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2 Université Paris Saclay, Orsay, France

Abstract

We seek to determine the best locations for electric vehicle fast charging stations under
driving range uncertainty. Two stochastic programming based models have been recently pro-
posed to handle the resulting stochastic flow refueling location problem: a first one maximiz-
ing the expected flow coverage of the network, a second one based on joint chance constraints.
However, significant computational difficulties were encountered while solving large-size in-
stances. We thus propose two efficient solution approaches for this problem. The first one is
based on a new location-allocation type model for this problem and results in a MILP for-
mulation, while the second one is a tabu search heuristic. Our numerical experiments show
that when using the proposed MILP formulation, the computation time needed to provide
guaranteed optimal solutions is significantly reduced as compared to the one needed when
using the previously published MILP formulation. Moreover, our results also show that the
tabu search method consistently provides good quality solutions within short computation
times.

Keywords: Flow refueling location model, electric vehicle charging station network design,
stochastic driving range, stochastic programming, mixed-integer linear programming, tabu search

1 Introduction

According to the International Energy Agency (IEA) [11], transport accounts for nearly one
quarter of global energy-related CO2 emissions. Reducing CO2 emissions from transport modes
will thus play an important role in building a more sustainable future for the next generations.
One way to achieve this target is to encourage drivers to use Electric Vehicles (EVs), i.e. vehicles
powered by a battery which has to be recharged by plugging the vehicle into an external source of
electric power. The EV market has experienced significant growth over the last few years: in 2016,
there were more than 2 million EVs on the road globally and more than 500,000 in the United
States alone [12]. However, as indicated by a 2017 report from the US department of energy [22],
the widespread market adoption of EVs still remains hindered by many factors, among which is the
lack of a convenient and ubiquitous network of charging stations. Namely, the range of EVs, i.e.
the maximum distance that a fully charged EV can travel before its battery runs empty, is rather
limited as compared to the one of vehicles powered by conventional internal combustion engines.
As a consequence, an EV driver wishing to travel a long-distance trip has to make multiple stops at
public charging stations during his trip in order to recharge the EV battery. These stations should
be easily accessible, when and where needed (typically in gasoline stations), and the charging time
should be limited to a few minutes. Currently, the available fast charging technology enables a
driver to recharge the battery of his vehicle within 20-30 minutes. However, it remains far less
widespread than the slow charging technology, mainly because of its high investment costs.
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The deployment of an EV charging infrastructure based on the fast charging technology thus
requires to carefully select the locations of the charging stations so as to simultaneously satisfy as
much charging demand as possible and limit the investment costs. This combinatorial optimization
problem, known as the flow refueling location problem (FRLP), was first introduced in [15]. In
the FRLP, the demand is modeled as a set of origin-destination trips to be taken by EV drivers.
An EV trip is said to be ’covered’ or ’refueled’ if the charging stations located on the corresponding
path allow an EV driver to travel from his point of departure to his destination and back without
running out of fuel, i.e. if the distance between each pair of consecutive stations on the path
does not exceed the vehicle range. The objective is to select the best locations for EV charging
stations in a way to maximize the total flow of EVs covered in the network while complying with
the available limited investment budget.

In [15] and most of the extensions of this work, the EV range is assumed to be deterministically
known. However, this seems a rather strong assumption as in practice, the actual range might be
subject to high variations due among others to the traffic conditions, the outside temperature, the
use of in-car heater or air conditioning and the age of the battery. Neglecting range uncertainties
when planning an EV charging infrastructure might lead to suboptimal solutions as the actual
demand coverage provided by the location decisions might be overestimated. It is thus necessary
to explicitly take into account in the location model the stochastic nature of the vehicle range. De
Vries and Duijzer [3] proposed two stochastic programming based models to incorporate the driving
range variability in the FRLP. However, their numerical experiments showed that the computation
time needed to solve the resulting mixed-integer linear programs (MILP) increases vastly with the
problem size and might become prohibitively long for some instances. The main objective of the
present work is to tackle this difficulty by proposing two efficient solution approaches for this
problem: an exact method relying on new MILP formulations and a heuristic one based on a tabu
search algorithm.

Our contribution is thus threefold. First, we present a new MILP formulation for the deter-
ministic variant of the FRLP, where the EV range explicitly appears as an input parameter. This
formulation is related to the location-allocation models frequently used in the facility location
literature. It mainly relies on the idea that, if an EV trip is covered, then each node belonging
to the shortest path between the origin and the destination of the trip should be allocated to (i.e.
refueled by) a single charging station situated on the path within the driving range of the vehicle.
Second, we extend this formulation to consider two stochastic variants of the FRLP with uncertain
EV range: the first one maximizing the expected coverage of the charging demand, the second one
based on a chance-constrained formulation. Using randomly generated instances as well as real-life
instances, we show that the proposed MILP formulations perform better in terms of computation
time than the formulations used in [3], for both the deterministic and stochastic problems. Third,
since the computation time remains long for some large-size instances, we propose a heuristic so-
lution method based on a tabu search algorithm. Our numerical results show that it consistently
provides good quality solutions in significantly reduced computation times.

The paper is organized as follows. In Section 2, we propose an overview of the related literature.
Section 3 introduces the deterministic flow refueling location model (FRLM) and presents the new
MILP formulation for this problem. Two extensions of the deterministic model taking into account
the stochastic driving range are then considered in Section 4: the expected flow refueling location
model (EFRLM) and the chance constrained flow refueling location model (CCFRLM). The tabu
search heuristic procedure is described in Section 5. Section 6 analyzes the results of the numerical
experiments carried out to assess the numerical performance of the proposed exact and heuristic
solution approaches. Finally, some conclusions and suggestions for further research are provided
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in Section 7.

2 Position in the literature

The application of facility location models to the design of EV charging infrastructure has required
specific research development in recent years. A reason for this is that drivers often do not carry
out a special-purpose round trip from their home or workplace to the charging station to recharge
their vehicles but rather recharge it while on their way to another destination. This is particularly
the case for long distance trips. This implies that the EV charging demand should be modeled
as a set of origin-destination trips rather than a set of nodes. Such a demand representation was
proposed by Hodgson [7] within his flow capturing location model (FCLM). In the FCLM, an
origin-destination flow is assumed to be ’captured’ if there is at least one station located anywhere
on the shortest path between the origin and the destination of the flow. However, the FCLM does
not take into account the limited range of EVs and the fact that multiple stations may be needed
to recharge a trip. This was the motivation behind the development of the flow refueling location
model (FRLM) by Kuby and Lim in [15]. In this model, a flow on a given path is considered as
’covered’ if and only if the stations on the path are located such that the distance between each
pair of consecutive stations does not exceed the vehicle range.

In the past few years, the problem of locating charging stations for electric vehicles has attracted
considerable attention. For instance, efficient solution approaches based on new MILP formulations
were proposed in [2] and [20] while heuristic solution techniques for large-scale problems were
studied in [5] and [6]. Extensions of the basic problem taking into account a limited charging
capacity of the stations (see e.g. [8] and [21]) or the possibility of using paths slightly deviating
from the shortest origin-destination path (see e.g. [10], [14], [18] and [25]) were also considered.
However, little attention has been given in the literature to the stochastic nature of the EV charging
infrastructure planning problem while in practice, there are significant uncertainties on the input
parameters of the optimization problem to be solved.

A first parameter subject to uncertainty is the charging demand as it is difficult to accurately
forecast the number of EVs on each trip one or several years ahead: see e.g. [9], [13], [19] and [23]
for models taking into account a stochastic charging demand. A second source of uncertainty is the
driving range, which might be subject to high variations due among others to the traffic conditions,
the outside temperature, the use of air conditioning and the age of the battery. With a stochastic
driving range, it is not possible to ensure that a trip will be covered for all possible realizations of
the random parameter. Hence, the problem modeling involves computing the coverage probability
of each trip as the joint probability that each portion of the trip comprised between two opened
charging stations will be shorter than the driving range. To the best of our knowledge, only two
recent works, [3] and [17], have studied this problem. De Vries and Duijzer [3] assume that,
for a given trip, the realization of the driving range will be the same on each portion of the trip
and exploit this assumption to ease the computation of the joint probability. They introduce two
stochastic programming based models. The first one defines the coverage probability of each trip
as a decision variable and seeks to maximize the expected EV flow covered. The second one is
a chance constrained model in which the coverage probability of each covered trip is required to
stay above a minimum value. In both cases, the problem is reformulated as a MILP and solved
with a mathematical programming solver. Lee and Han [17] also seek to maximize the expected
EV flow coverage but they assume that, for a given trip, the random variables representing the
stochastic driving range realization on each trip portion are totally independent of one another.
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This assumption enables them to compute the joint probability as the product of the reachability
probability of each trip portion. The problem is then formulated as a mixed-integer non-linear
program and solved using a Branch-and-Price approach.

The present work is mostly related to the work of De Vries and Duijzer [3] as we use the same
assumption on the driving range realization. The authors of [3] propose a new formulation of
the deterministic FRLP in which the vehicle range explicitly appears as an input parameter and
exploit it in their two stochastic programming based models. However, their numerical results
show that the computation time needed to solve the problem with a mathematical programming
solver becomes prohibitively long when the problem size increases. In what follows, we seek to
partially remedy to this difficulty and to reduce the computation time by proposing two new
efficient solution approaches for the FRLP with a stochastic driving range.

3 Deterministic Flow Refueling Location Problem

3.1 Problem description

We consider a road network G(N ,A), where N denotes a set of nodes and A denotes a set of arcs
linking these nodes. The demand is modeled as a set Q of predetermined trips to be taken by EV
drivers. Each trip q corresponds to traveling from a given origin Oq ∈ N to a given destination
Dq ∈ N and back. We assume that all drivers taking trip q follow the shortest path between
Oq and Dq and are not willing to deviate from it to refuel their vehicles. The flow fq on trip q
corresponds to the number of vehicles traveling between Oq and Dq per unit of time.

Similarly to e.g. [2] and [3], we assume that the battery consumption is directly proportional
to the distance traveled and that all EVs have the same limited range R (expressed in miles or
kilometers). The problem is that the distance traveled during a trip q is likely to exceed the driving
range R. In this case, multiple stops at charging stations are required to recharge the EV battery.
We assume that charging stations are uncapacitated and accessible for traffic from both directions.
In order for an EV to travel from Oq to Dq and back without running out of charge, there should
be an adequate number of stations at carefully selected nodes on the shortest path between Oq

and Dq. When the distance between each pair of consecutive stations on this path does not exceed
the range R, trip q is said to be covered. But as soon as there is a pair of consecutive stations
separated by a distance greater than R, trip q is considered not covered. The optimization problem
thus consists in identifying the best locations to build a predefined number p of charging stations
in the network so as to maximize the total flow of EVs covered.

We seek to enable EV drivers to carry round trips from their origin to their destination.
Therefore, a driver taking trip q cyclically travels from Oq to Dq to Oq, etc... alternatively crossing
each arc belonging to the shortest path in the outward and return direction. To model the problem,
De Vries and Duijzer [3] introduced the concept of cycle segment. As this concept will be used
in the MILP formulations of the problem presented in the next two subsections, we discuss it in
more detail in what follows.

A cycle segment [k, l] is defined as the sequence of consecutive arcs to be crossed (in the
outward and/or return direction) to travel on the shortest path between node k and node l. Note
that there is an exception for the cycle segment [Oq, l] that might be understood in two different
ways: either the driver travels in the outward direction from Oq to l or he carries out a round trip
l −→ Oq −→ l. Similarly, [k,Dq] might correspond to the situation where the driver travels in the
outward direction from k to Dq or where he carries out the round trip k −→ Dq −→ k. In order
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to distinguish between these two cases, for each trip q, nodes Oq and Dq are duplicated into nodes
O′q and D′q and two arcs of length 0, (O′q, Oq) and (Dq, D

′
q) are added to A. Cycle segment [Oq, l]

(resp. [k,Dq]) represents traveling in the outward direction from Oq to l (resp. from k to Dq) while
cycle segment [O′q, l] (resp. [k,D′q]) represents the round trip to the origin (resp. destination) of
the trip.

Let Nq (resp. Aq) denote the set of nodes (resp. arcs) belonging to the shortest path between
nodes O′q and D′q. Ak,lq represents the set of consecutive arcs visited when traveling on the shortest
path between k and l during trip q and d(m,n) is the length of arc (m,n) ∈ A. The length tklq of
a cycle segment [k, l] on trip q is defined as follows:

• For k = O′q and l ∈ Nq \
{
D′q
}

, tklq = 2
∑

(m,n)∈Ak,l
q
d(m,n).

• For k ∈ Nq \
{
O′q
}

and l = D′q, t
kl
q = 2

∑
(m,n)∈Ak,l

q
d(m,n).

• For k ∈ Nq \
{
O′q, D

′
q

}
and l ∈ Nq \

{
O′q, D

′
q

}
, tklq =

∑
(m,n)∈Ak,l

q
d(m,n).

• For k = O′q and l = D′q, t
kl
q = +∞.

These notations are summarized in Table 1.
De Vries and Duijzer [3] recently proposed a formulation of the flow refueling location problem

(FRLP) relying on the concept of cycle segment. In this formulation, denoted FRLM1 in what
follows, each round trip q ∈ Q from O′q to D′q and back is decomposed into a sequence of sub-trips
between charging stations where the EV successively stops to get refueled. Each of these sub-
trips corresponds to one of the cycle segments defined above. Thus, a feasible sequence of cycle
segments or sub-trips, complying with the stations opening decisions, is built for each trip q. If
all cycle segments used for trip q have a length smaller than the range R, the trip is considered
as covered. Otherwise, trip q is not covered. Note that, contrary to the MILP formulations
investigated e.g. in [2], [15] and [20], formulation FRLM1 contains the range R explicitly as a
parameter, which is essential in order to be able to extend it to the stochastic range case. De Vries
and Duijzer [3] tested formulation FRLM1 on a large set of instances and encountered significant
computational difficulties while solving large-size instances of the problem. In order to decrease
the computation time needed to obtain guaranteed optimal solutions, we introduce in Subsection
3.2 a new formulation of the problem (denoted FRLM2).

3.2 New formulation for the deterministic flow refueling location prob-
lem

Formulation FRLM2 relies on the idea that, if a trip q is covered, then each node l ∈ Nq should
be reachable (or in an equivalent manner, all arcs (j, l) ∈ Aq should be crossable) by the EV after
refueling at an opened charging station located before l. Thus, in case trip q is covered, we should
assign to each node l ∈ Nq a single station k ∈ N b

lq in charge of serving it. This station should be
within the driving range R of the vehicle to enable the EV driver to refuel his vehicle at node k
and reach node l. In case trip q is not covered, no node-station assignment is needed.
Similarly to formulation FRLM1, formulation FRLM2 uses binary location and coverage variables
defined by:

• xk = 1 if a station is built at node k, 0 otherwise;

• yq = 1 if the trip q is covered, 0 otherwise.
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Parameter Description
N Set of nodes of the road network
A Set of arcs (i, j) of the road network, i ∈ N , j ∈ N
d (i, j) Length of arc (i, j) ∈ A
R Range of electric vehicles
p Number of charging stations to be built
Q Set of origin-destination trips taken by EV drivers in the network
fq Flow of EVs on trip q
Oq Origin of trip q
O′

q Duplicated origin of trip q
Dq Destination of trip q
D′

q Duplicated destination of trip q
N ′ Set of duplicated nodes
Nq Set of nodes belonging to the shortest path between O′

q and D′
q

N b
lq Set of nodes belonging to Nq visited before node l when traveling from O′

q to D′
q

N a
kq Set of nodes belonging to Nq visited after node k when traveling from O′

q to D′
q

Aq Set of arcs belonging to the shortest path between O′
q and D′

q

Akl
q Set of consecutive arcs visited when traveling on the shortest path between k and l during

trip q
tklq Length of a cycle segment [k, l] on trip q

Table 1: FRLM parameters

In formulation FRLM2, we introduce a set of assignment variables wklq defined as follows. For each

trip q, each node l ∈ Nq \
{
O′q
}

and each node k ∈ N b
lq, we define:

• for k 6= O′q: w
kl
q = 1 if the EV battery is recharged at the station located at node k to enable

the driver to travel in the outward direction at least up to node l, i.e. if node l is assigned
to the station opened at node k, and 0 otherwise.

• for k = O′q: w
O′

q ,l
q = 1 if the refueling of the sub-trip l −→ O′q −→ l is ensured by a station

located at node l or after it on the shortest path corresponding to q and visited by the EV
while traveling in the return direction from D′q to O′q.

Using these decision variables and the parameters defined in Table 1, FRLM2 is formulated as
follows:



Max
∑
q∈Q

fqyq (1)

s.t.
∑
k∈N b

lq

wklq = yq ∀q ∈ Q, l ∈ Nq \
{
O′q
}

(2)

wklq ≤ xk ∀q ∈ Q, k ∈ Nq \
{
O′q, D

′
q

}
, l ∈ N a

kq (3)∑
k∈N b

lq

tklq w
kl
q ≤ R ∀q ∈ Q, l ∈ Nq \

{
O′q
}

(4)

∑
j∈N\N ′

xj = p (5)

xk ∈ {0, 1} ∀k ∈ N (6)

yq ∈ {0, 1} ∀q ∈ Q (7)

wklq ∈ {0, 1} ∀q ∈ Q, l ∈ Nq \
{
O′q
}
, k ∈ N b

lq (8)
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The objective function (1) seeks to maximize the total covered flow computed as the weighted sum
of covered trips. Constraints (2) can be seen as assignment constraints stating that, if trip q is
covered, each node l ∈ Nq \

{
O′q
}

on this path should be assigned to a single node k ∈ N b
lq. Note

how constraints (2) set to 0 all variables wklq corresponding to trip q in case trip q is not covered.
Constraints (3) define the relationship between variables w and variables x: if there is no station
opened at node k, no EV can be refueled at node k and all variables wklq corresponding to node k
should be set to 0. Constraints (4) are the range constraints. They ensure that, if trip q is covered,
then each node l on this path is assigned to a station located within a distance smaller than R.
Note that, in case trip q is not covered, all wklq variables corresponding to trip q are set to 0 and
constraints (4) become inactive. Constraint (5) sets the number of charging stations that must be
opened to a predetermined number p. Constraints (6)-(8) define the problem variables.

We would like to point out that even if formulation FRLM2 seems to focus only on enabling
the driver to reach each node l of a covered trip q while traveling in the outward direction, they
also ensure that the round trip between O′q and D′q will be feasible thanks to the use in constraints
(4) of the cycle segment length tklq defined in Subsection 3.1. In order to clarify this point, let us
consider a feasible solution of formulation FRLM2 in which a given trip q is covered. We denote
[π(1), ..., π(s), π(s + 1), ..., π(S)] the index of the opened stations successively visited by an EV
driver following the shortest path corresponding to q in the outward direction. We now show that
if this sequence enables the driver to carry out the trip in the outward direction, it also enables
him to travel the whole round trip. Namely:

• Let consider first a node l situated between two stations π(s) and π(s+ 1) on path q. Node l
will be served by station π(s) in the outward direction and by station π(s+ 1) in the return

direction. Moreover, since the considered solution is feasible, we have: w
π(s),π(s+1)
q = 1 and

t
π(s),π(s+1)
q ≤ R, which means that both stations are located at a distance smaller than R

from l. Hence, node l is reachable in both directions.

• Let now focus on a node l located between the origin O′q and station π(1). We have w
O′

q ,π(1)
q =

1 with t
O′

q ,π(1)
q ≤ R. Thanks to the definition of the cycle segment length t

O′
q ,π(1)

q , this implies
that the round trip π(1) −→ O′q −→ π(1) is feasible with respect to the driving range R. As
the round trip l −→ O′q −→ l is shorter than the round trip π(1) −→ O′q −→ π(1), node l is
reachable in both directions.

• Finally, let consider a node l located between station π(S) and the destination Dq. We

have w
π(S),Dq
q = 1 with t

π(S),Dq
q ≤ R. Thanks to the definition of the cycle segment length

t
π(S),Dq
q , this implies that the round trip π(S) −→ D′q −→ π(S) is feasible with respect

to the driving range R. As the round trip l −→ D′q −→ l is shorter than the round trip
π(S) −→ D′q −→ π(S), node l is reachable in both directions.

4 Flow Refueling Location Problem under a stochastic

driving range

In practice, the driving range R of an EV is subject to many uncertainties due to e.g. the traffic
conditions, the weather or the driving style. Taking the stochastic nature of the driving range into
account has a significant impact on the problem modeling. Indeed, in the deterministic models
discussed in Section 3, depending on the station location decisions, a trip is either covered or not.
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In contrast, when the driving range is stochastic, coverage becomes a matter of chance rather than
of binary observation [3]. Namely, in this case, it might not be possible anymore to ensure that
a trip will be refueled for all possible realizations of the range, i.e. that a trip will be covered
with a 100% probability, even if we open many stations on the corresponding path. In the problem
modeling, we will thus consider the coverage probability of a trip which is defined as the probability
that an EV driver can travel a round trip from his origin to his destination without running out
of fuel. De Vries and Duijzer ( [3]) proposed two stochastic programming based models for this
problem:

• the expected flow refueling location model where the coverage probability of each trip is a
decision variable taking any value between 0 and 1 and the objective is to maximize the
expected flow covered.

• the chance constrained flow refueling location model where a trip is considered as covered if
its coverage probability remains above a predefined minimum value and the objective is to
maximize the total flow covered.

In both cases, De Vries and Duijzer [3] used the following assumptions:

• For a given realization of the random conditions ω, the value of the EV range R (ω) is the
same in all the network.

• R (ω) is randomly distributed with cumulative density function G : < → [0, 1]

In what follows, we discuss deterministic equivalent reformulations of the stochastic problem.
We consider the expected flow refueling location model in Subsection 4.1 and the chance con-
strained flow refueling location model in Subsection 4.2.

4.1 Expected flow refueling location model (EFRLM)

The expected flow refueling location model (EFRLM) seeks to maximize the total expected flow
covered in the network, i.e. the expected number of EV drivers who can complete their trip without
running out of fuel. The expected flow covered on a trip q is computed as the product of the flow
on trip q (fq) by the coverage probability of trip q denoted zq. In the EFRLM, zq is a decision
variable whose value depends on the station location decisions.

De Vries and Duijzer proposed in [3] a formulation (denoted here EFRLM1) for the expected
flow refueling location problem, which is based on their formulation FRLM1 used in the deter-
ministic case. In EFRLM1, the binary coverage variables yq are replaced by continuous variables
zq ∈ [0, 1] representing the coverage probability of trip q. zq is the probability that an EV driver
can travel a round trip along the path without running out of fuel, i.e. the probability that all
successive stations visited by the driver while traveling from O′q to D′q and back are located from
each other at a distance smaller than the driving range. Hence, zq can be computed as the joint
probability that all cycle segments used by the driver to carry out a round trip have a length
smaller than the driving range.

Our new formulation EFRLM2 is based on the formulation FRLM2 proposed for the determin-
istic problem. Similarly to what is done in formulation EFRLM1, continuous variable zq ∈ [0, 1]
represents the coverage probability of trip q. Here, zq is computed as the joint probability that all
nodes l ∈ Nq \ {O′q} are assigned to a station k ∈ N b

lq located at a distance tklq smaller than the
driving range.
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We thus have:

zq = P
(
R (ω) ≥ tklq w

kl
q , ∀l ∈ Nq \ {O′q},∀k ∈ N b

lq

)
(9)

= P

(
R (ω) ≥ max

(k,l)

{
tklq w

kl
q

})
(10)

= 1−G
(

max
(k,l)

{
tklq w

kl
q

})
(11)

= 1−max
(k,l)

{
G
(
tklq w

kl
q

)}
(12)

= 1−max
(k,l)

{
G
(
tklq
)
wklq
}

(13)

= 1−max
(k,l)

{
gklq w

kl
q

}
(14)

Equality (10) makes use of the assumption that the driving range realization R (ω) is the same
in all the network and computes zq as the probability that the driving range is greater than the
length of the longest cycle segment used to travel on trip q. In (11), this probability is expressed
using the cumulative density function G. (12) holds because G is a non-decreasing function. Then,
we have G

(
tklq w

kl
q

)
= G

(
tklq
)
wklq thanks to the fact that wklq is a binary variable and G(0) = 0,

which gives equality (13). Finally, by defining gklq = G
(
tklq
)

= P
(
R (ω) ≤ tklq

)
, we obtain (14).

In the MILP formulation, the value of zq can thus be computed through a set of linear con-
straints of the form zq ≤ 1 − gklq wklq , ∀l ∈ Nq \ {O′q},∀k ∈ N b

lq. Moreover, we have the property
that, in any optimal solution of the problem, for each trip q and each node l ∈ Nq \ {O′q}, there
will be at most one variable wklq equal to 1. This enables us to aggregate these constraints into
zq ≤ 1−

∑
k∈N b

lq
gklq w

kl
q ,∀l ∈ Nq \ {O′q}.

This leads to the following formulation EFRLM2:

Max
∑
q∈Q

fqzq (15)

s.t. zq ≤
∑
k∈Nb

lq

wklq ∀q ∈ Q, l ∈ Nq \ {O′q} (16)

zq ≤ 1−
∑
k∈N b

lq

gklq w
kl
q ∀q ∈ Q, l ∈ Nq \ {O′q} (17)

zq ∈ [0, 1] ∀q ∈ Q (18)

(3), (5), (6), (8)

Constraints (16) state that if a trip q has a strictly positive probability of coverage (zq > 0), for
each node l ∈ Nq \{O′q}, there must exist a node k visited before l during trip q, where the vehicle
can be refueled up to node l. Constraints (17) link the coverage probability variables zq to the
binary variables wklq . They state that variable zq is calculated as the smallest coverage probability
over all segments [k, l] where node l is refueled by a station at node k. Constraints (3), (5), (6)
and (8) are maintained from the deterministic formulation FRLM2.

4.2 Chance constrained flow refueling location model (CCFRLM)

As explained by De Vries and Duijzer [3], the expected flow refueling location model may have
some drawbacks when considering pure (rather than hybrid) electric vehicles. Namely, this model
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implicitly assumes that EV drivers will be ready to undertake a trip q as soon as its coverage
probability is positive. However, in practice, an EV driver might not be willing to take a trip q
if the probability of running out of fuel during the trip is above a maximum acceptable risk level
α. De Vries and Duijzer [3] thus introduced the chance constrained flow refueling location model
CCFRLM which seeks to maximize the number of drivers for which the probability of completing
their trip without running out of fuel is at least 1−α. De Vries and Duijzer developed formulation
CCFRLM1, which is the chance-constrained extension of their deterministic model FRLM1.

We propose a new formulation CCFRLM2, which is a chance-constrained extension of the
deterministic model FRLM2 proposed in Subsection 3.2. Similarly to formulation CCFRLM1, in
CCFRLM2, a trip q is considered covered if its coverage probability is higher than 1 − α and
uncovered otherwise.

Using inequalities (14) to compute the coverage probability, we have for each trip q:


1−max

k,l

{
gklq w

kl
q } ≥ 1− α, if yq = 1

1−max
k,l

{
gklq w

kl
q } ≥ 0 if yq = 0

which can be reformulated through the set of linear constraints
∑

k∈N b
lq
gklq w

kl
q ≤ α, ∀l ∈ Nq \ {O′q}

by exploiting the fact that, thanks to constraints (2), all variables wklq are equal to 0 when yq = 0.
This leads to the following formulation denoted CCFRLM2:



Max
∑
q∈Q

fqyq (19)

s.t.
∑
k∈N b

lq

gqklw
q
kl ≤ α ∀q ∈ Q, l ∈ Nq \ {O′q} (20)

(2)− (3), (5)− (8)

Constraints (20) state that, in case a trip q is covered, each node l ∈ Nq \ {O′q} should be assigned
to a node k ∈ N b

lq such that the probability of running out of fuel when traveling from node k to
node l is less than the risk parameter α. Constraints (20) are inactive in case q is not covered as
all the assignment variables wklq corresponding to trip q will be equal to 0.

5 Tabu search heuristic approach for the stochastic prob-

lem

Solving the stochastic flow refueling location models described in Section 4 using a commercial
MILP solver is possible for small to medium size instances. However, when the size of the network
increases, the computation time required to get an optimal solution might become prohibitively
long. This is why we develop a tabu search heuristic approach to obtain good quality solutions
in shorter computation times. Namely, tabu search is known to provide good results for generic
facility location problems (see e.g. [1]) and to be easy to develop and implement. Moreover, such
a heuristic method was successfully used in [24] for locating EV battery swapping stations.
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In the following, we first describe the main principles used for building an initial solution for
the heuristic algorithm and for evaluating each solution in terms of (expected) flow coverage. We
then present the detailed tabu search procedure for solving the expected and chance constrained
flow refueling location problems.

1. Building an initial solution

The procedure of building an initial solution seeks to obtain a set of p stations that provide
a good coverage of the network. To this end, the trips are considered in the decreasing order
of their flow value fq. The stations to be opened are selected in a way to cover first the trips
with the largest flows. The procedure is stopped when the required number p of stations to
be opened is reached.

As explained in Section 4.2, in the chance constrained stochastic model, a trip is said to be
covered if the probability of coverage (i.e. that the distance between any two consecutive
stations built on q does not exceed the vehicle range) is higher than 1−α. To cover a trip q,
we start by building a station at the origin Oq, then we greedily add stations on the shortest
path between Oq and Dq in such a way that the probability of traveling between any two
consecutive stations without running out of fuel is higher than 1− α.

However, in the expected flow refueling location model, there is no minimum probability
of coverage, since the aim is to maximize the expected flow covered. Therefore, we set
this minimum probability as an input parameter when we build the initial solution and the
procedure of building an initial set of p stations becomes similar to the one used for the
chance constrained model. At the end of the procedure, we evaluate the objective function
for the obtained solution, by checking the coverage (or probability of coverage) for all trips.

2. Evaluating the objective function for a given solution

In order to evaluate the objective function for a given solution, we iterate over the trips
to check which of them are covered and calculate the total (or expected) flow covered. To
know if a trip q is covered, we proceed as follows: for each cycle segment [k, l] of q, we first
calculate the probability of coverage (1− gqkl) defined in Section 4.2. For the CCFRLM, the
trip is covered if this probability is higher than 1−α for all cycle segments of the trip. In this
case, we add the flow of this trip to the objective value, otherwise we check the next trip.
For the EFRLM, we calculate zq the probability of coverage of the trip q as the minimum of
the probabilities of coverage of all its cycle segments, then we update the objective value by
adding fqzq.

The tabu search procedure used for solving the expected and chance-constrained problems is
described in Algorithm 1. The algorithm starts by building an initial solution and by setting the
best feasible solution Solbest to the initial solution and the best objective value Objbest to the initial
objective value. Then, the procedure seeks to improve this solution iteratively by exploring its
neighborhood. Each iteration of the algorithm comprises two steps. Step1 consists in selecting a
station s1 to be opened among the |N | − p closed stations. s1 should not be tabu (not recently
closed) and should lead to the highest (expected) coverage among all possible openings. This
step leads to improving the (expected) coverage but the solution obtained is not feasible since
it involves p + 1 stations. For this reason, at the end of this step, we update the tabu list but
we do not update the best solution Solbest. Step2 consists in selecting a station s2 to be closed
among the p + 1 opened stations. s2 should not be tabu (not recently opened) and should lead

11



to the highest (expected) coverage among all possible closings. Here, we consider an aspiration
criterion that consists in accepting to close a station that is tabu but leads to improving the best
objective value. At the end of step2, we update the tabu list and we update the best solution
Solbest if it is improved after the last closing, otherwise, we increment the number of iterations
without improvements. The tabu search procedure stops when the number of iterations without
improvement of Objbest reaches a maximum limit. Notice that in this procedure, we need two tabu
lists, one for the recently opened stations and one for the recently closed stations.

Algorithm 1: Tabu search solution procedure for the stochastic flow refueling location
problems
Data:
Solinit: Initial solution (set of p stations);
Objinit: Value of the objective function for the initial solution;
Solbest: Current best feasible solution (set of p stations);
Objbest: Value of the objective function for the current best feasible solution;
Ntabu: Size of tabu lists;
tabuClosedList: List of the stations closed in the last Ntabu iterations ;
tabuOpenedList: List of the stations opened in the last Ntabu iterations ;
nbIterWithoutImpr: Number of iterations of the tabu search without improvement of Objbest;
maxWithoutImpr: Maximum allowed value for nbIterWithoutImpr (stopping criterion);

Algorithm:
Build an initial solution Solinit;
Initialize the current best solution: Solbest = Solinit and Objbest = Objinit;
Initialize the number of iterations without improvement: nbIterWithoutImpr = 0;
while nbIterWithoutImpr < maxWithoutImpr do

Step1: Select a station s1 to be opened among the |N | − p closed stations, such as
s1 /∈ tabuClosedList and opening s1 leads to the highest (expected) coverage among all possible
openings;

if no stations can be opened (all openings are tabu) then
Break, END TABU SEARCH

else
Add s1 to tabuOpenedList;

end
Step2: Select a station s2 to be closed among the p + 1 opened stations such that closing s2 leads to

the highest (expected) coverage among all possible closings (we consider that closing a station s is
possible if s /∈ tabuOpenedList or if we have the following aspiration criterion: s ∈ tabuOpenedList
but leads to improving the current best objective value Objbest);

if no stations can be closed then
Break, END TABU SEARCH

else
Add s2 to tabuClosedList;
if closing s2 leads to a better (expected) coverage than the current Objbest value then

Update Objbest and Solbest;
nbIterWithoutImpr = 0

else
nbIterWithoutImpr + +

end

end

end
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6 Computational results

We now discuss the results of the numerical experiments carried out in order to assess the perfor-
mance of the exact and heuristic solution approaches presented in the previous section. Subsection
6.1 describes the real-life instances used in the tests as well as the procedure employed to generate
random instances. In Subsection 6.2, we compare formulation FRLM1 proposed in [3] and formu-
lation FRLM2 developed in the present paper for the deterministic flow refueling location problem.
Similarly, in Subsection 6.3, we compare formulation EFRLM1 (respectively CCFRLM1) proposed
in [3] and formulation EFRLM2 (respectively CCFRLM2) developed in the present paper for the
expected (respectively chance constrained) flow refueling location problem. Finally, Subsection 6.4
analyzes the computation times and optimality gaps for the tabu search heuristic.

All solution algorithms were coded in C++ language. The MILP models were implemented
using the Concert Technology and solved using ILOG CPLEX version 12.6.2. In order to analyze
the performance of the solution methods with other commercial solvers, a sample of random
instances is also solved using XPRESS BCL version 4.8.14 provided in FICO XPRESS 8.5.6. The
time limit was set to 10 hours for both solvers. All tests were carried out on a PC with Intel
i5-3210M Core 2 Duo (2.50 GHz) with 8GB of RAM, running under Windows 10.

6.1 Problem instances

6.1.1 Random instances

In our numerical experiments, we use road networks which are randomly generated according to a
procedure similar to the one proposed in [2]. We first generate |N | nodes whose coordinates are
randomly chosen within [1, 1000]2 according to a uniform distribution. The traveling distance be-
tween each pair of nodes is computed as the Euclidean distance. We then apply Kruskal algorithm
to determine the minimum spanning tree of size |N | − 1: all arcs belonging to this spanning tree
are added to the arc set A. We also select |N | additional arcs to be added to A: these arcs are
the shortest potential arcs not yet added to A and such that the degree of each node stays below
four. We then randomly select M origin-destination nodes among the nodes belonging to N . This
gives the set of |Q| = M(M−1)

2
trips to be covered. The shortest path (Nq,Aq) corresponding to

trip q is determined using Dijkstra algorithm. The population at each origin/destination node is
randomly generated within [1, 10000000] according to a uniform distribution. The flow fq of EVs

on each trip q is determined using the gravity model [4]: fq =
PO
q P

D
q

d(Oq ,Dq)2
where PO

q and PD
q are the

populations at the origin and destination nodes, respectively, and d(Oq, Dq) is the length of the
path between the origin Oq and the destination Dq.

The deterministic range R is set to 250km. The random range R (ω) is assumed to follow a
Gamma distribution, with a shape parameter κ of 50 and a scale parameter θ of 5. For the chance
constrained stochastic problem, the risk parameter α is set equal to 5 %. These assumptions are
in line with the settings used in the paper of De Vries and Duijzer [3].

We consider two problem dimensions: (|N | = 100,M = 50) and (|N | = 200,M = 100), which
correspond to 1225 (resp. 4950) trips. We randomly generate 5 instances of the network and set
of trips to be covered. For each of these 10 network instances, we consider 9 possible values for
the number of stations p: p ∈ {1, 2, 3, 4, 5, 10, 15, 20, 25}, resulting in a set of 90 instances. In the
representation of each test instance, we include first |N |, then M , then p, for example, the instance
N100M50p10 deals with a network of 100 nodes, 50 origin/destination nodes and 10 stations to
be opened.
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6.1.2 Real-life instances

We also study two real-life road networks: the California network used in [25] and the Florida
network used in [16]. The California network consists of 339 nodes and 1167 paths whereas the
Florida network consists of 302 nodes and 2701 paths. In both cases, the volume of the flow on
each path is computed using the gravity model and the number of stations to be opened is varied
in {5, 10, 15, 20, 25}. For the California network, we consider two values for the deterministic range
R: 100km and 150km. Accordingly, we set the parameters for the Gamma distribution R (ω) to
κ = 50, θ = 2 and κ = 50, θ = 3. For the California network, we consider two values for the
deterministic range R: 50km and 100km. Accordingly, we set the parameters for the Gamma
distribution R (ω): κ = 50, θ = 1 and κ = 50, θ = 2. There is one instance for each network,
each expected range and each number of stations, which results in a set of 20 instances. Instances
are refereed to as Net.R.p where Net ∈ {CA,FL} relates to the network, R to the value of the
expected range and p to the number of stations to be opened.

6.2 Results for the deterministic problem

In this section, we analyze the numerical performance of formulations FRLM1 proposed in [3]
and FRLM2 described in Section 3 for the deterministic FRLP. Table 2 (resp. 3) show the re-
sults obtained using CPLEX on randomly generated networks (resp. on real-life networks) for
both models. They display the integrality gap computed as the relative difference between the
optimal integer feasible value and the linear relaxation value, the CPU time in seconds (we set
the computation time limit to 10 hours), the number of Branch & Bound nodes explored by the
algorithm within the time limit and the residual gap defined as the relative difference between the
best integer feasible solution value and the best upper bound found within the time limit.

First, we observe that the average CPU time increases with the network size. This might
be explained by the fact that the formulation size increases when |N | and M increase. For in-
stance, for the randomly generated instances, the number of variables for both formulations is on
average 158113 for the N100M50pXX instances and 1091989 for the N200M100pXX instances.
As for the constraints, formulation FRLM1 (resp. FRLM2) involves on average 50291 (resp.
173285) constraints for the N100M50pXX instances and 273407 (resp. 1177975) constraints for
the N200M100pXX instances. We also observe that the average CPU time tends to increase with
the value of p, which might be explained by the fact that the number of possible combinations
for stations deployment increases as long as p ≤ |N |/2. Note that there are exceptions for small
values of p using FRLM2 (see Table 2) and for p = 20 with California instance using FRLM1 (see
Table. 3).

Second, the results show that the average computation time is significantly reduced on random
instances (from 11643s to 422s) and on real life instances (from 24879s to 790s) when using formu-
lation FRLM2. Moreover, with formulation FRLM2, all 110 considered instances could be solved
to optimality within the time limit while only 90 could be solved to optimality with formulation
FRLM1. As seen from the residual gap reported in column 5 of Table 2, for the largest instances,
the solutions obtained when using FRLM1 after 10h of computation time are of rather poor quality.

The better numerical performance observed with formulation FRLM2 could be explained by the
fact that contrary to FRLM1, the proposed formulation does not include any big-M constraints.
This leads to a tighter linear relaxation: on random (resp. real-life) instances, the average integral-
ity gap is namely 20.9% (resp. 10.1%) with FRLM2 while it is 73.3% (resp. 22.7%) with FRLM1.
As a consequence, the average number of Branch & Bound nodes explored by the algorithm before
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finding an optimal solution is significantly reduced from 1554 (resp. 6726) with FRLM1 to 10
(resp. 38) with FRLM2. Hence, despite the fact that formulation FRLM2 has an order of mag-
nitude more constraints than formulation FRLM1, its better tightness allows the mathematical
solver CPLEX to more efficiently solve the deterministic variant of the problem.

FRLM1 FRLM2
Test instance Integrality

Gap (%)
CPU (s) B&B

nodes
Residual
Gap (%)

Integrality
Gap (%)

CPU (s) B&B
nodes

Residual
Gap (%)

N100M50p1 323.8 25 0 0.0 62.3 24 0 0.0
N100M50p2 174.7 96 54 0.0 54.9 15 0 0.0
N100M50p3 107.6 156 159 0.0 43.3 14 0 0.0
N100M50p4 73.4 308 190 0.0 34.1 12 0 0.0
N100M50p5 53.5 457 155 0.0 27.9 14 0 0.0
N100M50p10 20.5 3693 2518 0.0 15.9 21 4 0.0
N100M50p15 9.2 7568 4033 0.0 8.3 31 12 0.0
N100M50p20 3.8 12008 5862 0.1 3.7 40 26 0.0
N100M50p25 1.9 17674 11521 0.0 1.9 42 20 0.0
N200M100p1 196.2 502 0 0.0 12.1 1947 0 0.0
N200M100p2 111.8 1814 246 0.0 19.9 265 0 0.0
N200M100p3 76.0 4000 90 0.0 17.3 380 0 0.0
N200M100p4 58.5 6290 422 0.0 16.6 409 0 0.0
N200M100p5 47.4 11829 972 0.0 15.8 431 0 0.0
N200M100p10 26.4 35157 1438 8.9 14.4 648 1 0.0
N200M100p15 17.4 36000 313 12.4 12.5 782 4 0.0
N200M100p20 11.1 36000 0 # 9.4 1170 30 0.0
N200M100p25 6.4 36000 0 # 5.9 1352 86 0.0
Average 73.3 11643 1554 # 20.9 422 10 0.0

Table 2: FRLM1 and FRLM2 comparison on random instances (average of 5 replications, #
denotes the case where the residual gap could not be computed due to the fact that the best
integer solution found has a value (nearly) equal to 0)

6.3 Results for the stochastic problem

This section compares the formulations discussed in Section 4 for the stochastic flow refueling
location problem. Tables 4 and 5 display the results obtained using CPLEX on randomly generated
instances for the expected flow refueling location problem (EFRLP) and the chance constrained
flow refueling location problem (CCFRLP). The results obtained for both problems on the real-life
instances are summarized in Table 6 .

Regarding the EFRLP, results from Table 4 and Table 6 show that on average, the proposed
formulation EFRLM2 performs better than the previously published formulation EFRM1. Namely,
the average computation time on random instances is reduced from 9522s when using EFRLM1
to 5753s when using EFRLM2 while the reduction is more significant on real-life instances (from
12716s to 2646s). Moreover, 85 random instances and 20 real-life instances could be solved to
optimality within the time limit with formulation EFRLM2 while only 73 random instances and
18 real-life instances could be solved to optimality with formulation EFRLM1. However, we
note that formulation EFRLM2 seems to be more performant than formulation EFRLM1 for
large values of p only (typically more than 5 stations). This might be explained by the fact
that both formulations involve similar knapsack constraints (see constraints (17) linking the trip
coverage variables zq with the assignment variables wklq in EFRLM2). Hence, the only formulation
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FRLM1 FRLM2
Test instance Integrality

Gap (%)
CPU (s) B&B

nodes
Residual
Gap (%)

Integrality
Gap (%)

CPU (s) B&B
nodes

Residual
Gap (%)

CA.100.5 35 2491 1557 0.0 19 193 0 0.0
CA.100.10 9 36000 20888 1.2 6 197 0 0.0
CA.100.15 3.3 36000 22856 1.2 2.8 547 97 0.0
CA.100.20 1.2 36000 27749 1.6 1.2 727 75 0.0
CA.100.25 0.1 36000 3197 0.4 0.1 1066 232 0.0
CA.150.5 19 1240 1103 0.0 8 87 0 0.0
CA.150.10 5 36000 22320 0.0 3 574 36 0.0
CA.150.15 1.3 36000 35445 0.3 1,1 577 19 0.0
CA.150.20 0.1 29253 9667 0.0 0.1 1085 124 0.0
CA.150.25 0 36000 762 0.0 0 9251 58 0.0
FL.50.5 112 2521 135 0.0 39 14 0 0.0
FL.50.10 56 4526 252 0.0 25 15 0 0.0
FL.50.15 35 19798 2860 0.0 18 15 0 0.0
FL.50.20 27 36000 5979 0.8 16 25 0 0.0
FL.50.25 21 36000 4200 6.5 15 42 0 0.0
FL.100.5 59 1051 43 0.0 11 93 0 0.0
FL.100.10 30 4704 1280 0.0 11 107 0 0.0
FL.100.15 19 36000 8267 0.0 11 218 0 0.0
FL.100.20 13 36000 4556 2.9 9 385 50 0.0
FL.100.25 8 36000 6705 3.1 6 575 71 0.0
Average 22.7 24879 6726 0.9 10.1 790 38 0.0

Table 3: FRLM1 and FRLM2 comparison on real-life instances

strengthening obtained when using formulation EFRM2 comes from the integration of a second
set of constraints (constraints (16)) to link variables zq and wklq .

As for the CCFRLP, we observe a significant reduction of the average computation time (from
8086s to 201s for random instances and from 10577s to 226s for real-life instances) when using
formulation CCFRLM2 rather than formulation CCFRLM1. Moreover, all random and real-life
instances could be solved to optimality with formulation CCFRLM2 while 16 random instances
and 2 real-life instances could not be solved to optimality with formulation CCFRLM1. This
strong improvement in numerical efficiency might be explained by the fact that big-M constraints
in formulation CCFRLM1 are replaced by knapsack constraints (20) in formulation CCFRLM2.

Finally, in order to check whether the relative performance of the MILP models might depend
on the mathematical programming solver, we conduct some experiments using the XPRESS-MP
solver. We solve formulations EFRLM1, EFRLM2, CCFRLM1 and CCFRLM2 for a sample of
15 random instances used in Tables 4 and 5 (namely 5 replications of each of N100M50p15,
N100M50p20 and N100M50p25). The average computation time for each problem, each for-
mulation and each set of 5 instances is reported in Table 7. By comparing the results in Table
7 with those in Tables 4 and 5, we first note that XPRESS-MP performs better than CPLEX
when using formulations EFRLM1 and CCFRLM1 while CPLEX performs better with the new
formulations EFRLM2 and CCFRLM2. Moreover, results from Table 7 show that, similarly to
what is observed with CPLEX solver, the proposed formulations perform better than the exist-
ing ones with XPRESS-MP. Namely, the computation times obtained with formulations EFRLM2
and CCFRLM2 are shorter than the ones obtained with formulations EFRLM1 and CCFRLM1.
Furthermore, the performance improvement observed for the chance constrained problem is more
significant than the one observed for the expected flow refueling location problem. This confirms
that the proposed formulations are likely to outperform the existing ones in any generic MILP
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solver.

EFRLM1 EFRLM2
Test instance CPU (s) B&B

nodes
Residual
Gap (%)

CPU (s) B&B
nodes

Residual
Gap (%)

N100M50p1 18 0 0.0 111 0 0.0
N100M50p2 36 21 0.0 55 0 0.0
N100M50p3 65 43 0.0 72 3 0.0
N100M50p4 100 198 0.0 83 20 0.0
N100M50p5 181 210 0.0 83 18 0.0
N100M50p10 583 484 0.0 165 0 0.0
N100M50p15 1595 2594 0.0 487 163 0.0
N100M50p20 4815 2491477 0.0 597 66 0.0
N100M50p25 11008 8835 0.2 609 263 0.0
N200M100p1 371 0 0.0 5033 0 0.0
N200M100p2 1465 0 0.0 1762 0 0.0
N200M100p3 2428 0 0.0 1831 0 0.0
N200M100p4 4218 0 0.0 16430 0 34.0
N200M100p5 3730 0 0.0 3159 0 0.0
N200M100p10 32776 645 # 8212 88 0.0
N200M100p15 36000 629 6.4 17243 126 0.0
N200M100p20 36000 7 6.6 21237 150 0.2
N200M100p25 36000 93 5.9 26385 174 0.6
Average 9522 139180 # 5753 59 2.0

Table 4: EFRLM1 and EFRLM2 comparison on random instances (average of 5 replications, #
denotes the case where the residual gap could not be computed due to the fact that the best integer
solution found has a value (nearly) equal to 0)

CCFRLM1 CCFRLM2
Test instance CPU (s) B&B

nodes
Residual
Gap (%)

CPU (s) B&B
nodes

Residual
Gap (%)

N100M50p1 20 0 0.0 14 0 0.0
N100M50p2 60 12 0.0 7 0 0.0
N100M50p3 71 12 0.0 9 0 0.0
N100M50p4 123 17 0.0 9 0 0.0
N100M50p5 141 14 0.0 9 0 0.0
N100M50p10 426 49 0.0 11 0 0.0
N100M50p15 775 346 0.0 13 0 0.0
N100M50p20 1152 412 0.0 16 0 0.0
N100M50p25 1520 317 0.0 17 0 0.0
N200M100p1 442 0 0.0 1120 0 0.0
N200M100p2 2144 5 0.0 216 0 0.0
N200M100p3 2524 39 0.0 158 0 0.0
N200M100p4 2663 45 0.0 166 0 0.0
N200M100p5 4210 87 0.0 254 2 0.0
N200M100p10 22008 2093 1.9 268 0 0.0
N200M100p15 35268 1040 6.3 346 2 0.0
N200M100p20 36000 168 9.0 454 20 0.0
N200M100p25 36000 0 33.7 534 7 0.0
Average 8086 259 2.8 201 2 0.0

Table 5: CCFRLM1 and CCFRLM2 comparison on random instances (average of 5 replications)
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EFRLM1 EFRLM2 CCFRLM1 CCFRLM2
Test instance CPU (s) Residual

Gap (%)
CPU (s) Residual

Gap (%)
CPU (s) Residual

Gap (%)
CPU (s) Residual

Gap (%)
CA.100.5 934 0.0 848 0.0 1440 0.0 66 0.0
CA.100.10 1530 0.0 1049 0.0 2680 0.0 60 0.0
CA.100.15 4442 0.0 2381 0.0 4896 0.0 237 0.0
CA.100.20 36000 0.0 4877 0.0 11363 0.0 413 0.0
CA.100.25 36000 0.0 4877 0.0 36000 0.0 416 0.0
CA.150.5 341 0.0 1097 0.0 771 0.0 83 0.0
CA.150.10 1272 0.0 1231 0.0 3313 0.0 181 0.0
CA.150.15 2162 0.0 1306 0.0 5158 0.0 429 0.0
CA.150.20 7667 0.0 3460 0.0 25885 0.0 847 0.0
CA.150.25 18772 0.0 10157 0.0 5983 0.0 401 0.0
FL.50.5 822 0.0 106 0.0 1204 0.0 7 0.0
FL.50.10 3017 0.0 140 0.0 1979 0.0 7 0.0
FL.50.15 5867 0.0 157 0.0 2879 0.0 10 0.0
FL.50.20 9763 0.0 215 0.0 9993 0.0 9 0.0
FL.50.25 36000 0.0 671 0.0 8317 0.0 7 0.0
FL.100.5 649 0.0 299 0.0 1095 0.0 295 0.0
FL.100.10 2548 0.0 1420 0.0 2745 0.0 113 0.0
FL.100.15 14530 0.0 3156 0.0 13830 0.0 117 0.0
FL.100.20 36000 2.0 6867 0.0 36000 1.0 354 0.0
FL.100.25 36000 2.4 8615 0.0 36000 2.0 459 0.0
Average 12716 0.2 2646 0.0 10577 0.1 226 0.0

Table 6: Comparison of stochastic problem formulations on real-life instances

Test instance EFRLM1(s) EFRLM2 (s) CCFRLM1
(s)

CCFRLM2
(s)

N100M50p15 1210 806 344 24
N100M50p20 1474 608 311 29
N100M50p25 2890 783 484 15
Average 1858 732 380 23

Table 7: Comparison of XPRESS CPU (s) for the stochastic problems on random instances (average
of 5 replications)

6.4 Performance of the tabu search procedure

As shown by the computational results presented in SubSection 6.3, the CPU times needed to
solve to optimality the MILP formulations corresponding to the stochastic problem remain long
for large-size instances. For instance, Table 4 shows that even when using the new formulation
EFRLM2, the average computation time needed to solve the problem on random instances with
|N | = 200 nodes, M = 100 origin-destination nodes and p ≥ 15 is around 5 to 7 hours. A heuristic
solution approach could thus be useful to obtain good quality solutions in shorter running times.
In this subsection, we study the performance of the tabu search heuristic algorithm described in
Section 5. We use the tabu search procedure to solve the stochastic problems with the following
settings: tabu list size Ntabu = 5, maximum allowed number of iterations without improvement
of the objective value maxWithoutImpr = 10 and minimum probability of coverage set equal to
60% when building the initial solution for the expected flow refueling location problem (for the
chance constrained problem, the minimum probability of coverage is set by default to 95% since
α is equal to 5%).

Tables 8 and 9 summarize the results obtained with the heuristic algorithm on the random
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and real-life instances of the stochastic problems and compare them with the ones obtained while
solving the problem to optimality using CPLEX with the MILP formulation displaying the best
performance on the corresponding instance set. In the tables, we report the average tabu gap,
which is defined as the relative difference between the best solution value found by the heuristic
algorithm and the optimal solution value (or the best feasible solution if the optimal solution was
not found by the solver within the time limit), together with the CPU times for the tabu search
heuristic and the mathematical solver.

Results from Tables 8 and 9 first show that the tabu heuristic is capable of providing near-
optimal solutions within short computation times. Namely the average gap of the tabu heuristic on
random instances is 0.9% for the EFRLP and 0.8% for the CCFRLP while the average computation
time is 35s for the EFRLP and 23s for the CCFRLP. Similarly, on real-life networks, the heuristic
provides good quality solutions: the average tabu gap is 1.3% for the EFRLP and 0.7% for the
CCFRLP while the average computation time does not exceed 30s for both problems.

EFRLP CCFRLP
Test instance Tabu gap

(%)
Tabu
CPU (s)

Best
CPLEX
CPU (s)

Tabu gap
(%)

Tabu
CPU (s)

Best
CPLEX
CPU (s)

N100M50p1 0.0 1 18 0 1 14
N100M50p2 2.7 2 36 0 1 7
N100M50p3 4.5 2 65 0.1 2 9
N100M50p4 1.3 3 83 0 5 9
N100M50p5 2.0 7 83 0 12 9
N100M50p10 0.2 9 165 4.2 9 11
N100M50p15 0.2 14 487 0.3 11 13
N100M50p20 0.3 20 597 0.4 11 16
N100M50p25 0.1 24 609 0.6 13 17
N200M100p1 2.2 7 371 0 8 1120
N200M100p2 0 13 1465 0 12 216
N200M100p3 0.3 16 1831 0.2 15 158
N200M100p4 0.3 23 4219 1.7 20 166
N200M100p5 0.3 54 3159 0.2 44 254
N200M100p10 0.8 58 8212 0.8 64 268
N200M100p15 0.7 90 17243 1.4 73 346
N200M100p20 0.8 102 21237 1.2 55 454
N200M100p25 0.6 184 26385 2.5 64 534
Average 0.9 35 4792 0.8 23 201

Table 8: Performance of the tabu heuristic for the stochastic problems on random instances (av-
erage of 5 replications)

We also note that, for the EFRLP, the tabu search heuristic approach compares well with the
mathematical solver as it leads to near-optimal solutions within a significantly reduced computation
time. Namely, over all instances, the average computation time is decreased from 4792s with the
solver to 35s with the heuristic. This reduction is even more substantial for the largest instances
(see the random instance sets N200M100p15, N200M100p20 and N200M100p25) for which the
average computation time is decreased from 6h with the solver to 2min with the heuristic.

However, for the CCFRLP, the tabu search heuristic approach compares less favorably with
the mathematical solver. Thus, over the 110 considered instances, the average computation time
is decreased from 205s with the solver to 24s with the heuristic. Note that this less favorable
comparison is not due to the fact that the performance of the heuristic is poorer on the CCFRLP
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EFRLP CCFRLP
Test instance Tabu gap

(%)
Tabu
CPU (s)

Best
CPLEX
CPU (s)

Tabu gap
(%)

Tabu
CPU (s)

Best
CPLEX
CPU (s)

CA.100.5 1.7 8 848 0.8 11 66
CA.100.10 2.9 10 1049 0.8 18 60
CA.100.15 1.2 24 2381 0.7 15 237
CA.100.20 0.5 34 4877 0.8 25 413
CA.100.25 0.9 17 4877 0.6 18 416
CA.150.5 0.0 8 341 0.0 25 83
CA.150.10 0.0 15 1231 0.4 13 181
CA.150.15 0.6 13 1306 0.2 26 429
CA.150.20 0.3 13 3460 0.8 12 847
CA.150.25 0.0 32 10157 0.1 21 401
FL.50.5 1.9 13 106 0.0 25 7
FL.50.10 4.2 16 140 0.0 28 7
FL.50.15 0.0 26 157 2.6 52 10
FL.50.20 2.0 28 215 2.0 37 9
FL.50.25 2.3 26 671 1.7 53 7
FL.100.5 2.8 15 299 0.0 23 295
FL.100.10 0.9 22 1420 0.0 30 113
FL.100.15 1.3 40 3156 0.2 46 117
FL.100.20 1.0 31 6867 0.8 67 354
FL.100.25 2.4 52 8615 2.0 58 459
Average 1.3 22 2609 0.7 30 226

Table 9: Performance of the tabu heuristic for the stochastic problems on real-life instances

than on the EFRLP. It is rather explained by the drastic decrease in the computation times needed
by CPLEX solver to solve the new formulation CCFRLM2. Accordingly, for the CCFRLP, using
CPLEX solver with formulation CCFRLM2 seems to be the best option.

7 Conclusion and future research

In this paper, we considered the flow refueling location problem under stochastic driving range
and studied two stochastic programming based formulations for this problem: a first one maxi-
mizing the expected EV flow coverage and a second one based on joint chance constraints. We
focused on decreasing the computation times needed to solve the resulting large-size combinatorial
optimization problems and proposed two new efficient solution approaches. The first one uses
a new location-allocation type model for this problem and leads to a strong MILP formulation.
Our computational experiments carried out on large-size random instances as well as on real-life
instances show that a significant improvement in numerical performance can be obtained when
using the new model. Namely, the average CPU time needed to solve the chance constrained
model is reduced by 95%. In the case of expected flow coverage maximization, the improvement in
performance was obvious for large-size networks but not for small-size ones. Moreover, the CPU
time for networks with a large number of stations to be opened remained rather high (around 7-9
hours for random instances). Therefore, we proposed a tabu search-based heuristic in order to
obtain good quality solutions within shorter computation times. The heuristic showed excellent
numerical performance for the expected flow coverage maximization problem, with low optimality
gaps and short running times.
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In our models, we assumed that for any realization of the random conditions in the road
network, the value of the EV range is the same for the whole network. Therefore, in terms of
future research, it would be interesting to relax this assumption and to study a more realistic case
where the driving range is different on each cycle segment of a path. This relaxation will raise
the problem of computing the joint probability when evaluating the coverage on each path of the
network. Other future research directions include the introduction of a limited capacity for the
charging stations as well as the dynamic aspect of the problem.
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