
HAL Id: hal-02421766
https://hal.science/hal-02421766

Submitted on 7 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Stochastic Dual Dynamic Integer Programming for
the Uncapacitated Lot-Sizing Problem with Uncertain

Demand and Costs
Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum

To cite this version:
Franco Quezada, Céline Gicquel, Safia Kedad-Sidhoum. A Stochastic Dual Dynamic Integer Pro-
gramming for the Uncapacitated Lot-Sizing Problem with Uncertain Demand and Costs. ICAPS2019
- 29th International Conference on Automated Planning and Scheduling, Jul 2019, Berkeley, United
States. pp.353-361, �10.1609/icaps.v29i1.3498�. �hal-02421766�

https://hal.science/hal-02421766
https://hal.archives-ouvertes.fr

Proceedings of the Twenty-Ninth International Conference on Automated Planning and Scheduling (ICAPS 2019)

A Stochastic Dual Dynamic Integer Programming for the
Uncapacitated Lot-Sizing Problem with Uncertain Demand and Costs

Franco Quezada
Sorbonne Université, LIP6

4 Place Jussieu, Paris 75005
franco.quezada@lip6.fr

Céline Gicquel
Université Paris-Saclay, LRI

Rue Noetzlin, Gif-sur-Yvette 91190
celine.gicquel@lri.fr

Safia Kedad-Sidhoum
CNAM, CEDRIC

292 Rue Saint-Martin, Paris 75003
safia.kedad sidhoum@cnam.fr

Abstract

We study the uncapacitated lot-sizing problem with uncertain
demand and costs. We consider a multi-stage decision pro-
cess and rely on a scenario tree to represent the uncertainty.
We propose to solve this stochastic combinatorial optimiza-
tion problem thanks to a new extension of the stochastic dual
dynamic integer programming algorithm. Our results show
that this approach can provide good quality solutions in a rea-
sonable time for large-size instances.

Introduction
The single-item deterministic uncapacitated lot-sizing prob-
lem (ULS) is a production planning problem first introduced
by Wagner and Whitin (1958). It considers a single type of
item and aims at determining the quantity to be produced
in each time period in order to meet demand over a finite
discrete-time planning horizon. In this problem, producing a
positive amount in a period incurs a fixed cost, called setup
cost, together with a production cost per unit produced and
an inventory holding cost per unit held in stock between two
periods. The objective is to build a production plan such that
the customer demand is met in each time period and the total
costs, i.e. the sum of setup, production and inventory holding
costs over the whole planning horizon, is minimized. This
fundamental problem naturally appears as an embedded sub-
problem in many practical production planning problems.
Solving it efficiently is thus essential to develop algorithms
capable of dealing with real-world problems.

As such, the deterministic ULS is known to be solvable in
strongly polynomial time. A simple dynamic programming
algorithm based on the zero-inventory-ordering property,
i.e., production is undertaken in a period only if the entering
inventory level drops to zero, runs inO(T 2) time, where T is
the number of time periods (Wagner and Whitin 1958). This
time complexity was later improved to O(T logT): see e.g.
Aggarwal and Park (1993) or Wagelmans, Van Hoesel, and
Kolen (1992)). We refer the reader to Brahimi et al. (2017)
for an updated and comprehensive survey of the single-item
dynamic lot-sizing problem.

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, in many applications, assuming known and
deterministic input data (demand and costs) is not realis-
tic. Examples of real-world lot-sizing problems with uncer-
tain input parameters can be found among others in Ca-
margo, Toledo, and Almada-Lobo (2014) for the spinning
industry, Hu and Hu (2016) for a manufacturing company
producing braking equipment, Ghamari and Sahebi (2017)
for a chemical-petrochemical case study, Kilic, Tunc, and
Tarim (2018) for a remanufacturing system, Macedo et al.
(2016) for a hybrid manufacturing/remanufacturing system
and Moreno et al. (2018) for humanitarian logistics.

In the present paper, we thus investigate an extension of
the ULS in which the problem parameters are subject to un-
certainty. We consider a multi-stage decision process corre-
sponding to the case where the value of the uncertain param-
eters unfolds little by little following a discrete-time stochas-
tic process and the production decisions can be made pro-
gressively as more and more information on the demand and
cost realizations is collected. In order to address this prob-
lem, we rely on a multi-stage stochastic integer program-
ming approach and assume that the underlying stochastic
input process has a finite probability space so that the in-
formation on the evolution of the uncertain parameters can
be represented by a discrete scenario tree.

Note that Halman et al. (2009) showed that a special case
of the stochastic ULS in which the setup costs are set to 0
and the uncertain demand can take only two possible values
in each period is NP-Hard. It is thus unlikely to find algo-
rithms for the problem which are polynomial in the num-
ber of time periods T . Guan and Miller (2008) developed
a dynamic programming algorithm for solving the stochas-
tic ULS when each non-leaf node of the scenario tree has at
least two children. The algorithm is polynomial in the num-
ber of nodes of the scenario tree but this number increases
exponentially fast with the number of time periods T .

Another line of research was devoted to the polyhedral
study of the mixed-integer linear program obtained when
formulating the stochastic ULS on a scenario tree. Guan
et al. (2006) extended the (l, S) valid inequalities known
for the deterministic ULS to a general facet-defining class
called (Q,SQ) for the stochastic variant. They showed that
the (Q,SQ) inequalities are enough to describe the convex

353

hull of the two-period case and that the corresponding sepa-
ration algorithm runs in polynomial time. Later, Di Summa
and Wolsey (2008) studied the stochastic lot-sizing prob-
lem with a constant limited production capacity. They ex-
tended the work of Guan et al. (2006) by showing that the
(Q,SQ) valid inequalities are dominated by a set of mix-
ing inequalities and provided some particular cases where
these mixing inequalities suffice to fully describe the convex
hull. More recently, Guan, Ahmed, and Nemhauser (2009)
proposed a general method for generating cutting planes for
multi-stage stochastic integer programs based on combining
valid inequalities for individual scenarios. They provided a
new set of valid inequalities for the uncapacitated and ca-
pacited stochastic lot-sizing problem. Their numerical re-
sults showed that a branch-and-cut algorithm based on these
new inequalities is more effective at solving instances on
medium-size scenarios than a stand-alone mathematical pro-
gramming solver and performs better than a branch-and-cut
algorithm based on the (Q,SQ) valid inequalities.

Unfortunately, implicit enumeration methods, such as
branch-and-cut algorithms, do not scale up well with the
size of the scenario tree. Decomposition methods, such as
Benders’ decomposition, are thus an attractive alternative
to tackle instances with large-size scenario trees. In partic-
ular, the Stochastic Dual Dynamic Programming (SDDP)
approach proposed by Pereira and Pinto (1991) has been
widely used to solve large-size multi-stage stochastic linear
programs. This approach relies on a dynamic programming
formulation of the stochastic problem. In this formulation,
the overall problem is decomposed into a series of single-
node sub-problems in which the future costs of the decision
made at node n are represented by an expected cost-to-go
function. In a linear setting, the expected cost-to-go func-
tions are piecewise linear convex and can thus be under-
approximated through a set of supporting hyperplanes. The
SDDP algorithm builds such an approximation by iteratively
adding Benders’ cuts to each nodal sub-problem and con-
verges in finite steps to an optimal solution. Note that the
SDDP method assumes the stage-wise independence of the
stochastic process, i.e., for any two nodes n and n′ belong-
ing to the same stage, the set of children nodes C(n) and
C(n′) are defined by identical data and conditional proba-
bilities. This assumption allows to considerably reduce the
number of expected cost-to-go functions to approximate,
leading to a significant improvement of the performance of
the algorithm. Recently, Zou, Ahmed, and Sun (2017) pro-
posed a new extension called Stochastic Dual Dynamic inte-
ger Programming (SDDiP) of this method in order to solve
multi-stage stochastic integer programs with binary state de-
cision variables and non-convex expected cost-to-go func-
tions. One of their main contributions was to introduce a new
class of cutting planes, called Lagrangian cuts, which satis-
fies the validity, tightness and finiteness conditions ensuring
the convergence of the algorithm. They carried out compu-
tational experiments on three types of combinatorial opti-
mization problems to assess the performance of their method
on large-size scenario trees. Their results suggest that the
method provides good quality solutions in reasonable times.

Contributions We propose in the present paper to develop
a stochastic dual dynamic integer programming approach
to solve the stochastic ULS on large scenario trees. Our
contributions are twofold. We first investigate a stochastic
dynamic programming formulation of the stochastic ULS
based on continuous state variables. As proposed by Zou,
Ahmed, and Sun (2017), we reformulate the obtained nodal
sub-problems using a binary approximation of the inventory
decision variables in order to obtain binary state variables.
This allows us to use the SDDiP algorithm proposed by
Zou, Ahmed, and Sun (2017) to solve the problem. To the
best of our knowledge, this is the first attempt at develop-
ing a dynamic programming decomposition approach for the
stochastic ULS. Second, we propose an improved version
of the SDDiP algorithm of Zou, Ahmed, and Sun (2017) in
which a cutting-plane generation phase based on continuous
state variables is carried out to build a first approximation
of the expected cost-to-go functions before actually running
the SDDiP algorithm. Our numerical results show that this
initial phase significantly improves the quality of the solu-
tion found by the algorithm proposed in Zou, Ahmed, and
Sun (2017).

The remaining part of this paper is organized as follows.
Section introduces the deterministic equivalent mixed-
integer linear programming formulation and the stochastic
dynamic programming formulation of the stochastic ULS.
Section presents the SDDiP algorithm of Zou, Ahmed,
and Sun (2017) as applied to the stochastic ULS and de-
scribes the proposed improvement which involves an addi-
tional cutting-plane generation phase. Finally, the results of
our computational experiments are reported in Section 47.
They show the effectiveness of the method to solve large-
size instances of the stochastic ULS. Conclusions and direc-
tions for further works are discussed in section 47.

Mathematical formulations
We aim at planning production of a single type of item on
a singe resource over a planning horizon of T periods un-
der uncertain demand and costs. We consider a multi-stage
decision process and assume a stochastic input process with
finite probability space.

The resulting information structure can be represented as
a scenario tree (V, E) with T levels or stages. Each node
n ∈ V corresponds to a single stage tn. Let Vt be the set of
nodes belonging to stage t. Each node n has a unique prede-
cessor node denoted an belonging to stage tn− 1 and repre-
sents the state of the system that can be distinguished by the
information unfolded up to period tn. At any non-terminal
node of the tree, there are one or several branches to indi-
cate future possible outcomes of the random variables from
the current node. Let C(n) be the set of children of node n.
The probability associated with the state represented by the
node n is denoted by ρn and the transition probability from
node n to its child node m is denoted by ρnm. A scenario
is defined as a path in the tree from the root node to a leaf
node and represents a possible outcome of the stochastic in-
put parameters over the whole planning horizon.

The stochastic input parameters are defined as follows:

354

• dn: discrete demand at node n ∈ V ,
• fn: setup cost at node n ∈ V ,
• hn: unit inventory holding cost at node n ∈ V ,
• gn: unit production cost at node n ∈ V .
Moreover, we assume that at each stage, the realization of
the random parameters happens before we have to make a
decision for this stage, i.e. we assume that the values of dn,
fn, hn and gn are known before we have to decide on the
production plan at node n ∈ V .

Extensive MILP formulation
Based on the uncertainty representation described above, the
stochastic ULS can be reformulated as a deterministic equiv-
alent problem in the form of a mixed-integer linear program
(MILP).

We introduce the following decision variables:
• xn: quantity produced at node n ∈ V ,
• yn ∈ {0, 1}: setup variable at node n ∈ V ,
• sn: inventory level at node n ∈ V ,
This leads to the following MILP formulation:

min
∑
n∈V

ρn(fnyn + hnsn + gnxn) (1)

subject to:

xn ≤Mnyn ∀n ∈ V (2)

sn + dn = xn + sa
n

∀n ∈ V (3)
xn, sn ≥ 0 ∀n ∈ V (4)
yn ∈ {0, 1} ∀n ∈ V (5)

The objective function (1) aims at minimizing the expected
total cost, over all nodes of the scenario tree. This cost is the
sum of the expected setup, inventory holding and production
costs. Constraints (2) link the production quantity variables
to the setup variables. Note that the value of theMn constant
can be set by using an upper bound on the quantity that can
be processed at node n, usually defined as the maximum fu-
ture demand as seen from node n. Constraints (3) are the in-
ventory balance constraints. Constraints (4)-(5) provide the
decision variables domain.

Problem (1)-(5) is a mixed-integer linear program and
could thus be solved using mixed-integer linear program-
ming solvers. However, its size grows exponentially fast
with the number of nodes |V| in the scenario tree, leading
to prohibitive computation times in practice. We thus inves-
tigate in what follows a dynamic programming formulation
which serves as a basis to use decomposition techniques to
solve the problem.

Dynamic programming formulation
An alternative to the extensive formulation of the stochas-
tic ULS discussed above is a dynamic programming formu-
lation involving nested expected cost-to-go functions. This
approach decomposes the original problem into a series of
single-node sub-problems which are linked together by dy-
namic programming equations.

More precisely, the sub-problem related to node n focuses
on defining the production plan for node n based on the en-
tering stock level, sa

n

, imposed by its parent node an in the
scenario tree. Its objective value comprises two terms: a term
related to the setup, production and inventory holding costs
incurred at node n and a term called the expected cost-to-
go function which represents the expected future costs, over
all m ∈ C(n), incurred by the production decisions made at
node n.

The sub-problem for the root node n = 0 is expressed as
follows:

min(f0y0 + h0s0 + g0x0) +
∑

m∈C(0)

ρ0mQm(s0) (6)

subject to:

x0 ≤M0y0 (7)

s0 + d0 = x0 (8)

x0, s0 ≥ 0 (9)

y0 ∈ {0, 1} (10)

Note that we assume, without loss of generality, that the
entering stock at the root node is zero.

For each node n ∈ V \{0}, the sub-problem is formulated
as:

Qn(sa
n

) := min(fnyn + hnsn + gnxn)+∑
m∈C(n)

ρnmQm(sn) (11)

subject to:

xn ≤Mnyn (12)

sn + dn = xn + sa
n

(13)
xn, sn ≥ 0 (14)
yn ∈ {0, 1} (15)

Here Qn(·) represents the optimal objective value at node
n as a function of the entering stock level sa

n

. The ex-
pected cost-to-go function at node n is defined as Qn(·) :=∑
m∈C(n) ρ

nmQm(·). Note that for all leaf nodes, i.e. for all
n ∈ VT , Qn(·) ≡ 0.

Stochastic dual dynamic integer programming
algorithm

We investigate in this section how the SDDiP algorithm pro-
posed by Zou, Ahmed, and Sun (2017) could be used to
solve the stochastic ULS and propose an extension of the
algorithm in order to improve the quality of the obtained
solution. The main idea of this algorithm is to solve the
stochastic ULS by solving a sequence of single-node sub-
problems in which the expected cost-to-go function Qn(·)
is approximated by a piece-wise linear function. Note that
a key assumption for developing this algorithm is that the
scenario tree satisfies the stage-wise independence property,
i.e., for any two nodes n and n′ in Vt the set of children

355

nodes C(n) and C(n′) are defined by identical data and con-
ditional probabilities. In this case, the expected cost-to-go
functions depend only on the stage rather than on the nodes,
i.e., we haveQn(·) ≡ Qt(·) for all n ∈ Vt. As a result, only
one expected cost-to-go function has to be approximated per
stage and the cuts generated at different nodes n belonging
to Vt are added to a single set of cuts defining the piece-wise
linear approximation of function Qt(·).

Each iteration of the SDDiP algorithm comprises a sam-
pling step, a forward step and a backward step. In the sam-
pling step, a subset of scenarios is sampled from the scenario
tree. In the forward step, the algorithm then proceeds stage-
wise from t = 1 to T by solving, at each node of the sam-
pled scenarios, a dynamic programming equation with an
approximate expected cost-to-go function. At the end of this
step, the state decision variables are stored and a statistical
upper-bound of the problem is computed as the weighted av-
erage over all sampled scenarios. In the backward step, we
proceed stage-wise from the last stage T to the root node
and solve at each node a suitable relaxation of the forward
problem. The algorithm then adds supporting hyperplanes to
the approximate cost-to-go functions of the previous stage.
Finally, the nodal problem solved at the root node provides
a lower bound of the overall problem. The algorithm stops
when the upper and lower bound are close enough, accord-
ing to a convergence criteria.

This solution approach is based on the iterative approxi-
mation of the expected cost-to-go functionsQn(·) by piece-
wise linear functions. For stochastic linear programs, these
approximations are obtained by solving the dual problems
of each single-node sub-problems as done in a Benders’ de-
composition approach. However, for stochastic integer pro-
grams, this method does not guarantee the overall conver-
gence of the algorithm due to the non-convexity of the ex-
pected cost-to-go functions. In order to overcome this dif-
ficulty, Zou, Ahmed, and Sun (2017) make use of a key
assumption, namely that the state variables, i.e. the vari-
ables linking the single-node sub-problems, are binary. This
enables them to introduce a new type of cuts, called La-
grangian cuts, which are generated by solving a particular
Lagrangian relaxation of the nodal sub-problems. These cuts
display the validity, tightness and finiteness conditions en-
suring the theoretical convergence of the algorithm to the
optimal solution.

In the stochastic ULS, the state variables are the inven-
tory variables, sn, which are defined as continuous decision
variables. Hence, in order to be able to apply the SDDiP al-
gorithm to this problem, we resort to a binary approximation
of the state variables. This binarization is obtained by replac-
ing the continuous variable sn by a set of binary variables
un,λ such that sn =

∑
λ∈B 2λun,λ. Here un,λ = 1 if coef-

ficient 2λ is used to compute the value of sn, 0 otherwise.
Moreover, in order to generate the cuts during the backward
step of the algorithm, we introduce local copies of the binary
state variables. More precisely, zn,λ is an auxiliary decision
variable representing the value of the state variable at the
parent node of n, i.e. it is a local copy at node n of the state
variable ua

n,λ. This leads to the following reformulation of
the nodal sub-problem for node n ∈ V:

Qn(ua
n

) := min(fnyn + hnsn + gnxn)

+
∑

m∈C(n)

ρnmQm(un) (16)

subject to:

xn ≤Mnyn (17)∑
λ∈B

2λun,λ + dn = xn +
∑

λ∈B
2λzn,λ (18)

zn,λ = ua
n,λ ∀λ (19)

xn, sn, zn ≥ 0; yn ∈ {0, 1} (20)

un,λ ∈ {0, 1} ∀λ (21)

where un denotes the vector of binary variables un =
(un,0, ..., un,λ, ..., un,B).

We now describe in more detail the 3 steps comprised
within an iteration i of the SDDiP algorithm.

Sampling step In the sampling step, a subset of S scenar-
ios, i.e. a set of paths from the root node to the leaf nodes,
are randomly selected. Let Ωi = {ωki , ..., ωSi } be the set of
sampled scenarios and ωki be a set of node belonging to the
scenario k at iteration i,.

Forward step At iteration i, the forward step proceeds
stage-wise from t = 1 to T and solves the dynamic pro-
gramming recursion (16)-(21) with an approximate expected
cost-to-go function for each node in the sampled set Ωi.

Let ψti(u
n) be the approximation of the expected cost-to-

go function available at iteration i for stage t. It is defined by
the set of supporting hyperplanes generated until iteration i.
We thus have:

ψti(u
n) := min{θt : θt ≥

∑
m∈C(n)

ρnm(vml + (πml)ᵀun)

∀l = {1, ..., i− 1}} (22)

where vml and πml are the coefficients of the cuts generated
at iteration l < i.

At each sampled node n, we thus solve the following
nodal sub-problem denoted by Pni (ua

n

i , ψti). Here, ua
n

i de-
notes the binary approximation vector providing the level of
ending stock in the solution of the nodal sub-problem at the
parent node an during iteration i of the algorithm.

Qn
i
(ua

n

i) := min(fnyn + hnsn + gnxn) + ψti(u
n) (23)

subject to (17)-(21).
Note that this sub-problem is a small-size mixed-integer

linear program than can be solved by a standard mathemati-
cal programming solver.

The forward step ends when the nodal sub-problems for
all nodes in Ωi have been solved. Its output is thus a state
variable solution uni for each node in Ωi.

356

Backward step The aim of the backward step is to update
the approximate expected cost-to-go function ψti(·) for each
stage t. This step starts from the last stage T and goes back
to stage 2. Note that the last stage nodal sub-problems do not
have an expected cost-to-go function, therefore ψTi ≡ 0 for
all iterations i. At each stage t = T...2, the algorithm solves
a suitable relaxation for each node n ∈ Vt. This enables the
algorithm to collect the cut coefficients {vni , πni } and gener-
ate a new linear inequality to strengthen the approximation
of ψt−1i+1(·). The backward step continues iteratively until the
approximation of the expected cost-to-go function at stage
t = 1 is updated.

Since the linear cuts (22) are under-approximations of the
true expected cost-to-go functionQt(·), the optimal value of
the forward problem at the root node provides a lower bound
of the optimal value (16).

Stopping criteria We consider three stopping criteria that
are used in the literature. At each iteration i, a statistical up-
per bound (UB) is computed by the forward step and a lower
bound (LB) of the optimal value is generated at the root
node at the end of the backward step. A first stopping crite-
rion imposes the termination of the algorithm when the gap
|UBi−LBi|

LBi
is lower than a convergence threshold ε. A sec-

ond stopping criterion stops the algorithm when the lower
bound becomes stable during a fixed number of iterations.
Finally, a limit on the number of iterations is also enforced.

In what follows, we detail three different families used
to strengthen the approximation of the expected cost-to-go
function.

Integer Optimality Cuts Let uni be a solution of prob-
lem Pni (ua

n

i , ψti) solved during iteration i at sampled node
n in the forward step. To generate an integer optimality
cut at node n, we solve, for each m ∈ C(n), problem
Pmi (uni , ψ

t
i+1), i.e. the original nodal subproblem with an

updated approximation ψti+1. Let vmi+1 be its optimal objec-
tive value and v̄ni+1 =

∑
m∈C(n) ρ

nmvmi+1. The integer opti-
mality cut generated at iteration i in the backward step takes
the following form:

θt ≥ (v̄ni+1)
(B∑
λ=0

(un,λi − 1)un,λ +

B∑
λ=0

(un,λ − 1)un,λi

)
+ v̄ni+1 (24)

where un,λ corresponds to the λ-th entry of the binary ap-
proximation of sn.

Lagrangian Cuts Zou, Ahmed, and Sun (2017) intro-
duced a Lagrangian cut family. They proved that these cuts
display the validity, tightness and finiteness conditions en-
suring the theoretical convergence of the algorithm to the op-
timal solution. A Lagrangian cut is generated at node n in the
backward step at iteration i by considering the Lagrangian
relaxation of each problem Pmi (uni , ψ

t
i), m ∈ C(n), in

which the copy constraints (19) have been dualized. Each
corresponding Lagrangian dual problem is then solved to
optimality. The generated Lagrangian cut takes the form

(22), where vmi corresponds to the optimal value of the La-
grangian dual problem and πmi to the Lagrangian dual opti-
mal solution.

Strengthened Benders’ cuts This family of cuts have
been deduced by the observation that for any fixed dual so-
lution πn = {πn,λ : λ ∈ B}, solving the Lagrangian relax-
ation created by relaxing the set of constraints zn,λ = ua

n,λ
i

yields a valid cut. A strengthened Benders’ cut is generated
at node n in the backward step at iteration i by solving the
linear relaxation of problem Pmi (uni , ψ

t
i), m ∈ C(n). The

value of each coefficients πm,λi is set to the dual value of the
copy constraint zm,λ = un,λ in this linear relaxation. The
value of vmi is obtained by solving the Lagrangian relax-
ation of problem Pmi (uni , ψ

t
i) in which all copy constraints

(22) have been dualized and the Lagrangian multiplier of
constraint zm,λ = un,λ set to πm,λi .

It is worth mentioning that the Lagrangian cuts and
strengthened Benders’ cuts do not dominated each other,
even though Lagrangian cuts are tight, whereas strength-
ened Benders’ are not in general. We refer the reader to Zou,
Ahmed, and Sun (2017) for more detail about these cut fam-
ilies.

We next discuss the extension of the SDDiP algorithm that
we propose in order to speed up the overall convergence of
the algorithm.

Proposed extension of the SDDiP algorithm The pro-
posed extension consists in carrying out an initial phase be-
fore actually running the SDDiP algorithm. This leads to a
two-phase algorithm.

In the first phase (PHASE I), we build a first approxima-
tion of the expected cost-to-go functions by generating cuts
based on formulation (11)-(15) which uses continuous in-
ventory state variables rather than reformulation (16)-(21)
which uses a binarization of the inventory state variables.
More precisely, the nodal sub-problem at node n is reformu-
lated by introducing an auxiliary variable σn representing
the value of the inventory variable at the parent node sa

n

.
This results in the following sub-problem:

Qn(sa
n

) := min(fnyn + hnsn + gnxn) +Qn(sn)

subject to:

(12), (14), (15)
sn + dn = xn + σn (25)

σn = sa
n

(26)

Similarly to the SDDiP algorithm, the expected cost-to-
function Qn(·) is under-approximated by a set of cuts:

ψ̃ti(s
n) := min{θt : θt ≥

∑
m∈C(n)

ρnm(ṽml + π̃ml s
n)

∀l = {1, ..., i− 1}} (27)

where ṽml and π̃ml are the coefficients of the cuts generated
at iteration l < i.

357

This leads to the following approximated sub-problem
P̃ni (sa

n

, ψ̃ti):

Q̃
n

i
(sa

n

i) := min(fnyn + hnsn + gnxn) + ψ̃ti(s
n) (28)

subject to (12), (14), (15), (25), (26).
In PHASE I, we generate only strengthened Benders’

cuts. In these cuts, the value of π̃mi is set to the dual
value of the copy constraint (26) in the linear relaxation of
P̃ni (sa

n

, ψ̃ti). The value of ṽmi is set to the optimal value of
the Lagrangian relaxation of P̃ni (sa

n

, ψ̃ti) in which the La-
grangian multiplier of the dualized copy constraint σn =
sa

n

is set to π̃mi in the objective function.
This cutting-plane generation strategy relies on the idea

that even if the strengthened Benders’ cuts generated by us-
ing a relaxation of formulation (11)-(15) are not tight, they
enable to build a first under approximation of the expected
cost-to-go functions with a reduced computational effort as
each nodal sub-problem involves a single binary variable yn.
As will be shown by our numerical results, this leads to a re-
duction in the overall computation time of the algorithm.

In the second phase (PHASE II), we reformulate (11)-
(15) by making a binary approximation of the continuous
state variables. Note that any valid cut generated in PHASE
I for the formulation (11)-(15) provides a valid cut for the
reformulation (16)-(21) by setting πm,λi = π̃mi ,∀λ ∈ B and
vmi = ṽmi . We then further improve the under approxima-
tion of the expected cost-to-go functions by generating inte-
ger optimality, Lagrangian and strengthened Benders’ cuts
as done in Zou, Ahmed, and Sun (2017).

Regarding the sampling step, in both phases, we sam-
ple a single scenario at each iteration as the results in Zou,
Ahmed, and Sun (2017) suggested that this strategy pro-
vides the best numerical performance. Finally, PHASE I and
PHASE II stop when at least one of the stopping criteria de-
fined above is reached.

As a synthesis, the main steps of the proposed extended
SDDiP algorithm applied to the stochastic ULS are summa-
rized in Algorithm 1.

Computational Experiments
In this section, we focus on assessing the performance of the
proposed two-phase SDDiP algorithm by comparing it with
the performance of a stand-alone mathematical program-
ming solver using the extensive formulation (1)-(5) and with
the one of the single-phase SDDiP algorithm. In what fol-
lows, we first describe the scheme used to randomly generate
instances of the stochastic ULS. We then provide some com-
putational results showing the effectiveness of Algorithm 1
at solving the problem.

Instance Generation
Instances were generated based on the procedure proposed
by Guan, Ahmed, and Nemhauser (2009). This procedure
considers various structures of the underlying scenario trees,
several ratios of the production cost to the inventory hold-
ing cost, and several ratios of the setup cost to the inven-
tory holding cost. We assumed that the underlying scenario

Algorithm 1: SDDiP algorithm
1 Initialize LB ← −∞, UB ← +∞, i← 1
2 PHASE I
3 while no stopping criterion is satisfied do
4 Randomly select S scenarios Ωi = {ω1

i , ..., ω
S
i }.

5 for k = 1, ..., S do
6 for n ∈ ωki do
7 Solve P̃ni (sa

n

, ψ̃ti)
8 Collect (xni , y

n
i , s

n
i)

9 end
10 υk ←

∑
n∈ωk

i
(fnyni + hnsni + gnxni)

11 end
12 µ̂←

∑S
k=1 υ

k and σ̂2 ← 1
S−1

∑S
k=1(υk − µ̂)2

13 UB ← µ̂+ zα/2
σ̂√
S

14 for t = T − 1, ..., 1 do
15 for k = 1, ..., S do
16 for n ∈ Vt ∩ ωki do
17 Generate a strengthened Benders’ cut of

type (27) considering all nodes
m ∈ C(n)

18 end
19 end
20 Add the generated cuts to ψ̃ti to get ψ̃ti+1.
21 end
22 LB ← P̃ 0

i (0, ψ̃1
i+1)

23 i← i+ 1
24 end
25 PHASE II
26 while no stopping criterion is satisfied do
27 Randomly select S scenarios Ωi = {ω1

i , ..., ω
S
i }.

28 for k = 1, ..., S do
29 for n ∈ ωki do
30 Solve Pni (ua

n

, ψti)
31 Collect (xni , y

n
i , s

n
i , u

n
i)

32 end
33 υk ←

∑
n∈ωk

i
(fnyni + hnsni + gnxni)

34 end
35 µ̂←

∑S
k=1 υ

k and σ̂2 ← 1
S−1

∑S
k=1(υk − µ̂)2

36 UB ← µ̂+ zα/2
σ̂√
S

37 for t = T − 1, ..., 1 do
38 for k = 1, ..., S do
39 for n ∈ Vt ∩ ωki do
40 Generate an integer optimality cut, a

Lagrangian cut and a strengthened
Benders’ cut considering all nodes
m ∈ C(n)

41 end
42 end
43 Add the generated cuts to ψti to get ψti+1.
44 end
45 LB ← P 0

i (0, ψ1
i+1)

46 i← i+ 1
47 end

358

tree is balanced with T stages and K branches per stage. In
our instances, we considered a set of combinations in which
T ∈ {4, 5, 6} and K ∈ {10, 20}. As for the costs, we used
a production to holding cost ratio g/h ∈ {2, 4} and a setup
to holding cost ratio f/h ∈ {200, 400}. For each possible
combination of K,T, g/h, and f/h, five random instances
were generated, resulting in a total of 120 instances. In these
instances, the holding cost hn at node n of the tree is a
random number uniformly distributed in the interval [0, 10];
the production cost gn is uniformly distributed in the inter-
val [0.8(g/h)h̄, 1.2(g/h)h̄], where h̄ is the average holding
cost; the setup cost fn is uniformly distributed in the in-
terval [0.8(f/h)h̄, 1.2(f/h)h̄]; and demand dn is uniformly
distributed in the interval [0, 100]. Finally, all K children of
a node occur with equal probability 1/K.

Results
Algorithm 1 was implemented in C++ using the Concert
Technology environment. The MILP and LP sub-problems
embedded into the SDDiP algorithm were solved using
CPLEX 12.8 and the Lagrangian dual problems were solved
by a basic sub-gradient algorithm. All computations have
been carried out on a Linux workstation with four 2.4 GHz
Intel core 2 duo processors and 8 GB RAM. We impose a
time limit of 900 seconds.

Each instance was first solved by CPLEX 12.8 with
the default settings using the extensive formulation (1)-(5).
Moreover, in order to assess the impact of PHASE I into
the SDDiP algorithm, each instance was also solved using
two configurations of Algorithm 1. In the first configuration,
only PHASE II of Algorithm 1 is carried out. In the second
configuration, both PHASE I and PHASE II of Algorithm
1 are carried out. Note that the parameters for the stopping
criteria were set as follows: as only one path is evaluated
at each iteration we assumed the moving average of the last
100 evaluated path as upper bound UBi and we set a conver-
gence threshold ε = 0.001. Moreover, we assumed that the
lower bound LBi became stable if it does not improve after
30 iterations and a limit number of iterations is fixed equal
to 1000. Finally, the SDDiP algorithm evaluates 1000 sam-
ple paths independently after one of the stopping criterion is
reached and constructs a 95% confidence interval. The right
endpoint of this interval is reported as the statistical upper
bound of the optimal value.

Table 1 displays the numerical results. Each line corre-
sponds to a given combination of K,T, g/h and f/h and
provides the average results for the related 5 instances. For
each combination, the first row displays the gap between the
lower bound and the upper bound found before some stop-
ping criterion is reached and the second row reports the av-
erage computation time. The label “ ∗ ” represents the case
when default CPLEX could not find any lower bound within
the time limit.

Significant improvement of the gaps is achieved using
PHASE I. We observe that, in most cases, the gap obtained
by Algorithm 1 is much smaller when using both PHASE
I and PHASE II of the algorithm than when using only
PHASE II and, for the cases where it is not observed, we
notice that a similar gap is obtained in a shorter computation

Table 1: Performance of SDDiP algorithms and CPLEX 12.8
on stochastic uncapacitated lot-sizing problem

T K g/h f/h PhaseII PhaseI−II CPLEX
4 10 2 200 2.95 1.92 0.00

574 482 173
400 2.31 1.55 0.86

743 626 643
4 200 2.10 2.64 0.00

596 403 93
400 3.98 2.87 0.47

776 651 501
20 2 200 4.21 3.99 2.72

907 813 900
400 6.65 7.00 8.75

905 905 900
4 200 5.26 2.71 0.54

728 773 900
400 7.26 5.53 6.52

909 905 900
5 10 2 200 4.14 3.60 3.31

803 727 900
400 10.09 6.79 14.50

906 904 901
4 200 4.85 3.41 4.85

901 902 900
400 5.92 4.75 8.98

886 903 900
20 2 200 8.83 7.64 67.63

908 903 903
400 15.43 12.46 79.03

909 908 903
4 200 7.24 5.75 44.07

914 828 901
400 12.49 11.84 60.05

907 913 901
6 10 2 200 7.40 6.85 66.52

912 904 901
400 10.85 9.96 76.33

907 904 901
4 200 7.57 6.25 44.09

906 853 901
400 12.41 8.62 61.56

904 905 901
20 2 200 15.70 10.97 *

911 916 946
400 21.20 16.49 *

908 910 944
4 200 12.07 9.51 *

916 907 901
400 17.77 15.77 *

904 921 901

time. On average, PHASE II provides a gap over all tested
instances equal to 8.69%, whereas the gap provided by Al-
gorithm 1 is equal to 7.03%, which represents a 19 percent
reduction on average. Overall, these results show that the

359

proposed two-phase extension has a significant positive im-
pact on the performance of the SDDiP algorithm presented
by Zou, Ahmed, and Sun (2017), both in terms of solution
quality and computation time.

The results also suggest that for the instances with up
to 1000 scenarios, i.e., (T,K) = (4, 10), CPLEX 12.8
performs better than Algorithm 1. However, as the num-
ber of scenarios increases the performance of CPLEX 12.8
decreases substantially. We observe that for the set of in-
stances with (T,K) = (4, 20), neither Algorithm 1 nor
CPLEX 12.8 outperform the other, however, the results sug-
gest that CPLEX 12.8 performs better than Algorithm 1
when f/h = 200 and conversely when f/h = 400.

Regarding the set of instances (T,K) = (5, 10), we ob-
serve that Algorithm 1 performs better than default CPLEX
12.8, obtaining much smaller gaps. Furthermore, the inte-
grality gaps given by CPLEX 12.8 largely increase when
the number of scenarios reaches 100,000, whereas the gaps
given by our SDDiP algorithm reasonably increase. Specif-
ically, CPLEX 12.8 provides integrality gaps greater than
44% for the sets of instances (T,K) = (5, 20) and (T,K) =
(6, 10), whereas our customized SDDiP algorithm provides
integrality gaps lower than 13%. For the largest-size tested
set (3.2·106 scenarios) CPLEX 12.8 could not find any lower
bound within the imposed time. On the other hand, our pro-
posed solution approach could provide an average gap of
13.17%, which suggests that our algorithm can scale well
up to this size. Moreover, for the set of instances (T,K) =
(6, 20), we observe that the average upper bound found by
CPLEX 12.8 was 9 times greater than the average upper
bound provided by our solution approach. Finally, the ex-
perimental results suggest that the proposed method has a
better performance over instances with large setup to hold-
ing cost ratios.

We also observe that for the set of instances solved to op-
timality by CPLEX 12.8, the average optimal value is equal
to 3365.9, whereas the average lower bound provided by our
SDDiP algorithm was only 0.24% smaller. This result sug-
gests the accuracy of attained lower bounds and implies that
the gap between the lower and upper bounds mostly comes
from the evaluation of the upper bounds, which can be made
smaller by evaluating more forward paths.

In general, the results suggest a good performance of
PHASE I when it is embedded into the SDDiP algorithm.
They also suggest that our solution approach provides a
good quality solution for large-size instances of the stochas-
tic uncapacitated lot-sizing problem and performs better
than CPLEX 12.8 when the number of scenarios is greater
than 8000.

Conclusion and perspectives
We studied a production planning problem, the uncapaci-
tated single-item lot-sizing problem, under uncertain input
data and investigated a multi-stage stochastic integer pro-
gramming approach for this stochastic combinatorial op-
timization problem. We proposed a new extension of the
stochastic dual dynamic integer programming recently intro-
duced by proposed by Zou, Ahmed, and Sun (2017) to solve

the problem. This extension consists in an initial cutting-
plane generation phase which builds a first approximation
of the expected cost-to-go functions of the dynamic pro-
gramming formulation with a reduced computational effort.
Computational experiments carried out on randomly gener-
ated instances suggest that the proposed cutting-planes gen-
eration phase improves the performance of the SDDiP algo-
rithm proposed by Zou, Ahmed, and Sun (2017).

It worth mentioning that the proposed extension of the
SDDiP was applied in this work to solve the stochastic ULS
but might also be useful for general stochastic integer pro-
grams displaying continuous state variables. An interesting
direction for further research would thus be to study the per-
formance of this cutting-plane generation phase over other
challenging problems.

We also assessed the performance of our proposed SD-
DiP algorithm by comparing it with CPLEX 12.8. Computa-
tional experiments show that the proposed SDDiP algorithm
performs well as compared to the use of a stand-alone math-
ematical solver, especially for large-size instances. However,
in the literature, there exist several valid inequalities that can
help CPLEX to find better quality solutions. We consider
that the implementation of these valid inequalities have to be
considered in order to properly assess the performance of the
mathematical solver. On the other hand, extensive computa-
tional experiments must be carried out to clearly determine
the boundedness and effectiveness of the proposed method.

The proposed SDDiP algorithm could not solve the pro-
posed largest-size instances with a small remaining gap
within the imposed time limit. Hence, two interesting di-
rection for further research can be considered. First, study
how to include into the SDDiP algorithm the optimal so-
lution property described in Guan and Miller (2008) for
the stochastic uncapacitated lot-sizing problem. Second, to
study heuristic solution approaches in order to determine if
good quality solutions can be found in shorter computation
time.

Finally, we assumed in our problem modeling uncapac-
itated production processes. Extending the present work in
order to account for production resources with limited ca-
pacity could also be worth investigating.

Acknowledgments
This research was partially supported by the supercomput-
ing infrastructure of the NLHPC (ECM-02) in which pre-
liminary computational tests were conducted. Authors are
grateful for partial support from Gaspard Monge Program
for Optimization, operational research and their interactions
with data science (PGMO) and the Fondation Mathématique
Jacques Hadamard (FMJH).

References
Aggarwal, A., and Park, J. K. 1993. Improved algorithms for
economic lot size problems. Operations research 41:549–
571.
Brahimi, N.; Absi, N.; Dauzère-Pérès, S.; and Nordli, A.
2017. Single-item dynamic lot-sizing problems: An up-

360

dated survey. European Journal of Operational Research
263(3):838–863.
Camargo, V. C.; Toledo, F. M.; and Almada-Lobo, B.
2014. Hops–hamming-oriented partition search for produc-
tion planning in the spinning industry. European Journal of
Operational Research 234(1):266–277.
Di Summa, M., and Wolsey, L. A. 2008. Lot-sizing on a
tree. Operations Research Letters 36(1):7–13.
Ghamari, A., and Sahebi, H. 2017. The stochastic lot-
sizing problem with lost sales: A chemical-petrochemical
case study. Journal of Manufacturing Systems 44:53–64.
Guan, Y.; Ahmed, S.; and Nemhauser, G. L. 2009. Cutting
planes for multistage stochastic integer programs. Opera-
tions research 57(2):287–298.
Guan, Y., and Miller, A. J. 2008. Polynomial-time algo-
rithms for stochastic uncapacitated lot-sizing problems. Op-
erations Research 56(5):1172–1183.
Guan, Y.; Ahmed, S.; Nemhauser, G. L.; and Miller, A. J.
2006. A branch-and-cut algorithm for the stochastic unca-
pacitated lot-sizing problem. Mathematical Programming
105(1):55–84.
Halman, N.; Klabjan, D.; Mostagir, M.; Orlin, J.; and
Simchi-Levi, D. 2009. A fully polynomial-time approxi-
mation scheme for single-item stochastic inventory control
with discrete demand. Mathematics of Operations Research
34(3):674–685.
Hu, Z., and Hu, G. 2016. A two-stage stochastic program-
ming model for lot-sizing and scheduling under uncertainty.
International Journal of Production Economics 180:198–
207.
Kilic, O. A.; Tunc, H.; and Tarim, S. A. 2018. Heuristic
policies for the stochastic economic lot sizing problem with
remanufacturing under service level constraints. European
Journal of Operational Research 267(3):1102–1109.
Macedo, P. B.; Alem, D.; Santos, M.; Junior, M. L.; and
Moreno, A. 2016. Hybrid manufacturing and remanufactur-
ing lot-sizing problem with stochastic demand, return, and
setup costs. The International Journal of Advanced Manu-
facturing Technology 82(5-8):1241–1257.
Moreno, A.; Alem, D.; Ferreira, D.; and Clark, A.
2018. An effective two-stage stochastic multi-trip location-
transportation model with social concerns in relief sup-
ply chains. European Journal of Operational Research
269(3):1050–1071.
Pereira, M. V., and Pinto, L. M. 1991. Multi-stage stochas-
tic optimization applied to energy planning. Mathematical
programming 52(1-3):359–375.
Wagelmans, A.; Van Hoesel, S.; and Kolen, A. 1992. Eco-
nomic lot sizing: an o (n log n) algorithm that runs in linear
time in the wagner-whitin case. Operations Research 40(1-
supplement-1):S145–S156.
Wagner, H. M., and Whitin, T. M. 1958. Dynamic version of
the economic lot size model. Management science 5(1):89–
96.
Zou, J.; Ahmed, S.; and Sun, X. A. 2017. Stochastic dual

dynamic integer programming. Mathematical Programming
1–42.

361

