))‖2 ≥ −2ae−bt for t ≥ to. This proves that

limt→∞ Ψ(θ(t)) = infX Ψ is finite. Thus, Ψ is bounded below. �

We state the main result of this appendix which completes the proof of Proposition
2.7. Let us denote by Mss = {x ∈ M ;KC x ∩ Φ−1(0) 6= ∅} the subset of analytical
semi-stable points.

Proposition 7.5. Let (γ, x) ∈ k×M , such as the limit xγ := limt→∞ e−itγx exists. If
x ∈ Mss and 〈Φ(xγ), γ〉 = 0, then xγ ∈ Mss.

Proof. Let us suppose that the Kempf-Ness function Ψx is bounded below by c ∈ R.
Relations (21) give

Ψe−itγx(g) = Ψx(e
itγg)−Ψx(e

itγ) ≥ c+

∫ t

0

〈Φ(e−isγx), γ〉ds, ∀ t ≥ 0, ∀g ∈ KC.

The function s → 〈Φ(e−isγx), γ〉 is decreasing and lims→∞〈Φ(e−isγx), γ〉 = 〈Φ(xγ), γ〉 =
0. Hence 〈Φ(e−isγx), γ〉 ≥ 0 for all s ≥ 0. We obtain then Ψe−itγx(g) ≥ c for all g ∈ KC

and all t ≥ 0. We get finally Ψxγ
(g) = limt→∞Ψe−itγx(g) ≥ c for all g ∈ KC. The

Kempf-Ness function Ψxγ
is bounded below, so xγ ∈ Mss. �
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