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Summary. Collaboration graphs are relevant sources of information to understand behavioural tenden-
cies of groups of individuals. The study of these collaboration graphs enables figuring out factors that
may affect the efficiency and the sustainability of cooperative work. An example of such a collaboration
involves researchers who develop relationships with their external counterparts to tackle scientific chal-
lenges. We propose a statistical approach that considers edge occurrence in the graph as a labelling
process. Our approach combines spatial processes modelling and Exponential Random Graph Models
(ERGMs) commonly used to analyse such social processes. Since the normalising constant involved in
classical Markov Chain Monte Carlo approaches is not available in an analytic closed form, the inference
remains challenging. To overcome this issue, we propose a Bayesian tool that relies on the recent ABC
Shadow algorithm. The proposed method is illustrated on real data sets from an open archive of scholarly
documents.

1. Introduction

Networks are widely studied mathematical objects (Bollobás, 2013, chapter 5). They describe molec-
ular interactions, relationships between individuals in a social application, collaboration links among
organisations, etc.

For example, when different organisations collaborate to produce new scientific results, a part
of these results are presented through scientific papers. The publication process induces a network
describing interactions among the organisations involved in this process. Here, the network is made
of the co-authorship relation of researchers belonging to the different organisations (Glänzel, 2001).

Let us consider the set of scientific publications produced by LORIA†, during the year 2018. The
laboratory is organised in 28 scientific teams. The data was gathered from the open publication archive
Hal (data.archives-ouvertes.fr). We collected all the publications submitted during 2018 with at
least one author member of Loria. The co-authorship network is represented by a graph structure,
as shown in Figure 1. The nodes of the graph are researchers. An edge of the graph represents the
link between two researchers who collaborated in 2018. Nodes are coloured according to researchers
affiliation. LORIA members are coloured in yellow. All the other institutions have their own dedicated
colour.

†The equivalents in French for “Lorraine Research Laboratory in Computer Science and its Applications”
http://www.loria.fr
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Several connected components are visible. This tends to reflect the team oriented activity developed
by the Lab. Looking at a single connected component or at a single research team raises several
questions:

• What determines the occurrence of a collaboration link ? The link between two researchers is
not a random connection phenomenon in a social network. The resulting graph components may
look more “clustered” or more “repulsive” than in a purely random network.

• How cooperation relation between individuals can be characterised ? Inside a research team,
people cooperate with members of the same team or from other institutes. Some of the researchers
are able to maintain both types of cooperation. We call them “hubs”.

• How to characterise the cooperative patterns of a research team ? The structure and the type of
interactions, the presence of hubs are characteristics describing the activity of a research team.

The aim of this paper is to propose a “morpho-statistical” methodology approach for network
description that will answer these questions. To this end, we will rely on Markov random graph
modelling, Monte Carlo simulation and Bayesian inference.

The structure of the paper is as follows. Section 2 presents the modelling of the network as a
line graph, obtained by transforming the nodes of the initial graph into edges, and the previous edges
into nodes. Our application considers the network as a graph with edges given by the researchers
and the nodes given by the co-authorship link. This underscores the collaboration over the people.
Networks seen as labelled graphs are complex systems. They induce an extremely high number of
configurations. Stochastic modelling allows us to deal with this situation. The approach we propose
to consider an appropriate version of exponential graph models to represent collaborations initiated
by a community of researchers. The model presented in Section 2.2.1 is inspired by Potts or Ising like
models. The model distribution exhibits a normalising constant that is not available in an analytic
closed form. Therefore, we use Monte Carlo methods to perform statistical inference. We provide
at the end of Section 2 a presentation of the simulation algorithms: the Metropolis-Hastings (MH)
dynamics and the Gibbs sampler. Next, in Section 3, we describe the ABC Shadow algorithm (Stoica
et al., 2017) used to build posterior based inference. Section 4 demonstrates the relevance of ABC
Shadow on simulated data.

The remainder of the paper (Section 5) is dedicated to the practical application based on real data
analysis. The case study handles the structures of scientific collaborations of research teams from
the LORIA laboratory. The ABC Shadow algorithm is applied to this dataset providing the whole
a posteriori distribution of the model. Thereafter, the output results are used to perform parameter
estimation, statistical tests and classification procedures, in order to analyse and characterise the
collaboration patterns within this institution.

Finally, in Section 6, conclusions and perspectives are depicted. Source code, notebooks and
instructions used for this paper are provided in a GIT repository https://github.com/quentinl-c/

ABCShadow_article_assets.

2. Modelling social networks

Graphs have been used to model social network in sociology (Scott, 1988). We propose to understand
intra and inter relation between organisations based on participant collaboration network. From this
collaboration graph, we will associate a more relevant one, considering the relation as the object of
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Fig. 1. Collaborations among researchers within the Loria laboratory (2018) – Each node represents a re-
searcher, the edges are collaboration links and nodes’ colour represent the affiliation to a laboratory. For
example, all Loria members are coloured in yellow, while the members of the other labs are differently coloured.

primary interested taking into account that collaboration links can be internal or external. This is
what we explain in the next subsection.

2.1. Network representation through line graphs
Usually, social structure studies are conducted on graphs whose vertices are individuals and links
represent social ties, as in Figure 1. Here we use a representation relying on the dual graph of the
network, the so-called line graph. This graph is obtained from the initial graph by transforming edges
into nodes, and nodes into edges, as in (Frank and Strauss, 1986). This principle is illustrated in
Figures 2a and 2b. The first example in Figure 2a shows the dual transformation of a graph towards
its dual. The second example shows that the dual graph is not necessarily a complete graph. The line
graph provides a representation of the network that emphasises relationships over people and allows
us to reason on these relationships and the structure they propose.

Throughout this paper, we assess the extent to which inter and intra organisational links occur.
In the example presented in Figure 2a, A and B represent researchers working in the organisation
of interest -in our case LORIA- while C and D are researchers working at other institutes. The
augmented line graph in Figure 2c describes the structure of the type of interactions as follows. The
green (plain outline) node is an intra-organisational relation, the orange (dashed outline) ones are
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inter-organisational relations, while the grey (dotted outline) ones represent a nil relation. This last
type of relation represents two researchers potentially connected that do not work together at all.
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Fig. 2. An example of collaboration graph and its line graph representation

2.2. Markov Random Fields on graphs.
The example of Figure 2c illustrates our two main questions. The first one is the morpho-statistical
description of different interactions in a social network. The second one is the description of the
labelling distribution of the nodes in a graph. To each vertex of the line graph is associated a label,
depending on the kind of link of the corresponding edge of the social graph nil, intra organisational,
inter organisational.

The uncertain and dynamic nature of the individuals’ behaviour recommends stochastic modelling
of social interactions (Rezvanian and Meybodi, 2016). Within this context we propose a random graph
model whose parameters provide a meaningful description of the social network of interest. Markov
Random Fields (MRFs) are maybe the mathematical framework the most used to deal with this type
of problems Besag (1974, 1972). They are also known in literature related to social networks modelling
under the name of Exponential Random Graph models Wasserman and Pattison (1996); Snijders et al.
(2006).

Let G be the considered line graph, with V = {1, . . . , n} the vertices set, E = {eij |i ∼ j,∀i, j ∈ V}
the set of its edges and L = {(`1, · · · , `n} the set of possible labels. The structure of L was chosen
discrete for the sake of the simplicity and for the purpose on the application on hand. Its description
using more general measurable spaces is perfectly possible. Following (Besag, 1974), a random field
Y is associated with G, via the labels in a phase space that we denote L that have been attached to
each vertex. A realisation of the random field Y is denoted by y.

The set LV of all possible label configurations is denoted Ω and called the state space.
In Section 2.2.1, general notions on MRFs applied to social network analysis are given. The related

simulation and inference procedure are given in Section 2.3.2. For a thorough and rigorous presentation
of MRFs we recommend and the references within Winkler (2013).

2.2.1. Markov Random Fields models and social networks analysis
The MRFs were applied for social networks analysis by Frank and Strauss (1986); Wasserman and
Pattison (1996); Snijders et al. (2006). This class of models enables to take into account dependencies
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between vertices assuming local interactions associated with the graph nodes. This class of models
was already considered with applications to image analysis and to random graph modelling in whole
generality (Besag, 1974, 1972).

In order to specify a MRF we need a neighbourhood relation. Here, two vertices i and j are
neighbours, i ∼ j, if there is a direct edge linking them. Following (Besag, 1974), the probability
function of a MRF Y is described by a Gibbs distribution of the form:

p(Y = y|θ) =
exp(U(y|θ))

κ(θ)
=
exp(〈θ · t(y)〉)

κ(θ)
, (1)

where:

• θ = [θ0, . . . , θn] is the vector of parameters

• t(·) is the sufficient statistics vector

• U(·|·) is the energy function

• κ(θ) the normalising constant.

The difficulty with this class of model is that κ(θ), the normalising constant is not directly available
under an analytic closed form. This requires special procedures for simulation and inference. Still,
their advantage is that through local specifications they allow the modelling of complex systems.

2.2.2. A Potts-like model for characterising interactions on social networks
For the problem in hand, the aim is to characterise interactions between researchers. Let us consider
the following MRF model:

p(Y = y|θ) =
1

κ(θ)
exp
[
θ11

∑
i∼j

1{yi = 1, yj = 1}

+ θ12

∑
i∼j

1{yi = 1, yj = 2}

+ θ22

∑
i∼j

1{yi = 2, yj = 2}
]
.

(2)

where y is the realisation of the graph representation given by the labels {0, 1, 2} associated with each
node. They correspond respectively to nil, intra-organisational and inter-organisational links. The
sufficient statistics vector is given by

t(y) = [t11(y), t12(y), t22(y)]

=

∑
i∼j

1{yi = 1, yj = 1},
∑
i∼j

1{yi = 1, yj = 2},
∑
i∼j

1{yi = 2, yj = 2}

 . (3)

The condition in 1{y1 = 1, yj = 1} is verified whenever a researcher cooperates with two members of
his team. It means that the statistic t11 indicates how the researchers interact within their own team.
The condition 1{yi = 1, yj = 2} is checked whenever a researcher cooperates with a member of his
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own team and a member of a different team. The statistic t12 indicates how the researchers exhibit
a hub behaviour, since they interact with both kinds of teams, their own and different ones. Finally,
1{yi = 2, yj = 2} is checked whenever a researcher cooperates with two members not belonging to his
own team. Then, the statistic t22 indicates how the researchers interact with other teams. To sum up,
the vector θ = [θ11, θ12, θ22] controls the “weight” of the previous statistics. If θij > 0 then the model
tends to favour configurations with a high value for the statistic tij .

This model colours the line graph associated with a network in a similar manner as the Potts model
does it. If important patches of (1, 1) appear this means that there is an important tendency that the
researchers on the network cooperate within their teams. Similar interpretation can be given, for the
patches (1, 2) and (2, 2). The weight, the importance of these patches, hence of the general behaviour
of the members of the network is given by the model parameters.

2.3. Simulation and inference procedures.
In this section, we review the state-of-art of inference of random graphs, beginning with simulation in
Section 2.3.1, since it is a key part of the inference process presented in Section 2.3.2.

The presence of κ(θ) in (2) imposes special strategies for the sampling of the model, Markov chains
Monte Carlo methods. The best known sampling algorithms are the MH and the Gibbs sampler.
Here, we briefly recall both algorithms and especially the Gibbs sampler (Geman and Geman, 1987),
due to its role within the inference procedures used through this paper.

2.3.1. Markov Chain Monte Carlo (MCMC) simulation

The purpose is to sample distributions which are not analytically tractable such as (2). The MH
algorithm (Hastings, 1970) provides a solution for this problem. The algorithm works by iterating a
two-step procedure. The first step of the procedure is the following: being in an initial state y a new
candidate y′ is generated according to the proposal density q(y → y′). The second one is to accept
the candidate with the probability given by

αy→y′ = min

[
1,
p(y′|θ)q(y′ → y)

p(y|θ)q(y → y′)

]
. (4)

This dynamic reproduces the iteration of a transition kernel of a Markov chain with equilibrium
distribution, the probability distribution one wants to simulate. Reasonable conditions are required
for the proposal q to ensure convergence of the algorithm. The proposal should allow the simulated
chain to be irreducible, recurrent and ergodic. In our situation, simple choices for the proposal, such
as a uniform distribution over the set of labels, guarantee all the needed convergence properties.
Furthermore, the computation of (4) does not require the knowledge of the normalising constants
κ(θ). Still, the price to pay for this naive choice is an important correlation of the samples and a high
level of rejection of the proposed samples.

To circumvent the high rejection rate we relied on a Gibbs procedure. Gibbs sampler is a particular
case of the MH. The difference between both algorithms resides in the way of picking a new proposition.
Instead of selecting a new proposition according to an auxiliary distribution which could be rejected
afterwards, Gibbs sampler choose the new proposition y′ according to the probability P (Y |yc) (where
yc is the current configuration). This leads to accept every move and fixing the acceptance ratio :
αy→y′ = 1.
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2.3.2. Inference procedures
Parameter estimation of MRFs (2) is not trivial due to the normalising constant:

κ(θ) =
∑
y∈Ω

exp(〈θ · t(y)〉).

where · represents the scalar product between the parameters and sufficient vectors, respectively.
The classical way of dealing with this problem is to use Monte Carlo Maximum Likelihood estima-

tion (Geyer and Thompson, 1992; Geyer, 1999; Handcock et al., 2003). Let yobs be an observed graph
and let us consider θ0 a given parameter value. The log-likelihood function can be written as:

lθ0(θ) = 〈(θ − θ0) · t(yobs)〉 − log
[
κ(θ)

κ(θ0)

]
. (5)

It can be shown that the ratio of the normalising constants is

κ(θ)

κ(θ0)
= Eθ0 exp(〈(θ − θ0) · t(Y )〉) (6)

which give for its Monte Carlo counterpart :

κ(θ)

κ(θ0)
≈ 1

n

n−1∑
i=0

exp(〈(θ − θ0) · t(yi)〉) (7)

where the {yi}0≤i<n are realisations of {Yi}0≤i<n i.i.d. sampled from p(y|θ0).
If the sampling algorithm satisfies convenient assumptions, an almost sure convergence result allows

the practical use of this approximation. In fact (7) is plugged into (5) and the Monte Carlo likelihood
is obtained

ln,θ0(θ) = 〈(θ − θ0) · t(yobs)〉 − log

[
1

n

n−1∑
i=0

exp(〈(θ − θ0) · t(yi)〉)

]
. (8)

For the exponential family models, the log-likelihood is concave Geyer (1999); Monfort (1997).
This motivates to compute the gradient and the Hessian of (8). The approximated gradient and
Hessian can be easily computed via importance sampling. These quantities are consistent estimators
of their exact counterparts, respectively, that are computed from the original log-likelihood. Finally,
using these quantities a Monte Carlo Newton Raphson (MCNR) local optimisation method can be
implemented.

This method exhibits convergence results and two asymptotics explaining the estimation error can
be computed. The first error is the Monte Carlo Standard Error that approximates the difference
between the true model parameters and the Maximum Likelihood Estimate, that are both unknown.
The second error is the Monte Carlo Maximum Likelihood Error that approximates the difference
between the Maximum Likelihood Estimate (which is unknown) and the Monte Carlo Maximum
Likelihood Estimate, the result given by the MCNR method.

The drawback of the MCNR method is that it requires θ0 to be close to the final estimate. This is
due to the fact that the computation of the importance sampling weights needed in the evaluation of the
gradient and the Hessian are not stable from a numerical point of view. Several strategies are available.
Among them, the most robust is to resample the model p(y|θ) whenever the difference between the
current value of the parameters and θ0 exceeds a given threshold. Due to the concavity of the log-
likelihood function, this strategy leads towards a convergent method but with a high computational
cost. This question is still an open problem (Geyer and Thompson, 1992; Geyer, 1994, 1999).
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3. Posterior based inference

According to the Bayes’s theorem, with p(θ) the prior knowledge on parameter distribution, the
posterior distribution p(θ|y) is:

p(θ|y) ∝ p(y|θ) · p(θ) =
exp〈t(y), θ〉

κ(θ)
p(θ). (9)

The difference between maximum likelihood that we described in Section 2.3.2 and posterior in-
ference is the following. In the first case, under the assumption of a parametric model and with no
prior knowledge regarding these parameters, the most probable model is proposed as an explanation
of the observed data. The posterior based inference also assumes a parametric model and it uses prior
knowledge with respect to these parameters. But each model belonging to the family may explain the
data. The quality of this explanation is given by the posterior distribution that weights each model
within the considered parametric family. Posterior based inference is much more informative. It can
also be seen as a generalisation of the maximum likelihood approach. Whenever p(θ) is the uniform
distribution of the parameter space Θ, both inference paradigm, posterior and likelihood, are strictly
equivalent.

Despite the interest in performing posterior based inference, this is not done often, since sampling
the posterior or the likelihood is far from being a trivial task. A straightforward application of Monte
Carlo sampling strategies such as MH or Gibbs dynamics requires the computation of the normalising
constants ratio (6).

The authors in Møller et al. (2006) give a very elegant solution to this problem. They propose a MH
dynamics based on auxiliary variables. The use of the auxiliary variables requires appropriate proposal
distributions. The proposal distributions can be tailored to cancel the computation of the normalising
constants within the acceptance ratio of the MH algorithm. The authors indicate themselves that
their rigorous mathematical solution cannot prevent the resulting chain from poor mixing.

Approximate Bayesian Computation (ABC) algorithms are methods used to approximately sample
from the posterior distributions of the models that cannot be expressed entirely under analytic closed
form. They are easy to implement, but they require adapted strategies in order to obtain samples
whose distribution is closed to the posterior distribution. The ABC methods then need to control the
distance between the observations and the output of the algorithm (Atchadé et al., 2013; Beaumont
et al., 2009; Grelaud et al., 2009; Marin et al., 2012).

The ABC Shadow method proposed by Stoica et al. (2017) is directly inspired by the previous two
ideas, while trying to solve some of their drawbacks. The ABC Shadow is an approximate sampling
method for posterior distribution, exhibiting better numerical properties than the auxiliary variable
method and offering a more robust control than the ABC classical framework. Recent work Stoica
et al. (2019) builds a simulated convergent annealing process based on a ABC Shadow dynamics.

The ABC Shadow algorithm is presented in Algorithm 1. For all the technical details and mathe-
matical proofs the reader has to refer to Stoica et al. (2017). The method is general in the sense that
it can be applied to sample posterior distributions, assuming only their continuous differentiability
with respect to the model parameters. The algorithm needs for initialisation the observed graph yobs,
the initial value θ0 of θ, ∆ an error control parameter and m the number of steps the algorithm runs.
The ∆ parameter supports the proposal distribution whose form is given line 4 of Algorithm 1. All
theoretical details about the construction of the proposal can be found in Stoica et al. (2017). First
the algorithm samples an auxiliary graph x according to the chosen model. Then for each step in
the loop it proposes a new parameter value θ′ that is accepted with the probability α (see line 7 of
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Algorithm 1). If this new state is not accepted, the algorithm remains in its previous state. The dis-
tribution of the output of the algorithm follows approximately p(θ|yobs) with an error limits controlled
by m and ∆. The value of ∆ has to be tuned in a fine way, since there is an acceptable compromise
to reach between quality of approximation and good mixing properties of the chain. If the number of
steps m is too large, the algorithm goes away from the posterior of interest whereas if m is too small
the mixing property is negatively impacted. Hence, a reasonable value for these two parameters is
needed. In Stoica et al. (2017) is proved that for any fixed value m there exists a positive value ∆ so
that the outputs of the ABC Shadow algorithm are distributed as close as desired from the posterior
distribution of interest. If more than one sample from the posterior is needed, this can be obtained
by iterating the ABC Shadow algorithm as described in Algorithm 2.

Algorithm 1 ABC Shadow algorithm

1: function ABC Shadow(θ0, yobs, m, ∆) . Where θ0 - initial parameters, yobs - observation
2: x ∼ p(x|θ0)
3: for i = 1 to m do
4: θ′ ∼ U∆(θi−1 → θ′)

5: α← min
{

1, exp[(t(yobs)− t(x))(θ′ − θi−1)] p(θ′)
p(θi−1)

}
6: accepted← U(0, 1)
7: if α > accepted then
8: θi ← θ′

9: else
10: θi ← θi−1

11: end if
12: end for
13: return θm
14: end function

Algorithm 2 Main Routine

1: function Main(θprior, yobs, m, ∆, iters) . Where iters is the number of samples
2: samples← [θprior]
3: for ∈ [0 . . . iters− 1] do
4: θlast ← samples.last()
5: θres ← ABC SHADOW (θlast, yobs,m,∆)
6: samples.append(θres)
7: end for
8: return samples
9: end function

4. ABC shadow in practice : illustration on synthetic data

The use of ABC Shadow algorithm requires the set-up of its parameters. Regarding the auxiliary
variable sampling, this is perfectly possible to use exact simulation methods Huber (2016). Here, for
numerical purposes and due also to the rather weak requirements regarding the auxiliary variable,
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Table 1. Statistics on the posterior of Binomial distribution

Q10 Q25 Q50 mean Q75 Q95 MAP σ̂θ σ̂MC
θ

ABC (θ) -0.992 -0.69 -0.383 -0.392 -0.075 0.345 -0.408 0.454 4.3× 10−4

MH (θ) -0.961 -0.672 -0.371 -0.377 -0.071 0.353 -0.3718 0.453 4.2× 10−4

a Metropolis-Hastings dynamics whose parameters are given below was chosen. In order to chose
m and ∆ the ABC Shadow algorithm was run on known models, with controllable expected results.
Whenever it was possible, the outputs of the ABC Shadow algorithm were compared with a classical
Monte Carlo sampler of the posterior, the MH algorithm.

4.1. Binomial distribution

Let y be generated by a Binomial distribution of parameters n and p. This may correspond to the
independent random labelling, following a Bernoulli distribution with the parameter p, of a bi-coloured
graph of size of n. We know the parameter n and we want to estimate p. Within this context the
likelihood reads :

p(y|θ) =

(
n

y

)
py(1− p)(N−y) = exp

[
yθ − n log(1 + eθ) + log

(
n

y

)]
(10)

with θ = log(p/(1−p)). For our experiment n = 20, p = 0.4 (θ = −0.405) and m = 100. The observed
Binomial variable obtained with these values was y = 8. The MH algorithm is set up to sample from
the distribution (10). The proposal distribution p(θ) is uniform over the interval [−100, 100] of width
∆ = 0.005 centred on the current value. This procedure was executed to sample 1.002×106 posteriors.
The first 2× 103 samples were cut off and a subsampling kept every 100 samples. This resulted in a
chain (θ(t))t=1,··· ,T of 104 samples.

For the ABC Shadow, the proposal distribution is the same as the one of the MH algorithm.
The auxiliary variable is simulated from 100 samples following (10). The procedure described in
Algorithm 2 is implemented and applied to our simulated data with m = 100 and iters = 1.002× 106.
Like the MH, the output of Algorithm 2 is a chain (θ(t))t=1,··· ,T that we subsample, keeping only every
100. It improves the mixing properties of the chain. In addition, we skipped the first 2× 103 samples
of the chain (θ(t))t=1,··· ,T . To illustrate the robustness of these two algorithms, the initial value of the

chain of samples θ(0) is chosen far from the true value of θ. We set θ(0) = 1.

Figure 3 represents the distributions respectively obtained with the MH algorithm which is a perfect
simulation algorithm and the ABC algorithm which is an approximated one. According to the box
plot and the quantile-quantile plot schema, both distributions are very close to each other showing
how accurate the approximated ABC algorithm is. It is worth noticing that the two algorithms
(especially ABC) converge toward the true parameter value θ = −0.405, although the initial value of
the chain (θ(0) = 1) is quite far from the truth. Statistics, Maximum A Posteriori (MAP) and errors
of both distributions are summarised in Table 1. Both methods provide not only an estimation of the
parameter of the model but the whole a posteriori distribution, yielding notably error metrics and
confidence bounds for θ.
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Fig. 3. Posterior sampling of a Bernoulli distribution using Metropolis Hasting and ABC Shadow

4.2. Posterior sampling on the Potts Model
We now consider the Potts model involved in the description of our application context. Due to
the normalising constant, the Potts model (described in Section 2.2.2) is not directly tractable with
the traditional MH algorithm as previously performed in Section 4. To circumvent this problem and
following the strategy in Stoica et al. (2017), we tested the Potts model by comparing the maximum of
the approximated a posteriori distribution with the true parameter of the model previously simulated.

In the first experiment, all interaction parameters were fixed to 0 : θ11 = θ12 = θ22 = 0, so that
interaction effects are annihilated. Since we have three type of patterns, this leads to a Bernoulli
graph model with an occurrence probability for each pattern equal to 1

3 . The observation represents
an artificial collaboration involving 12 members of the same organisation and 8 collaborators from
the outside i.e. with a size = (12, 8). It was generated from N = 103 samples yielded by a Gibbs
sampler. By averaging sufficient statistics we obtain t̄(y) = [164.747, 263.495, 83.7645] (see (3)) from
the ABC Algorithm. In the ABC algorithm, the prior distribution p(θ) was a uniform distribution on
the interval [−4, 4]× [−4, 4]× [−4, 4]. The parameters n and ∆ were respectively set to n = 200 and
∆ = [0.01, 0.01, 0.01]. As in Section 4.1, the ABC Shadow was executed to yield iters = 1.002 × 106

samples. We subsampled keeping every 100 value and rejected the 2 × 103 first burn in samples.
At each iteration the auxiliary variable x was updated using 200 steps of a Gibbs sampler. Error
metrics were computed: the asymptotic standard deviation σ̂θ = [0.08, 0.093, 0.144] and the Monte
Carlo standard deviation σ̂MC

θ = [3.80× 10−7, 5.80× 10−7, 1.98× 10−6].

Figure 4a represents the histograms of the posterior distributions provided by the ABC Shadow of
each parameter as well as two-dimensional posterior distributions for each couple of parameters. Blue
lines mark the MAP for each parameter’s distribution computed by taking the maximum of the kernel
density estimation: θ̂ = [−0.0262, 0.036,−0.0436]. The green lines are the true parameter values :
θ = [0, 0, 0].

We now consider a model with repulsion effects. To that end, we set θ11 = −0.5, θ12 = 0.2,
θ22 = 0.3 and we simulate N = 103 samples with a size = (12, 8) using a Gibbs sampler as we
did before. The generated observation yielded the following averaged sufficient statistics: t̄(y) =
[79.1769, 361.796, 296.235]. Figure 4b represents the resulting posterior distribution. Blue lines rep-

resenting the MAP are aligned on θ̂ = [−0.6228, 0.263, 0.2698] which is close to the true parameter
θ = [−0.5, 0.2, 0.3] represented with green lines. The dashed lines are respectively the first quartile,
the median and the third quartile. The mean and the median of the posterior estimates are re-
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spectively: [−0.769, 0.325, 0.24] and [−0.728, 0.307, 0.247]. The error metrics, respectively the asymp-
totic standard deviation and the Monte Carlo standard deviation are : σ̂θ = [0.08, 0.093, 0.144] and
σ̂MC
θ = [3.80× 10−7, 5.80× 10−7, 1.98× 10−6].

As a result, we showed that ABC Shadow approximate accurately a posterior distribution of in-
tractable model as the one we plan to study. We can now confidently go further and apply it to real
data.
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Fig. 4. Corner plots of marginal distributions of posterior sampling for the Potts model using an ABC algorithm.
(Blue lines mark the MAP of each parameter, green lines correspond to the true parameter values)

5. Application

A collaboration network is obtained using the HAL publication database. A node represents a re-
searcher. Two researchers are connected if they have at least a common publication during the year
2018. We collected metadata of publications deposited by the members of LORIA in 2018. The
dataset is available at (Laporte-Chabasse et al., 2019).

The aim of the study is to fit the model defined in Section 2.2.2 to the graph associated with
each team. Comparing the structural aspects of those graphs through posterior analysis enables the
identification of patterns characteristic of these scientific collaborations.

For each team, the graph is constructed as follows. Figure 5 exhibits the different steps of the
processing. First, two kinds of nodes were distinguished, the members of LORIA and the other
researchers who had no affiliation with LORIA, the external stakeholders (Figure 5a). We took
the point of view of each team and studied the way they collaborate with internal and external
stakeholders. This means that only edges linking at least one member of LORIA are considered
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(Figure 5b). In addition, we only took into account interactions between edges linked by a member of
LORIA (Figure 5c). Following the framework of Section 2.1, the line graph representation encodes the
different types of research collaboration. An inter-organisational link connects one member of LORIA
with an external collaborator whereas intra-organisational links connect two collaborators who are
affiliated to LORIA. Under the hypothesis of the model, the sufficient statistics were computed. The
results are presented in Table 2 (in Appendix A).

(a) step 1: Distinguish two
kinds of nodes, members of
LORIA (in blue) and external
stakeholders (in red).

(b) step 2: Keep edges involv-
ing at least one member of
LORIA.

(c) step 3: Consider only
interactions between edges
linked by a member of LO-
RIA.

Fig. 5. An example of a pre-processing performed on a team’s collaborative graph. The graph in Figure 5a
illustrated co-authoring links involving the members of the team COAST. Blue nodes represents the members
of LORIA, whereas red nodes are external collaborators. The inter-organisational links are coloured in orange,
while the intra-organisational links are in green.

The number of authors from LORIA as well as external stakeholders are different according to
each team. Statistics of both quantities are given in Table 3. Compared to the means, the standard
deviations are important. This indicates that the sizes of the different collaborations are distributed
on an important range. It is important to bear in mind that the number of referenced authors on HAL
is neither a representative picture of the actual size of the team nor a quantifier of research activity.

We identified 22 teams with a sufficiently large number of submissions on the HAL platform. The
ABC Shadow algorithm was launched with the same initial conditions for every team. The ABC
Shadow algorithm was setup to generate iters = 1.002 × 106 samples, the number of iterations of
the shadow chain and the volume bound were set respectively to m = 200 and ∆ = [0.01, 0.01, 0.01].
The auxiliary variable x was sampled with 500 iterations of the MH procedure. The first 2000 burn
in samples were discarded. In addition, a subsampling procedure kept every 103 value of each chain
yielded by the ABC Shadow. Consequently, for each team the size of the corresponding chain was 103

samples.
Figure 6 shows the box plots of posteriors sampled by the ABC Shadow for the parameters θ =

[θ11, θ12, θ22] for each team. In complement to Figure 6, Table 4 in Appendix A present the mean, the
median and the estimated MAP of the posterior distribution of θ for each team.

The value ranges of parameters are near to zero, even slightly lower than zero for the majority
of teams. Relatively to all possible connections, this reflects a weak global tendency for a researcher
to co-author with all other researchers whether he belongs to the same lab or not. At the scale of
teams this means that the collaboration graph is sparse. Putting this observation in the context of
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publication activities, this corroborates the intuition that every researcher does not co-author with
everyone else. Co-authoring a paper implies that all stakeholders are involved in the same scientific
work. These are demanding tasks. It restrict the number of publications and the underlying potential
collaborations a researcher is able to undertake.

Regarding the table 4 in Appendix A, both the median and the mean are close to the estimated
MAP. Similarly to Van Lieshout and Stoica (2003); Stoica et al. (2017), we computed the asymptotic
standard deviation and the Monte Carlo standard deviation. The results are given by Table 5 (in
Appendix A). To that end, for each estimated model we performed a simulation providing 10,000
samples (samples were decorrelated by keeping every 103 sample out of the 107 simulated). Given the
Monte Carlo standard deviation, we can determinate the 95% confidence interval reported by Table 6
(in Appendix A).

The closeness of value ranges to 0 raises the question of their significance. Are the three studied
patterns more likely to occur in the collaboration than pure randomness ? To answer this question
we applied for each parameter a t-test to determine if the expectations of the posteriors equal 0. The
null hypothesis and the alternative hypothesis are written as follows for each parameter:

H0 : E[θ] = 0,

H1 : E[θ] 6= 0.

The results are shown in Table 7 (in Appendix A). For most of the teams, the parameters are
significantly non-zero since the associated p-values of the t-test are very small. There are only two
teams for which the p-value is greater than the usual 5% level of significance. In this case, the
rejection of the null hypothesis is not relevant. In conclusion, for almost all teams (except the two
latter mentioned), the likelihood of link creation is not merely due to chance.

Figure 7 presents the three 2d projections of the Potts model parameters. Each team is associated
with a colour. Grey dashed lines set limits between positive and negative trends. For instance,
considering (θ11, θ12), the vertical line delimits the positive and negative tendencies that a pattern
linking two intra-organisational ties occurs, while the horizontal line is about the occurrence of inter-
organisational links. Depending on projections, we have an overview of trends followed by teams.

The major part of the estimated MAPs is concentrated in the same region. For the parameter θ11

the MAPs are distributed closely around 0. For θ12 and θ22, they are mostly negative. This observation
refines our analysis. The latter two, show that hub patterns and collaboration links with the outside
are less likely to occur in collaboration graphs. This strengthens the prior idea that collaborations with
external teams are complex to set up and maintain. The weak presence of hubs in the collaboration
means that only few researchers are connected at the same time with members of their team and
researchers from other labs. If a hub leaves, the ties between the corresponding organisations break.
This is a serious concern that should be carefully addressed in the design of collaborative applications
to ensure the availability of the collaboration against the churn.

Some outliers presenting different structural features are identifiable. In particular, two points,
the purple point (GAMBLE), located at the top right-hand side of the first plot and the brown point
(PAROLE) located above the horizontal dashed line of the two later plots. Both teams represented
by these points, exhibits external collaboration structural patterns. Regarding the team GAMBLE,
it is noticeable that the number of external researchers is high compared to the number of referenced
authors from LORIA (Table 2 in Appendix A). This fosters the emergence of inter-organisational
links to the detriment of intra-organisational links. The team PAROLE, on the other hand, shows
a prevalence of hub patterns. Figure 8 illustrates its co-authorship graph. According to Table 2 (in
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Fig. 6. Box plots of the posterior distributions for the parameters of the Potts model estimated from the collab-
oration graphs of each team (ordered by ascending mean values)

Appendix A), the ratio between external and internal authors is more balanced. In Figure 8, some
actors from LORIA playing a key role are well marked, they are represented by nodes in a higher size.
In that team, a major part of LORIA researchers acts as a bridge between their counterparts and
external stakeholders. This is a special configuration not met in other co-authorship graphs.

Figure 7 shows some overlapping points or points very close to each other. This suggests that some
teams share with each other similar structural characteristics. By relying not only on the MAPs but
on the whole posterior distributions, we aim to verify these observations.

An unsupervised hierarchical classification was performed, from the Kolmogorov-Smirnov distance
computed between all posterior distributions of the three parameters: θ11, θ12 and θ22. The results in
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Fig. 7. Scatter plots of estimated MAPs representing the positioning of teams with respect to the different
collaborative tendencies controlled by θ01, θ02, θ12

Figure 9 are shown in the form of dendrograms. The branches’ height of the dendrogram gives indi-
cations about the proximity of the sub-clusters : shallower is a branch, closer are the sub-clusters and
vice-versa. The few identified clusters correspond to the coloured branches. They merely correspond
to groups of overlapped points in Figure 7.

The lab is organised in 5 departments gathering teams working on the same research thematic.
The team’s names are coloured according to the affiliation to one of these departments. The clustered
team’s names are not similarly coloured and then, don’t necessarily work on the same topic. Conse-
quently, structural patterns are not a feature specific to the research thematic. We also noticed that
the closeness between two teams can be related to the fact that one originates from the other. It is
not unusual that a researcher keep signing with an old affiliation a long time after the creation of a
new team. Also, when a team splits in new teams, members of teams keep collaborating. This means
that both teams keep intrinsic collaboration links affecting their collaboration networks. This requires
to pay particular attention to the real-life context in particular to the teams’ life cycle : birth, split,
death.

6. Conclusion

In this paper, we proposed a method to make inference on structural aspects of collaboration networks.
We focused on inter-organisational collaborations yet sparsely addressed by the state of the art. For
instance, researchers from different organisation often collaborate to conduct research and write pub-
lications. We extracted the collaboration network among researchers by considering the co-authorship
of publications from the French open-archive HAL as collaboration links between authors.

First we presented the representation of the collaboration graph. We relied on the line graph
instead of taking the collaboration network directly as the observation of our study. Considering
this alternate representation as fixed random field, we considered link creation in the collaboration
as a labelling issue respecting Markov’s properties. We were able to better encompass structural
interactions not between individuals but among relations themselves. We used a generalisation of the
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Fig. 8. Co-authorship graph of the team PAROLE. Blue nodes represents the members of LORIA, whereas
red nodes are external collaborators. Size of nodes is proportional to their degree. The inter-organisational
links are coloured in orange, while the intra-organisational links are in green.

Ising model, the Potts model, to describe the interactions between relations. As for all exponential
models, the inference remains difficult due to the intractable normalising constant. To that end, we
used a Bayesian tool, the ABC Shadow algorithm which was firstly tuned on tractable model and
simulated data. We applied it on collaboration networks of different research teams. The main aim
was to characterise and classify collaborations among researchers in their publication activities. First
of all, we observed that links formation between collaborators are not mere coincidence but the result
of tendencies for almost all teams. From the posterior distributions provided by the ABC Shadow,
we showed that a few actors play a key role since they connect collaborators of their organisation
toward the outside. Given the posteriors, we also demonstrated how to classify the way the different
teams collaborate and conclude that structural features at stake are not related to the scientific topic
addressed.

The sizes of the teams are relatively disparate and may affect the prevalence of the observed
patterns. One of the first perspectives to pursue is to come up with a normalising procedure to put
all the observed graph on the same level.

Hub in the collaboration are points of failure who can endanger the inter-organisational collabora-
tion if they leave. This is a concern that must be addressed in the design of collaborative applications,
to better support inter-organisational scenarios. Study of the dynamic of the network (Guyon and
Hardouin, 2002) enables the assessment of the churn and the detection of breaks over time.

The selection of the model is a very sensitive aspect of our approach which might influence the
relevance of the estimates in regard to the observation. This concern should be further investigated in
a future work (Caimo and Friel, 2013). For instance, other classes of models such as the Markov Con-
nected Component Fields (Møller and Waagepetersen, 1998) might be good candidates for structural
graph pattern analysis.

Finally, the approach we proposed here can be applied in different contexts and is not only related
to collaborations between researchers. Extending this study to other collaborative contexts is required
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Fig. 9. Hierarchical classification throughout the Kolmogorov-Smirnov distance of posteriors. The label are
coloured according to the research thematic addressed by each team : Algorithms, Computation, Image &
Geometry, Formal methods, Networks, Systems and Services, Natural Language Processing & Knowledge
Discovery, Complex Systems, Artificial Intelligence and Robotics.

to acquire a comprehensive understanding of features inherent to inter-organisational collaborations.
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Table 2. Sufficient statistics of each observed collaboration graph
t11 t12 t22 LORIA members External collaborators

BISCUIT 18 36 86 12 17
CAPSID 104 273 268 13 30
CARAMBA 3 4 5 7 9
CARTE 6 16 38 7 12
COAST 55 70 39 17 10
GAMBLE 7 95 204 8 26
KIWI 3 6 27 7 12
LARSEN 212 270 172 25 17
MADYNES 153 195 175 23 33
MAIA 234 18 17 25 8
MOSEL 3 16 78 10 16
MULTISPEECH 153 651 866 30 82
NEUROSYS 43 192 202 13 23
ORPAILLEUR 324 591 453 31 54
PAROLE 95 309 299 10 16
PESTO 22 59 318 14 38
RESIST 47 81 66 14 14
SEMAGRAMME 1 15 801 8 45
SIMBIOT 123 116 102 12 14
SMarT 108 349 325 14 19
SYNALP 5 24 29 7 14
VERIDIS 29 44 142 19 39

Table 3. Statistics on the number of internal and external stake-
holders accounted for each team

Mean Median Standard deviation

Number of LORIA’s members 14.82 13.0 7.38
Number of external collaborators 24.91 17.0 17.51

Table 4. Summary of estimates obtained from the collaboration networks of teams for the parameters θ11, θ12
and θ22.

mean θ11 Q50 θ11 MAP θ11 mean θ12 Q50 θ12 MAP θ12 mean θ22 Q50 θ22 MAP θ22

BISCUIT 0.024942 0.044401 0.068886 -0.352912 -0.349398 -0.347587 -0.242338 -0.239895 -0.231520
CAPSID 0.082948 0.084934 0.089377 -0.121275 -0.120743 -0.125009 -0.141760 -0.141644 -0.142977
CARAMBA -0.281506 -0.172194 0.047788 -0.982179 -0.940077 -0.816491 -1.201228 -1.161985 -1.121262
CARTE 0.075474 0.132348 0.243351 -0.360031 -0.354322 -0.346872 -0.219448 -0.213238 -0.208072
COAST -0.076206 -0.068637 -0.050184 -0.363103 -0.363962 -0.371046 -0.248358 -0.240338 -0.227805
GAMBLE -0.975762 -0.876918 -0.725163 0.071242 0.057308 0.038471 -0.151945 -0.149128 -0.143048
KIWI -0.093009 0.010038 0.207023 -0.611750 -0.584043 -0.550839 -0.362463 -0.353860 -0.336326
LARSEN -0.024114 -0.024729 -0.022328 -0.228011 -0.227737 -0.225750 -0.133564 -0.132721 -0.131027
MADYNES 0.000685 0.000674 -0.002234 -0.260162 -0.259588 -0.260691 -0.320587 -0.320209 -0.316542
MAIA -0.111905 -0.112035 -0.112810 -0.929088 -0.918453 -0.904274 -0.197517 -0.181067 -0.155695
MOSEL -0.330711 -0.226605 0.040198 -0.386187 -0.378969 -0.353764 -0.237875 -0.234533 -0.226377
MULTISPEECH -0.040704 -0.038330 -0.034666 -0.133189 -0.131164 -0.123168 -0.248131 -0.249479 -0.250201
NEUROSYS -0.104963 -0.085756 -0.015696 -0.073340 -0.077790 -0.078339 -0.168132 -0.165696 -0.166646
ORPAILLEUR -0.011312 -0.012008 -0.006116 -0.170487 -0.169386 -0.165536 -0.271443 -0.274956 -0.279405
PAROLE 0.121960 0.128505 0.138845 -0.070416 -0.071778 -0.078252 0.028991 0.030013 0.030928
PESTO 0.057142 0.068986 0.082127 -0.246215 -0.243335 -0.242821 -0.199743 -0.200147 -0.202435
RESIST -0.000791 0.008758 0.024020 -0.277055 -0.277438 -0.277127 -0.226005 -0.221971 -0.215415
SEMAGRAMME -0.590010 -0.353481 0.179312 -0.190075 -0.172762 -0.147841 -0.055775 -0.055653 -0.050246
SIMBIOT 0.110817 0.110092 0.108077 -0.217518 -0.216584 -0.214017 -0.063965 -0.062083 -0.060041
SMarT 0.019884 0.027093 0.037714 -0.081083 -0.082015 -0.084403 -0.041422 -0.041232 -0.040489
SYNALP -0.292751 -0.213665 -0.001850 -0.177759 -0.185366 -0.195060 -0.403532 -0.392149 -0.366982
VERIDIS -0.022496 -0.016303 -0.012097 -0.425249 -0.422178 -0.422928 -0.472263 -0.471167 -0.469137
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Table 5. Error of the estimations : Asymptotic standard deviation and Monte Carlo
standard deviation

σ̂θ01 σ̂θ02 σ̂θ12 σ̂MCθ01
σ̂MCθ02

σ̂MCθ12

BISCUIT 2.416e-01 8.928e-02 5.240e-02 2.136e-05 1.158e-06 1.256e-07
CAPSID 7.597e-02 3.748e-02 2.725e-02 9.851e-08 1.551e-08 5.371e-09
CARAMBA 2.566e-01 3.25e-01 4.398e-01 3.371e-05 8.405e-05 3.261e-04
CARTE 1.959e-01 1.160e-01 8.626e-02 7.453e-06 1.172e-06 4.700e-07
COAST 5.191e-02 7.527e-02 9.645e-02 7.089e-08 2.589e-07 6.514e-07
GAMBLE 6.955e-01 1.156e-01 3.866e-02 1.786e-03 3.866e-05 1.824e-06
KIWI 5.474e-01 2.129e-01 1.126e-01 6.943e-04 2.772e-05 2.271e-06
LARSEN 3.213e-02 3.416e-02 3.537e-02 4.332e-09 7.235e-09 9.206e-09
MADYNES 6.458e-02 4.198e-02 3.541e-02 5.177e-08 1.317e-08 1.059e-08
MAIA 1.925e-02 1.285e-01 1.171e-01 2.589e-08 2.598e-06 1.653e-06
MOSEL 4.892e-01 1.144e-01 5.718e-02 4.384e-04 9.934e-06 3.933e-07
MULTISPEECH 6.601e-02 2.757e-02 1.77e-02 7.338e-08 9.047e-09 1.969e-09
NEUROSYS 1.095e-01 6.102e-02 4.721e-02 4.127e-07 8.733e-08 4.66e-08
ORPAILLEUR 3.343e-02 2.626e-02 2.555e-02 2.249e-09 1.133e-09 2.319e-09
PAROLE 7.498e-02 3.783e-02 2.716e-02 7.88e-08 1.422e-08 5.773e-09
PESTO 5.353e-01 6.144e-02 2.383e-02 7.103e-04 5.017e-06 4.502e-08
RESIST 7.333e-02 6.691e-02 6.833e-02 9.911e-08 9.090e-08 1.420e-07
SEMAGRAMME 4.327e+00 6.566e-02 9.433e-03 3.473e+00 2.458e-04 1.403e-08
SIMBIOT 5.046e-02 4.174e-02 3.573e-02 2.046e-08 1.263e-08 9.616e-09
SMarT 6.991e-02 3.879e-02 2.830e-02 6.08e-08 1.244e-08 5.721e-09
SYNALP 3.709e-01 1.591e-01 1.315e-01 9.148e-05 9.156e-06 3.786e-06
VERIDIS 3.444e-01 8.289e-02 4.651e-02 1.057e-04 2.592e-06 1.147e-07

Table 6. Ranges of confidence intervals 95% for estimated MAPs computed from
the MC standard deviation of Table 5

CI 95% θ11 CI 95% θ12 CI 95% θ22

BISCUIT 0.068886 ± 4.272e-05 -0.347587 ± 2.316e-06 -0.23152 ± 2.512e-07
CAPSID 0.089377 ± 1.970e-07 -0.125009 ± 3.102e-08 -0.142977 ± 1.074e-08
CARAMBA 0.047788 ± 6.741e-05 -0.816491 ± 1.681e-04 -1.121262 ± 6.523e-04
CARTE 0.243351 ± 1.491e-05 -0.346872 ± 2.344e-06 -0.208072 ± 9.400e-07
COAST -0.050184 ± 1.418e-07 -0.371046 ± 5.179e-07 -0.227805 ± 1.303e-06
GAMBLE -0.725163 ± 3.573e-03 0.038471 ± 7.731e-05 -0.143048 ± 3.649e-06
KIWI 0.207023 ± 1.389e-03 -0.550839 ± 5.544e-05 -0.336326 ± 4.543e-06
LARSEN -0.022328 ± 8.663e-09 -0.22575 ± 1.447e-08 -0.131027 ± 1.841e-08
MADYNES -0.002234 ± 1.035e-07 -0.260691 ± 2.634e-08 -0.316542 ± 2.119e-08
MAIA -0.11281 ± 5.178e-08 -0.904274 ± 5.195e-06 -0.155695 ± 3.306e-06
MOSEL 0.040198 ± 8.769e-04 -0.353764 ± 1.987e-05 -0.226377 ± 7.866e-07
MULTISPEECH -0.034666 ± 1.468e-07 -0.123168 ± 1.809e-08 -0.250201 ± 3.938e-09
NEUROSYS -0.015696 ± 8.255e-07 -0.078339 ± 1.747e-07 -0.166646 ± 9.32e-08
ORPAILLEUR -0.006116 ± 4.497e-09 -0.165536 ± 2.267e-09 -0.279405 ± 4.637e-09
PAROLE 0.138845 ± 1.576e-07 -0.078252 ± 2.844e-08 0.030928 ± 1.155e-08
PESTO 0.082127 ± 1.421e-03 -0.242821 ± 1.003e-05 -0.202435 ± 9.005e-08
RESIST 0.02402 ± 1.982e-07 -0.277127 ± 1.818e-07 -0.215415 ± 2.841e-07
SEMAGRAMME 0.179312 ± 6.946e+00 -0.147841 ± 4.916e-04 -0.050246 ± 2.805e-08
SIMBIOT 0.108077 ± 4.091e-08 -0.214017 ± 2.526e-08 -0.060041 ± 1.923e-08
SMarT 0.037714 ± 1.216e-07 -0.084403 ± 2.488e-08 -0.040489 ± 1.144e-08
SYNALP -0.00185 ± 1.83e-04 -0.19506 ± 1.831e-05 -0.366982 ± 7.572e-06
VERIDIS -0.012097 ± 2.115e-04 -0.422928 ± 5.184e-06 -0.469137 ± 2.295e-07
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Table 7. Results of the t-test applied on each parameter to check if the parameter
are significant against pure chance. Here the score of the test as well as the
corresponding p-value are presented. Except for two teams marked by ∗, the
parameters are significant.

TS(θ11, 0) p-val1 TS(θ12, 0) p-val2 TS(θ22, 0) p-val3

BISCUIT 30.505 ≤ 10−6 -497.520 ≤ 10−6 -435.178 ≤ 10−6

CAPSID 204.015 ≤ 10−6 -359.185 ≤ 10−6 -466.827 ≤ 10−6

CARAMBA -68.738 ≤ 10−6 -237.339 ≤ 10−6 -293.383 ≤ 10−6

CARTE 32.086 ≤ 10−6 -276.357 ≤ 10−6 -247.134 ≤ 10−6

COAST -141.119 ≤ 10−6 -489.385 ≤ 10−6 -262.020 ≤ 10−6

GAMBLE -143.234 ≤ 10−6 61.396 ≤ 10−6 -368.832 ≤ 10−6

KIWI -24.105 ≤ 10−6 -256.393 ≤ 10−6 -305.132 ≤ 10−6

LARSEN -77.447 ≤ 10−6 -737.265 ≤ 10−6 -355.826 ≤ 10−6

MADYNES∗ 1.829 6.745e-02 -818.858 ≤ 10−6 -746.175 ≤ 10−6

MAIA -431.390 ≤ 10−6 -662.307 ≤ 10−6 -187.895 ≤ 10−6

MOSEL -78.036 ≤ 10−6 -326.151 ≤ 10−6 -398.977 ≤ 10−6

MULTISPEECH -91.794 ≤ 10−6 -418.327 ≤ 10−6 -907.847 ≤ 10−6

NEUROSYS -78.766 ≤ 10−6 -125.030 ≤ 10−6 -402.492 ≤ 10−6

ORPAILLEUR -33.449 ≤ 10−6 -549.924 ≤ 10−6 -755.649 ≤ 10−6

PAROLE 195.106 ≤ 10−6 -196.361 ≤ 10−6 102.888 ≤ 10−6

PESTO 90.199 ≤ 10−6 -532.605 ≤ 10−6 -664.803 ≤ 10−6

RESIST∗ -1.157 2.471e-01 -477.750 ≤ 10−6 -346.625 ≤ 10−6

SEMAGRAMME -66.417 ≤ 10−6 -209.308 ≤ 10−6 -206.111 ≤ 10−6

SIMBIOT 369.346 ≤ 10−6 -599.731 ≤ 10−6 -151.456 ≤ 10−6

SMarT 36.193 ≤ 10−6 -225.532 ≤ 10−6 -144.832 ≤ 10−6

SYNALP -68.929 ≤ 10−6 -114.893 ≤ 10−6 -318.510 ≤ 10−6

VERIDIS -44.108 ≤ 10−6 -709.280 ≤ 10−6 -914.052 ≤ 10−6
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