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Abstract 44 

Heat stress (HS) has adverse effects on the body: it decreases body weight, feed efficiency, feed 45 

intake, carcass quality, and nutrient digestibility. Chromium (Cr) can prevent lipid peroxidation 46 

induced by HS through its strong antioxidant activities, especially when it is added to the poultry 47 

diet. It improves the action of insulin and nutrient metabolism (of lipids, proteins, nucleic acid, 48 

and carbohydrates) through activation of enzymes associated with such pathways. The results of 49 

the studies on Cr added to diets with concentrations of 0.05 mg Cr/kg of Cr-methionine led to 50 

improved feed efficiency and DM intake by cows and Holstein dairy calves exposed to high 51 

environmental temperatures. Moreover, calves that received Cr at levels of 0.05 mg/kg of body 52 

weight tended to have higher serum concentrations of glucose and higher ratios of insulin to 53 

glucose. In heat-stressed pigs, Cr addition (200 ppb) increased blood neutrophils by about 37%. 54 

Several studies have asserted that Cr can inhibit inflammation in lactating cows by promoting the 55 

release of Hsp72, assisting production of IL-10 and inhibiting degradation of IκBα in HS 56 

conditions. In addition, Cr supplementation was observed to possibly have positive impacts on 57 

both cell-mediated and humeral immunity in heat-stressed buffalo calves. Studies over the last 58 

two decades have shown with certainty that chromium supplementation has an impact on many 59 

variables in chickens. Moreover, Cr is believed to increase insulin action in insulin-sensitive 60 

tissues (i.e., adipose and muscles), resulting in increased farm animal productivity through the 61 

improvement of feed intake, growth rate, carcass quality, reproductive parameters and immune 62 

functions. 63 

Keywords: Heat stress; chromium; growth; thermoregulation; heat shock proteins. 64 

 65 

 66 
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1. Introduction 67 

Heat stress (HS) occurs when the heat produced by animals surpasses their capacity to 68 

dissipate the extra heat into their surrounding environment (Alagawany et al., 2017; El-Kholy et 69 

al., 2018; Farghly et al., 2018). There are two main categories of HS: chronic and acute. Because 70 

chronic HS comes from high temperatures over a long period, acclimatization to the environment 71 

is possible. Acute HS, on the other hand, comes from rapid increase in the environmental 72 

temperature over a short period (Alagawany et al., 2017). HS elicits many physiological 73 

consequences. Its impacts include increased body and rectal temperatures, reduced feed 74 

consumption, impaired immunity, alteration of blood electrolyte balance and pH, poor feed 75 

utilization, depressed cellular energy bioavailability, impaired reproductive functions and 76 

impaired endocrine functions (Loyau et al., 2015).  77 

HS alters lipid, protein and carbohydrate metabolism. It also alters homeorhetic 78 

adaptations, which are largely caused by increased circulating insulin (Baumgard and Rhoads, 79 

2013). Hence, identification of nutritional approaches to ameliorate the effects of HS on health 80 

and production has become of interest recently (Khafaga et al., 2019). Alternation in utilization 81 

and substrate uptake is also a result of HS, but this phenomenon is not yet fully understood. 82 

When temperatures are high, metabolic adaptations occur to increase chances of survival. For 83 

example, feed intake in Holstein cattle during summer was found to result in lower insulin 84 

concentrations in summer than in winter and spring (Abdelnour et al., 2019). Likewise, plasma 85 

insulin was lower in heat-stressed lactating sows compared to a control group, although glucose 86 

concentration was the same (de Braganca and Prunier, 1999). In addition, Sevi et al. (2002) 87 

reported that plasma non-esterified fatty acids (NEFA) increased in sheep but declined in 88 

lactating cows due to heat exposure (Itoh et al., 1998; Shwartz et al., 2009; Wheelock et al., 89 
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2010). Under stress conditions, Cr requirements are higher due to increased urinary excretion 90 

(Chang and Mowat, 1992; Pechova and Pavlata, 2007; Yari et al., 2010).  91 

Chromium (a low-molecular-weight binding substance) activates insulin receptors and 92 

mobilizes the glucose transporter type 4 (GLUT 4) from the inside of the cell to the surface, 93 

allowing glucose to enter the cell (Vincent, 2015). Dietary Cr supplementation (0.5 to 1.5 mg/kg 94 

of dry matter (DM)) to heat-stressed buffalo calves improved heat tolerance, immune function, 95 

and insulin effectiveness. However, it had no effect on feed intake, growth rate, tri-iodothyronine 96 

(T3) or thyroxine (T4) concentrations (Kumar et al. 2015a).  97 

The effects of Cr supplementation on production were previously reported for the cases of 98 

heat-stressed cows (Soltan 2010) and normal cows (Sadri et al. 2009). However, the information 99 

concerning the influences of Cr on growth rate in heat-stressed calves is not consistent (Kumar et 100 

al. 2015a; Sadri et al. 2009; Yari et al. 2010). These inconsistencies could be attributed to the 101 

chemical form of Cr used (organic vs inorganic, yeast vs chelated Cr) (Kegley et al. 1997), the 102 

environmental conditions (normal vs heat-load conditions), Cr dosage, and method of Cr 103 

delivery (starter vs liquid).  104 

Several research papers described the influences of Cr supplementation to heat-stressed 105 

dairy calves on feed intake, growth rate, general health status, and blood metabolites. However, 106 

the way in which Cr affects the feed intake is not clear. To clarify this mechanism, investigation 107 

of ingestion behavior in calves supplemented with Cr is needed. 108 

There are no review articles summarizing the beneficial impacts of Cr on heat-stressed 109 

poultry. Therefore, the aim of the present paper is to highlight the consequences of Cr on 110 

thermoregulatory responses, growth rate, metabolites of blood, health status, oxidative 111 

biomarkers, and immune indices in different heat-stressed ruminants. 112 
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2. Heat stress in animals 113 

Heat stress has several direct and indirect effects on dairy animal health: it can disrupt 114 

normal metabolism as well as affect the physiological, hormonal, and immune status of animals 115 

(Abd El-Hack et al. 2019; Saeed et al. 2019). Incremental increases in environmental 116 

temperature exert direct adverse impact on the hypothalamus appetite center, with subsequent 117 

reduction in feed intake (Baile and Forbes, 1974). In lactating cows, feed intake starts to decrease 118 

at climatic temperatures of 25-26°C, and it may decline more rapidly at 30°C and drop by 119 

approximately 40% at 40°C (Rhoads et al., 2013). The purpose of this reduction in feed intake is 120 

to decrease production of heat in hot environments (Kadzere et al., 2002). As a result, animals 121 

may develop negative energy balance (NEB), with subsequent negative effect on body weight 122 

and body condition scores (Lacetera et al., 1996). Additionally, HS may affect the production 123 

and composition of milk in dairy animals (Bouraoui et al., 2002; West, 2003; Spiers et al., 2004; 124 

Upadhyay et al., 2009; Wheelock et al., 2010). Berman (2005) concluded that the stress-response 125 

systems in dairy cattle could be affected negatively in climatic temperatures above 35°C. Heat-126 

stressed dairy cows developed reduced feed intake and NEB, which is subsequently responsible 127 

for milk synthesis decline (Wheelock et al., 2010). 128 

 Moreover, HS often alters the physiological mechanisms of the rumen, with resultant 129 

increases in health problems and metabolic disorders (Nardone et al., 2010; Soriani et al., 2013). 130 

Nonaka et al. (2008) concluded that heat-stressed animal suffer from diminished acetate 131 

production and from increased propionate and butyrate production due to alterations in rumen 132 

function. As a result, stressed animals consume less roughage and undergo alteration of rumen 133 

pH and microbial population (Hall, 2009), diminished rumination and rumen motility (Nardone 134 

et al., 2010; Soriani et al., 2013), decreased salivary production, and less dry-matter intake 135 
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(DMI) (Nardone et al., 2010; Soriani et al., 2013). Also, HS resulted in decreased animal growth, 136 

carcass quality and fertility, and in increased mortality rate and care costs (Baumgard and 137 

Rhoads, 2013; Mayorga et al., 2019).  138 

 It is therefore necessary to develop protocols to overcome the negative impacts of HS. 139 

Nutritional intervention is considered to be an economical method for increasing production in 140 

summer (Mayorga et al., 2019). Indeed, dietary chromium enhances cellular glucose uptake 141 

(Chen et al., 2006) by increasing the binding of insulin to its extracellular receptors (NRC, 1994; 142 

Vincent, 2015). In addition, studies showed that average daily feed intake (ADFI), reproduction, 143 

immune response and growth performance are improved by Cr supplementation (Burton et al., 144 

1993b; Hayirli et al., 2001; Hung et al., 2014; Lindemann et al., 1995; Sadri et al., 2009; Sales 145 

and Jancik, 2011; Yasui et al., 2014). The adverse effect of HS in ruminants and their body 146 

reactions against it are summarized in Figure 1. Similarly, the adverse effect of HS on animal 147 

performance, production and reproduction is summarized in Figure 2. 148 

3. General properties of chromium and sources 149 

Trivalent Cr (Cr3+) has an effect on rodents (rats and mice), raising their sensitivity to 150 

insulin (Vincent, 2014). Despite the fact that, according to a report published by the European 151 

Food Safety Authority, there is no evidence that Cr is an essential trace element for either 152 

animals or humans (Vincent, 2014), Cr has for decades been thought to be an essential nutrient, 153 

and current studies show that high pharmacological and nutritional doses should be maintained 154 

as a beneficial element (Hua et al., 2012; Vincent, 2001; Vincent, 2017; Ibrahim et al., 2017). 155 

Farm animals, humans and laboratory animals have been the subject of studies of Cr as a dietary 156 

supplement. These studies showed that stress resulted in Cr deficiency (when Cr is considered 157 

essential) (e.g. see Lukaski et al., 1996) and in increased loss of Cr through urinary excretion.  158 
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Cr supplementation also overcomes the effects of stress stemming from animal shipping 159 

and meat quality improvement. The reviews made by the (NRC, 1994) in the mid-1990s and by 160 

Lindemann et al. (1995) are the most comprehensive reviews about the use of Cr 161 

supplementation for farm animals. No conclusions about the need for Cr supplementation in the 162 

diets of sheep, fish, rats, horses, and rabbits have been drawn or stated by the Animal Research 163 

Committee. Nor have any recommendations been made about Cr supplementation for poultry, 164 

cattle and swine, even though Cr does have beneficial impacts on heat-stressed cattle and pig 165 

leanness and on the effectiveness of reproduction (NRC, 1994).  166 

4. Mode of action of chromium in animal nutrition 167 

Chromium chloride, chromium polynicotinate, and chromium picolinate (CrP, Figure 3) 168 

are considered to be nutritional supplements and micronutrients. Several investigations 169 

concluded that chromodulin is a naturally occurring biomolecule that binds to trivalent Cr and 170 

could explain the action of Cr in metabolism of lipids and carbohydrates (Davis and Vincent, 171 

1997). Chromodulin is able to stimulate insulin-dependent glucose metabolism in adipocytes 172 

(Yamamoto et al., 1988). Moreover, it could activate the membrane phosphotyrosine 173 

phosphatase in adipocyte membranes (Davis et al., 1996).  174 

Supplemented levels of Cr are expected to induce little alteration on body weight and body 175 

composition. However, the administration of high levels of Cr could potentially lead to altered 176 

Cr status, with subsequent alteration in metabolisms (John, 2004). 177 

In addition, CrP has the potential to control levels of blood sugar in diabetes, control blood 178 

pressure levels, and reduce cholesterol. Cr acts as a cofactor for insulin; therefore, it activates 179 

insulin receptor kinase and increases the number of insulin receptors. CrP attenuates weight gain, 180 



 9 

but the mechanism for this is unknown (Anton et al., 2008). It may have an action through its 181 

influence on the balance of energy to either decrease feed intake or increase energy expenditure.  182 

Cr affects reproduction by enlarging the seminal vesicles, increasing prostate weight and 183 

reducing testis weight (Marouani et al., 2012). It also affects weight loss by decreasing fat 184 

percentage and increasing lean body mass (Anderson, 1998). 185 

Stress stimulates the hypothalamus to produce corticotropin, which stimulates the pituitary 186 

to produce the adrenocorticotropic hormone, which in turn stimulates the adrenal cortex to 187 

release corticosterone. Corticoids depress the immune system and reduce the concentration of 188 

serum protein. They also raise blood glucose levels and decrease the utilization of glucose, thus 189 

functioning as antagonists to Cr, which influence the release of corticosteroids. The role of Cr3+ 190 

against cellular glucose uptake is summarized in Figure 4. 191 

5. Impacts of chromium in heat-stressed animals 192 

The potential beneficial impact for dietary supplementation of Cr during HS could be 193 

obtained through several pathways. The main findings related to Cr supplementation in heat-194 

stressed animals are summarized in Table 1 and discussed in the following sections. 195 

5. 1 Thermoregulatory responses 196 

Thermoregulatory response is considered to be the first indicator of HS. HS is associated 197 

with increased respiration, pulse rate and body temperature in homothermic animals. A dietary 198 

supplement of 0.05 mg of Cr-methionine/kg of body weight significantly reduced the respiration 199 

rate (RR) in heat-stressed dairy calves (Mousavi et al. 2019b). Cr (0.05 mg/kg of body weight) 200 

had the same effect but had no effect on RT (Kargar et al., 2018b). In heat-stressed calves, Cr-201 

methionine at 0.05 mg/kg of body weight reduced diarrhea to -0.9 d, pneumonia to -0.7 d and 202 

medication to -1.5 d before weaning (Kargar et al., 2018b; Mousavi et al., 2019a). 203 
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Most studies indicated that Cr decreases RT to overcome the effects of HS (Kargar et al., 204 

2018b). Mousavi et al. (2019a) found no effect of Cr-methionine on diarrhea, pneumonia, 205 

medication days or RT in heat-stressed calves. Also, Kumar et al. (2015a) found no effect of 0.5, 206 

1 or 1.5 mg of inorganic Cr/kg on pulse rate (PR), RR or RT in heat-stressed buffalo calves. An-207 

Qiang et al. (2009) measured the values of RR and RT for cows undergoing Cr supplementation 208 

(3.6, 7.2 or 10.8-milligram chromium/head per day) and cows without any supplementation and 209 

found no differences. According to the previous results, Cr has no impact on somatic cell count 210 

and or on RT, PR or RR in lactating cows (Qi et al. 2018b). A separate study indicated that Cr 211 

propionate (200 ppb) has no effect on RR, skin temperature (ST) or body temperature (BT) in 212 

heat-stressed pigs (Mayorga et al., 2019). 213 

5.2 Growth performance 214 

Thermal stress has been reported to decrease feed intake, weight gain and effectiveness of 215 

feed intake (Abdelnour et al., 2019). Separate studies corroborated that heat-load results in 216 

decreased feed intake and growth performance and that indicated that, in turn, it results in 217 

decreased energy expenditure for tissue synthesis (Johnson et al., 2015; Kerr et al., 2003; Le 218 

Bellego et al., 2002; Mayorga et al., 2019). To counter this, Cr supplementation can result in 219 

increased feed intake in heat-stressed animals and hence growth performance, as shown by 220 

several studies (Hayirli et al., 2001; Hung et al., 2014; Mayorga et al., 2019; Sahin et al., 2002). 221 

Likewise, Cr yeast increased feed intake in heat-stressed lactating dairy cows compared with a 222 

control group (21.24 and 19.56 kg/day, respectively) (Alsaiady et al., 2004; Hayirli et al., 2001).  223 

Feed efficiency and average daily gain increased in the case of calves in their growth stage 224 

fed Cr at a level of 4 mg/head (Chang and Mowat, 1992). This result is due to the increase in 225 

total levels of immunoglobulins in serum (Burton, 1995; Burton et al., 1996; Chang and Mowat, 226 
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1992). Moreover, the supplementation of 0.05 mg Cr/kg of body weight of Cr-methionine in 227 

cows’ diets increased feed efficiency and DMI (Arthington et al., 1997). Supplementation of 3.6, 228 

7.2 and 10.8 mg chromium/head/day to heat-stressed dairy cows resulted in a significant increase 229 

in DMI (p < 0.05) according to An-Qiang et al. (2009). Mousavi et al. (2019a) reported that 230 

supplementation of Cr to dairy calves under HS resulted in increases in DMI (P = 0.002) and in 231 

average daily gain (ADG) (p= 0.02) but had no effect on effectiveness of feed (P = 0.93) or on 232 

body weight (p = 0.14). On the other hand, Kargar et al. (2018b) found that dietary 233 

supplementation of chromium improved the intake of feed and growth rate in dairy Holstein 234 

calves exposed to high environmental temperature (83.3 units). Also, the addition of Cr at a level 235 

of 0.05 mg/kg of body weight to a milk substitute or to diets for cattle during the pre- and post-236 

weaning periods led to increases, at the end of the experiment, in feed intake, DM intake and 237 

average body weight gain, by 16.4%, 11.85% and 7.07% respectively. Cr supplementation 238 

improves growth rate and body weight by enhancing the absorption and digestion of nutrients 239 

(Ghorbani et al., 2012; Kargar et al., 2018a). Moreover, in finisher gilts exposed to high 240 

temperatures, the application of nano-chromium tripicolinate (400 ppb) resulted in a reduction in 241 

cortisol level by 25% and an increase in feed intake by 6% (Hung et al., 2014). Mayorga et al. 242 

(2019) discovered that final body weight increased in heat-stressed finishing pigs when fed with 243 

200 ppb of chromium propionate.  244 

Rumination activity was reported to decrease as a result of environmental heat load 245 

(Soriani et al., 2013). Decreased rumen motility as a result of a slowing in the fractional digesta 246 

passage rate has led to a decrease in feed intake (Nikkhah, 2012). Although the mechanism by 247 

which Cr affects rumination patterns is unclear, the insulin-potentiating pathway may be 248 

involved. In contrast with previous results, Cr supplementation given over 120 days to Murrah 249 
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buffalo calves had no significant effect on feed conversion ratio (FCR), ADG or intake of DM 250 

(Kumar et al., 2015a). Similar results recorded by Qi et al. (2018a), Subiyatno et al. (1996) 251 

showed that Cr has no influence on DM intake. Also, the results of tests performed under normal 252 

conditions by Bunting et al. (2000) and Ghorbani et al. (2012) showed that Cr has no influence 253 

on feed intake or total DMI. The timing of supplementation of Cr to the diet (pre-partum or 254 

immediately post-partum) had an impact on the response.  255 

Overall, the addition of Cr yeast to the diet has been observed to attenuate the negative 256 

impacts of high environmental temperatures and result in a reduction in feed intake and 257 

efficiency. Cr requirements for calves increase under a variety of stress conditions (Chang and 258 

Mowat, 1992; Pechova and Pavlata, 2007). Such variations are due to changes in the 259 

concentration of supplementation and the method of adding Cr to milk only or colostrum plus 260 

milk. Cr requirements as a whole rise during thermal heat load; this is a result of increased Cr 261 

urinary excretion, which in turn results in diminished feed intake (Kargar et al., 2018b; Pantelic 262 

et al., 2018; Yari et al., 2010). In short, to attenuate the impacts of HS, dietary Cr should be used 263 

to improve both the performance of animals and their welfare (Kargar et al., 2018b). 264 

5.3 Milk yield and composition 265 

Adding (4 g/head/day) of dietary chelated chromium to the diet of heat-stressed dairy cows 266 

has no effect on milk fats, protein, lactose, or the non-fat percentage of solids (Alsaiady et al., 267 

2004). A significant rise (p < 0.05) in milk protein, fat and lactose levels by 1.043%, 1.066% and 268 

1.020% respectively was recorded by Nikkhah (2012) when heat-stressed dairy cows were 269 

supplied with 0.05 mg Cr/kg. Moderate levels of Cr resulted in an increase in the ingestion of 270 

feed, DM effectiveness and a decline in insulin levels, leading to a significant augmentation in 271 

milk secretion as a result of increased mammary nutrient flow (Winkelman and Overton, 2012). 272 
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Insulin growth factor (IGF) activity, which has functional and structural homology with 273 

insulin receptors, is supported through the improvement of milk production, which also mimics 274 

the action of bovine somatotropin (bST) (Alsaiady et al., 2004). Likewise, milk production 275 

increased, resulting in a decline in lipolysis. In a separate study, increase in glucose uptake, 276 

which leads to a rise in DMI (NRC, 1994), resulted from receiving 10 mg/day of Cr from 21 277 

days pre-partum to 35 postpartum (McNamara and Valdez, 2005). Additionally, milk yield was 278 

found to increase (p=0.013) after the supplementation of chromium picolinate to the diet of heat-279 

stressed cows (An-Qiang et al., 2009). On the other hand, An-Qiang et al. (2009) reported that 280 

dietary Cr had no significant effect on milk components (protein, fat and lactose) in dairy cows 281 

under high temperature (79.61). The beneficial effect of chromium on glucose and NEFA 282 

metabolism in dairy cattle is illustrated in Figure 5.  283 

5.4 Blood variables 284 

Cr yeast (4 mg/day) fed to lactating cows failed to show any effect on the blood serum 285 

levels of hemagglutination (HA), cholesterol, triglycerides, urea, IGF-1, BHBA, albumen, and 286 

glucose (Mirzaei et al., 2011; Soltan, 2010) but did show a drop in total blood and protein 287 

concentration (Soltan, 2010). Serum, insulin and NEFA reduced significantly when 0.05 mg 288 

Cr/kg of body weight of Cr yeast was supplemented (Yari et al., 2010). Recently, in dairy farm 289 

calves suffering from HS, dietary supplementation with 0.05 mg of Cr-methionine/kg of body 290 

weight had no significant influence on glucose, albumin, A/G ratio, triglyceride cholesterol, β- 291 

Hydroxybutyrate (βHBA) or blood urea nitrogen (BUN). Nevertheless, the serum concentration 292 

of globulin tended to be higher in calves supplemented with Cr+3 during the experimentation 293 

period (Mousavi et al., 2019a). 294 
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Calves supplied with chromium at a level of 0.05 mg/kg body weight tended to have higher 295 

serum concentrations of glucose and higher ratios of insulin to glucose measured at the end of 296 

the experiment (Kargar et al. 2018b). The same results were recorded by Yari et al. (2010) and 297 

Ghorbani et al. (2012). Similarly, Jin et al. (2017) suggested that dietary supplementation of 298 

chromium picolinate (3.5 mg of Cr/cow daily) to lactating cows under HS conditions did not 299 

exhibit any changes in glucose, BUN, cholesterol or creatinine. 300 

Mayorga et al. (2019) reported similar results as he demonstrated that heat-stressed 301 

finishing pigs supplied with 200 ppb of chromium propionate did not show any shift in most of 302 

the blood parameters except for neutrophils. Heat-stressed pigs treated with chromium 303 

propionate supplementation (200 ppb) showed an increase in blood neutrophils by 37% 304 

compared to the control group (Mayorga et al., 2019). Adding chromium (p < 0.01) was found to 305 

raise albumin/globulin ratio as well as cholesterol level (Soltan, 2010). Enhanced insulin action 306 

allows glucose to enter the cell and can repress lipolysis. Reduced mobilization of fats was 307 

reported to decrease dependence on body storage and lessen NEFA (Yang et al., 1996). Reduced 308 

NEFA raises DMI through the reversed lipostatic mechanism: as the levels of NEFA increase, 309 

the intake of food will decrease (Forbes, 2007; McNamara and Valdez, 2005). Milk production 310 

was found to increase when insulin action is improved as a result of the reduction in NEFA and 311 

insulin levels despite fixed glucose levels (Hayirli et al., 2001). Yari et al. (2010) and Ghorbani 312 

et al. (2012) reported similar results. Similarity, Jin et al. (2017) suggested that dietary 313 

supplementation of 3.5 mg of chromium picolinate daily to lactating cows under heat-stress 314 

conditions did not exhibit any changes in cholesterol, glucose, BUN or creatinine levels. In 315 

finisher gilts reared under summer conditions, plasma glucose, insulin and NEFA levels in serum 316 
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did not change in chromium tripicolinate nanoparticles-treated pigs (400 ppb) compared to those 317 

in the control group (Hung et al., 2014).  318 

Bareille and Faverdin (1996) found evidence indicating that insulin can affect rumination 319 

by increasing the motility of reticulum and rumen through enhancing the entry of glucose into 320 

the cells. They also reported an increase in rumination time when glucose was infused 321 

intravenously (2.75 mmol/kg) to dairy cows. However, supplemental Cr did not affect blood 322 

insulin concentration at weaning or rumination time during the pre-weaning period in their study, 323 

despite the fact that rumination patterns changed (decreased rumination frequency and increased 324 

rumination duration and interval). Therefore, the relationship between blood insulin 325 

concentration and rumination patterns needs to be investigated further.  326 

Chromium supplementation had little impact on insulin and blood glucose levels for both 327 

control and heat-stressed calves (Ghorbani et al., 2012; Yari et al., 2010). Kumar et al. (2015a) 328 

reported a reduction in blood insulin concentration in buffalo calves under HS when 1.0 and 1.5 329 

mg Cr/kg of DMI was supplemented, but not in the case of 0.5 mg Cr/kg. Consistent with these 330 

results, Bunting et al. (2000) found that blood glucose decreased and insulin levels increased 331 

when 0.5 mg of Cr/kg of DMI was supplemented to dairy calves. Chromium supplementation 332 

increased both insulin concentrations and the ratio of insulin to glucose, suggesting that high 333 

levels of insulin were needed in order to make blood free from glucose (weak insulin sensitivity) 334 

and that resistance to insulin increased over that time period (Bunting et al., 2000). 335 

5.5 Hormones 336 

After 0.05 mg of Cr-methionine/kg of body weight was given in supplementation to dairy 337 

calves exposed to HS, Mousavi et al. (2019a) observed no notable effect on thyroxin (T3, T4, 338 

T3/T4 ratio), and cortisol hormone activities. However, they also reported that calves fed with Cr 339 
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recorded high insulin levels and insulin-to-glucose ratios compared to those in the control group. 340 

Similarly, Kargar et al. (2018b) reported that chromium supplementation (0.05 mg/kg of body 341 

weight) had no influence on serum levels of T3, T4 or cortisol when measured at pre- and post-342 

weaning. Calves fed .04 mg Cr/kg of body weight showed no difference in T3 or T4 blood 343 

concentration. 344 

The same results were observed in buffalo calves that received 0.5, 1.0, and 1.5 mg of 345 

Cr/kg of DMI (Kumar et al., 2015a). However, Cr supplementation of 0.03 mg of Cr/kg of body 346 

weight increased blood T4 concentration and reduced T3-to-T4 ratio in dairy calves (Ghorbani et 347 

al., 2012). On the other hand, it was reported that raising Cr doses (from 0 to 0.02 and 0.04 mg 348 

Cr/kg of body weight) resulted in a quadratic decline in serum T4, whereas blood T3 decreased 349 

only with the higher Cr dose supplementation in dairy calves (Yari et al., 2010). 350 

5.6 Antioxidants 351 

Cr supplementations do not influence malondialdehyde (MDA) or glutathione peroxidase 352 

(GPx) serum levels, but the concentration of superoxide dismutase (SOD) tended to increase in 353 

calves receiving Cr-methionine at levels of 0.05 mg Cr/kg of body weight at weaning. 354 

Furthermore, serum activities of catalase in calves fed Cr-methionine was higher after weaning 355 

(p < 0.001) (Jin et al., 2017). Moreover, Mousavi et al. (2019a) revealed a significant reduction 356 

of creatine kinase as a response to yeast-chromium (Cr yeast, 8 mg/d) dietary supplementation to 357 

lactating heat-stressed cows; this result may be linked to application of different types of 358 

animals, suitable doses of chromium, and its chemical forms. 359 

On the other hand, (Qi et al., 2018a) reported that supplementation of chromium picolinate 360 

(3.5 mg of Cr/cow daily) under hot conditions did not have an effect on antioxidant activities 361 

such as serum total antioxidant capacity (T-AOC), SOD activity, or MDA levels of lactating 362 
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cows (Qi et al. 2018a). Qi et al. (2018a) moreover suggested that Cr can inhibit inflammation in 363 

lactating cows by promoting the release of Hsp72, facilitating the production of IL-10, and 364 

inhibiting the degradation of IκBα under HS conditions.  365 

5.7 Immunity 366 

Kumar et al. (2015a) observed that 1mg Cr/kg DM had positive impacts on both cell-367 

mediated and humeral immunity in heat-stressed buffalo calves. Kumar et al. (2015a) 368 

investigated different levels: 0.5, 1.0 and 1.5 mg of inorganic Cr/kg DM of the diet of buffalo 369 

calves under high environmental temperature conditions: buffalo calves receiving 1.5 mg/kg DM 370 

of Cr (p < 0.01) showed the highest immune status values and plasma Cr concentration during 371 

the stages of the experiment. It was found that buffalo calves receiving 1.5 mg/kg of DM of Cr 372 

exhibited a boost in the proliferation of B or T lymphocyte values (+16.50%), the phagocytic 373 

activity of neutrophils (13.72%), fluorescence recovery after use of the photobleaching (FRAP) 374 

technique (27.88%) and immunoglobulin of plasma (13.14%) compared with the control buffalo 375 

calves (Kumar et al., 2015a). The negative influence of HS on cows can be reduced through 376 

improved immunological activities under the effect of chromium supplementation. A significant 377 

enhancement in lymphocytes proliferation and blastogenesis in inorganic Cr given as 378 

supplementation to periparturient buffaloes was reported by several researchers (Burton et al., 379 

1993a; Chang and Mowat, 1992; Kumar et al., 2015b).  380 

It was reported that beef calves given supplementation of 15 mg/kg DM of Cr) had a slight 381 

improvement in cell-mediated immunity. Supplementation of Cr may have improved immune 382 

status by increasing immunoglobulin (IgM) and decreasing blood cortisol levels in buffalo calves 383 

compared to those in the control group, although an increase in cortisol level after exposure to 384 

high temperatures was also observed (Abdelnour et al., 2019; Kumar et al., 2015b). This led to 385 
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depression in immunity by preventing proliferation of lymphocytes, the activation of 386 

lymphocytes factors, and the production of T-cell growth factors (Munck et al., 1984; Roth and 387 

Kaeberle, 1982). Wang et al. (2007) recorded that supplementation of 200 ppb Nano- Cr/kg in 388 

pigs increased the serum levels of IgG and IgM by 20.6% and 13.2% respectively. Likewise, 389 

serum total levels of Ig and IgM increased after supplementation of Cr yeast to the diets of 390 

stressed calves (Burton et al., 1993a). On the other hand, Kegley and Spears (1995) found that Cr 391 

nicotinate and Cr yeast supplementation for stressed calves had no impact on total levels of IgM. 392 

To develop immunoglobin concentration and the proliferation of lymphocytes, advanced 393 

antioxidants are needed for the production of immunoglobulin (Bach et al., 2000). 394 

5.8 Heat shock proteins (HSPs)  395 

Heat-stressed lactating Holstein cows with a chromium diet (Cr yeast, 8 mg/d) were found 396 

to have a significant elevation (p<0.05) of blood HSP mRNA expression on d 44 of exposure, 397 

and Kumar et al. (2015b) found that the addition of 1.5 mg of Cr/kg to the diet of heat-stressed 398 

buffalo calves decreased Hsp70 significantly. Similarly, Qi et al. (2018a) confirmed that the 399 

supplementation of 3.5 mg Cr/kg daily to the diets of heat-stressed lactating cows increased 400 

Hsp72 significantly (11.68 ppb) compared to those that did not receive Cr (6.21 ppb). 401 

 402 

6. Conclusion and future perspectives 403 

The rapidly changing climate, global warming, and accompanying rapid growth in 404 

population size are sounding the alarm for the development of critical strategies to manage 405 

livestock productivity and reproducibility. As shown in this current review, HS has an effect on 406 

the nutritional metabolic and antioxidant status of livestock. When exposed to HS conditions, 407 

animals maintain thermoregulation and homeostasis via metabolic and physiological adjustments 408 



 19

that can have a negative influence on growth performance. Feed intake is lowered, and growth 409 

rates consequently decrease. Alterations in nutrient partitioning and utilization as well as in 410 

immune and metabolic functions have also been reported. Cr restores productivity, performance, 411 

nutrient digestibility, antioxidant profile and immune status while decreasing lipid peroxidation, 412 

cholesterol and fat content in animals after exposure to HS. Therefore, dietary supplementation 413 

with Cr may be recommended as a nutritional strategy to modulate the negative effects of HS in 414 

broilers. 415 

Proper nutritional management of livestock so that animals maintain energy balance could 416 

have a positive effect on reproductive status and resulting embryos, future progeny and 417 

production. More in-depth studies using genomic and metabolomic technologies are needed to 418 

clearly investigate the genomic and epigenetic mechanism of action of HS on livestock 419 

development. Most of the literature discussing the effect of HS and/or NEB on livestock health is 420 

based on in vivo chromium effects. Because of its marked role in poultry performance and 421 

production, Cr could be considered as one of the very essential components in poultry feed 422 

during times of HS. Furthermore, the effect of Cr diet interaction with livestock health status 423 

during HS is a new area that should be considered for future research. Another future 424 

consideration is proper attention on breeding programs, for selection of HS-tolerant breeds, 425 

instead of only selection for high-production breeds.  426 
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 Figure legends 701 

 Figure 1. Summary of heat stress adverse impacts and body reactions in ruminants. 702 

Figure 2. Effect of heat stress on animal performance, production and reproduction. 703 

Figure 3. Chemical formula of Cr III picolinate. 704 

Figure 4. The role of Chromium (III) against cellular glucose uptake (insulin binds to its 705 

receptor, which in turn initiates several protein-signaling cascades, including a signal that 706 

causes the translocation of the GLUT4 into the plasma membrane (PM). Cr (III) induces 707 

a loss of PM cholesterol. Accumulation of GLUT4 at the PM has been shown to be 708 

dependent on the Cr (III)-induced cholesterol loss and leads to an increase in cellular 709 

glucose uptake.  710 

Figure 5. The beneficial effect of Chromium on glucose and non-esterified fatty acids (NEFA) 711 

metabolism in dairy cattle. 712 













Table 1.  The main findings related to Cr supplementation in heat stressed-animals 

  Parameter  Species Form & dosage Findings         References 

1
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ry
 r
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sp

o
n

se
s 

 

 

 

 

 

 

 

Dairy 

calves. 

• Cr-methionine 

(0.05 mg /kg 

BW0.75). 

• Cr (0.05 mg/kg 

BW0.75). 

 

• Cr-methionine at 

0.05 mg/kg 

BW0.75 

 

               - 

• Significantly reduced the Respiration rate (RR). 

 

 

• Reduced the RR but has no effect on rectal temperature (RT). 

 

 

• Reduced the days with diarrhea (-0.9 d), pneumonia (-0.7 d) 

and total medication days (-1.5 d) before weaning in heat 

stressed calves. 

 

• No effect of Cr methionine on diarrhea, pneumonia, 

medication days and RT in heat stressed calves. 

• (Mousavi et al., 

2019b) 

 

• (Kargar et al., 

2018b) 

 

• (Mousavi et al., 

2019a) 

 

 

• (Mousavi et al., 

2019a) 

Buffalo 

calves. 
• Cr (0.5, 1 or 1.5 

mg inorganic Cr/kg 

• No effect on PR, RR and RT in heated buffalo calves. • (Kumar et al., 

2015) 

 

Cows. 
• (3.6, 7.2 or 10.8 

milligram 

chromium/head per 

day) 

• Values    of   RR   and RT for cows take Cr supplement and 

cows without any supplement were with no differences                              

• According to the previous results Cr has no impact on somatic 

cell count and (RT, PR, RR) in lactating cows.                                        

• (An-Qiang et al., 

2009) 

• (Qi et al., 2018) 

Pigs. • Cr propionate 

(200ppb). 

• No effect on RR, ST and BT in heat stressed pigs. • (Mayorga et al., 

2019) 

 



 

2
- 

G
ro

w
th

 p
er

fo
rm

a
n

ce
 

 

 

Cows. 
• Cr yeast. 

 

• Cr–methionine at 

0.05 mg Cr/kg. 

• Cr (3.6, 7.2 and 

10.8 mg chromium/ 

head/day) 

• Increased feed intake in heat stressed lactating dairy cows 

compared with control group (21.24 and 19.56kg/day, 

respectively 21.24 and 19.56kg/day, respectively. 

• Increases feed efficiency and dry matter intake. 

• Significant increase (p < 0.05) as reported in the DMI. 

• (Alsaiady et al., 

2004) 

 

• (Arthington et al., 

1997) 

• (An-Qiang et al., 

2009) 

 

 

 

 

 

Calves. 

          - 

 

 

 

 

• 0.05 mg/kg 

BW0.75 Cr. 

 

 

 

 

 

 

             - 

 

 

 

 

• 4 mg/head. 

 

 

 

          - 

 

       

• The supplement of Cr to heat stressed dairy calves resulted in 

increasing total DMI (P = 0.002), ADG (P = 0.02) but has no 

effect on feed efficiency (P = 0.93) or final body weight (P = 

0.14). 

 

• Dietary supplementation of Chromium improved feed intake 

and growth rate in Holstein dairy calves exposed to high 

environmental temperature (THI=83.3 units), Also, the 

addition of Cr to a milk substitute or diets during pre and 

post-weaning cattle increases the feed intake, dry matter 

intake and average body weight gain at the end of the 

experiment of 16.4 %, 11.85 and 7.07 % respectively. 

 

• Cr supplement improves growth rate and body weight through 

enhancing the absorption and digestion of nutrients. Under a 

variety of stress conditions, Cr requirement of calves is 

increased. 

 

 

• Feed efficiency and average daily gain increased in case of 

growing calves fed Cr. 

 

 

• This result is due to increase the total levels of 

• (Mousavi et al., 

2019a) 

 

 

• (Kargar et al., 

2018a) 

 

 

 

 

 

• (Ghorbani et al., 

2012) 

 

 

 

• (Chang and Mowat, 

1992) 

  

 

• (Burton et al., 

1996) 

 



          - 

 

 

 

• 0.5 mg/kg of 

supplemental Cr as 

Cr propionate. 

            

immunoglobulins in serum. 

 

• Cr supplementation to Murrah buffalo calves showed no 

significant effect on feed conversion ratio (FCR) over a period 

of 120 days, average daily gain (ADG) and dry matter intake. 

 

• Under normal conditions, Cr has no influence on feed intake 

or total DMI. 

• (Kumar et al., 

2015) 

 

• (Bunting et al., 

2000) 

 

 Pigs • 200ppb of 

Chromium 

propionate. 

• Final body weight has increased in heat stressed finishing pigs. • (Mayorga et al., 

2019) 
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Dairy 

cows. 

• (4g/head/day) of 

Dietary chelated 

chromium. 

• Cr at 0.05 mg 

Cr/kg). 

 

• Moderate levels 

of Cr. 

 

            

 

 

 

 

• 10 mg/day Cr 

from 21 days 

pre-partum to 35 

postpartum. 

• Chromium 

picolinate. 

• Adding to the diet of heat loaded dairy cows has no effect on milk 

fats, protein, lactose, and solids non-fat percentage. 

 

• A significant rise (p < 0.05) in milk protein, fat and lactose levels 

by 1.043,1.066,1.02 %, respectively is recorded when heat 

stressed dairy cows are supplied with Cr. 

• Increase in feed intake, dry matter efficiency and a decline in the 

insulin levels leading to a significant increase in milk secretion as 

a result of increasing the mammary nutrient flow. 

• The activity of Insulin growth factor (IGF) that has functional and 

structural homology to insulin receptors are supported through the 

improvement of milk production which also mimic the action of 

bovine somatotropin (bST). 

 

• An increase in milk production which was associated with 

decrease lipolysis and increase glucose uptake that will result in 

DMI rise. 

 

• The milk yield has increased (p=0.013), dietary Cr has no 

significant on milk components (protein, fat and lactose) in dairy 

cows under high temperature (THI=79.61). 

• (Alsaiady et al., 

2004) 

 

• (Nikkhah, 2012) 

 

 

• (Winkelman and 

Overton, 2012) 

 

• (Alsaiady et al., 

2004) 

 

  

•  (McNamara and 

Valdez, 2005) 

 

 

• (An-Qiang et al., 

2009) 

 



  

4
-B

lo
o
d

 v
a
ri

a
b

le
s 

 

 

 

 

 

 

Cows. 

• Chromium yeast 

(6mg/head /day). 

 

 

 

• 0.05 mg of 

supplemental 

Cr/kg of BW 

0.75 

 

• Chromium 

picolinate (3.5 

mg of Cr/cow 

daily). 

 

• 3.5m g/kg of 

Cr/cow. 

• Failed to show any effect on blood serum level of 

hemagglutination test (HA), cholesterol, triglycerides, urea, IGF-

1, BHBA, albumen, and glucose while there is a drop in total 

blood and protein concentration. 

 

• Serum, insulin and NEFA reduced significantly. 

 

 

 

 

• No changes in glucose, blood urea nitrogen (BUN), creatinine, 

and cholesterol of lactating cows under heat stress conditions. 

 

 

 

• Significantly increased Hsp72 (11.68 μg/L) compared to those did 

not receive Cr (6.21 μg/L), Cr may play an anti-inflammatory role 

in lactating cows by promoting the release of Hsp72, increasing 

the production of IL-10, and inhibiting the degradation of IκBα 

under summer hot situation. 

 

• (Soltan, 2010).  

 

 

 

• (Yari et al., 2010) 

  

 

 

 

• (Jin et al., 2017) 

 

 

 

• (Qi et al., 2018) 

 

  

  

 

 

 

 

 

 

Calves. 

 

• Cr-methionine 

(0.05 mg /kg BW 

0.75). 

 

 

• Chromium at 

level 0.05 mg/kg 

BW 0.75 

 

 

 

• Dairy farm calves suffering from heat stress had no significant 

influence on glucose, albumin, and A/G ratio, 

triglyceridecholesterol, βHBA and BUN. Nevertheless, the serum 

concentration of globulin tended to be higher in Cr+ calves during 

the experimental period. 

• Higher serum concentrations of glucose and a higher ratio of 

insulin to glucose measured at the end of the experiment. 

 

 

• Chromium supplementation had small effects on blood glucose 

and insulin in calves under normal or heat-stress conditions. 

• (Mousavi et al., 

2019a) 

 

 

• (Kargar et al., 

2018b; Yari et al., 

2010) 

 

• (Ghorbani et al., 

2012) 



• 1 and 1.5 mg/kg 

of DMI. 

 

 

• 0.5 mg of Cr/kg 

of DMI. 

 

 

• Cr-methionine 

(0.05 mg /kg 

BW0.75). 

 

 

 

 

• 0.04 mg Cr/kg of 

BW0.75. 

 

• 0.5, 1, and 1.5 

mg of Cr/kg 

 

• (0.03 mg of 

Cr/kg of 

BW0.75). 

 

• Raising Cr doses 

(from 0 to 0.02 

and 0.04 mg 

Cr/kg of 

BW0.75). 

• Blood insulin concentration reduced in heat-stressed buffalo 

calves but not at 0.5 mg/kg of DMI. 

 

 

• Blood concentrations of glucose and insulin decreased and 

increased, respectively, when dairy calves were supplemented 

with cr. 

 

- Hormones:   

• No notable effect on the T3, T4, T3/T4 ratio, and cortisol 

hormones activities However, they also reported that calves fed 

with Cr, recorded higher blood insulin level and insulin to glucose 

ratio as compared to those in the control group. 

 

 

• No influences on serum levels of T3, T4 and cortisol measured at 

pre and post weaning.   

 

• Similar findings were observed in buffalo calves that received 

0.5, 1, and 1.5 mg of Cr/kg of DMI. 

 

• Increased blood T4 concentration and reduced T3 to T4 ratio in 

dairy calves. 

 

 

 

• Quadratic decline in serum T4, whereas blood T3 decreased only 

with the higher Cr dose supplementation in dairy calves. 

 

• (Kumar et al., 

2015) 

 

 

• (Bunting et al., 

2000) 

 

 

• (Mousavi et al., 

2019a) 

 

 

 

• (Kargar et al., 

2018b) 

 

• (Kumar et al., 

2015) 

• (Ghorbani et al., 

2012) 

 

 

 

• (Yari et al., 2010) 

 



 

 

 

 

Cows 

 

 

• (Cr-Yeast, 

8mg/d). 

- Antioxidants: 

• Significant reduction of creatine kinase as a response to yeast-

chromium dietary supplementation to lactating heat-stressed 

cows, which may be attributed to the use of different animal 

models, proper dose gradients of Cr, and chemical forms of Cr. 

 

• (Mousavi et al., 

2019a) 

  

 

Calves. 

 

• 1.0 mg Cr/kg 

DM and above. 

• High Cr-yeast. 

 

• 4 mg of 

supplemental 

Cr/kg of DM and 

Cr nicotinate. 

•  1.5 mg of Cr/kg. 

 

• Positive impacts in improving both humeral and cell-mediated 

immunity in heat-stressed buffalo calves. 

 -Increased serum total Ig and IgM levels in high Cr-yeast 

supplemented calves following transport stress. 

• No change in total IgM in both high-Cr yeast and Cr nicotinate 

supplemented transport stressed calves. 

 

 

• To heat stressed buffalo calves, decreased significantly Hsp70. 

 

• (Kumar et al., 

2015) 

• (Burton et al., 

1993) 

• (Kegley and 

Spears, 1995). 

 

• (Kumar et al., 

2015), (Qi et al., 

2018) 

 

 

 

Pigs. 

• Chromium 

propionate 

supplementation 

(200 ppb). 

 

• Chromium 

tripicolinate 

nanoparticles 

(400 ppb). 

 

• 200 μg/kg Cr as 

Cr-Nano. 

• Increase in blood neutrophils by 37% corresponded to the control 

group. 

 

 

 

• Plasma glucose, insulin and NEFA levels in serum were not 

changed in chromium tripicolinate nanoparticles-treated pigs (400 

ppb) compared to those in the control group. 

 

 

• 13.2 and 20.6 % higher serum concentration of IgM and IgG. 

• (Mayorga et al., 

2019)  

 

 

 

• (Hung et al., 

2014) 

 

 

• (Wang et al., 

2007) 




