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Abstract

In this paper, a meshed DC microgrid control architecture whose goal is to

manage load balancing and efficient power distribution is introduced. A novel

combination of port-Hamiltonian (PH) modeling with differential flatness and

B-splines parametrization is introduced and shown to improve the microgrid’s

performance. A three layer supervision structure is considered: i) B-spline

parametrized flat output provide continuous profiles for load balancing and price

reduction (high level); ii) the profiles are tracked through a MPC implementa-

tion with stability guarantees (medium level); iii) explicit switching laws applied

to the DC/DC converters ensure appropriate power injection. Each level func-

tions at a different time-scale (from slow to fast), and the control laws are chosen

appropriately. The effectiveness of the proposed approach is evaluated by sim-

ulations over a DC microgrid composed by a collection of solar panels (PV), an

energy storage system (ES), a utility grid (UG) and a consumers’ demand.

Keywords: DC microgrid; Meshed topology; Port-Hamiltonian systems;

Differential flatness; Hierarchical control; Power balancing.

1. Introduction

The integration of renewable energy sources and energy storing elements

into the electrical grid systems ensures the safe and reliable power distribution
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and establishes their existence into the grid operation support [24]. Despite

the domination of AC transmission networks, the interest on DC microgrids

has greatly grown as a result of the constant development and production of

the DC equipment both for energy sources (e.g. solar panels, batteries) and

loads (e.g. electrical vehicles, elevators and various smaller DC loads such as

computers, LED lights, etc.). In general, many aspects must be considered in

order to decide the appropriate structure of a microgrid, such as its topology

[6], the distance among the sources and the loads as well as the amount of the

sources and the type of the converters. A sufficient amount of storing elements

is indispensable and depends on many factors such as the sizing of the batteries

or their lifetime [14]. Considering all the above, several modeling and control

methods have been developed through the years.

Modeling methodologies: In the literature, different modeling method-

ologies have been studied to describe such complex dynamical systems. For in-

stance, the Takagi−Sugeno fuzzy modeling approach [45] describes linear models

based on input/output datasets covering multiple operational conditions of the

system. Furthermore, the multi−agent based modeling [17] comprises agents

which are active entities, individual or collective, and represent a computer

model. Using the multi−agent paradigm in a microgrid system, different types

of agents can be employed: control agents for controlling the physical units of

the system; management agents for managing the microgrid and taking deci-

sions; ancillary agents for performing tasks such as communication and data

storage [26]. The global dynamics of the system emerges from the interaction

among them. Another classical way to model the microgrid components is by

using differential equations [35], which gives an explicit representation of the

system dynamics through constitutive equations (for resistors, batteries, capac-

itors, etc.) and balance equations (Kirchoff laws). However, through this model

description, the power conservation property and the components’ interconnec-

tions are not explicitly described. Such an approach is the PH formulation

approach which applies for general multiphysical systems [36, 10]. It aims at

providing an exhaustive, explicit and modular description of the power routing
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through the network topology, together with the constitutive equations for the

resistor−like, capacitor/inductor−like, transformers and sources components.

Besides, the equations in a PH model may be generated in a straightforward way

from its Bond Graph1. This approach to generate structured physically−based

dynamical models for electrical grids has already been applied successfully in

[39]. In this structural description, balance equations and energy properties of

the systems (passivity, conservation) are satisfied independently by the specific

constitutive equations and the numerical values of the model parameters. The

overall interconnection structure topology and balance equations are summa-

rized in a geometrical linear structure (namely, a Dirac structure) in the Bond

space of effort and flow variables (i.e., the voltage and the current respectively).

This Dirac structure allows, for instance, structure preserving discretization [19]

or model order reduction [37] which may be needed in the analysis and super-

vision of grid systems [52, 36]. It may be also used in physically−based control

design such as passivity−based control [33] or flatness−based approaches such

as the one developed in this work.

Control approaches: Various issues, which need to be taken into account

when choosing the control approach for a microgrid system, include for example

different timescales or islanding and grid−connecting modes. The microgrid en-

ergy management problem is generally considered as a constrained optimization

problem not straightforward to solve. A multi−level control approach is required

[41] due to the existence of different timescales, the fast and the slow dynam-

ics of the components. Generally, the hierarchical control is divided into three

layers, primary, secondary and tertiary control, in order to be able to approach

the real operation of the microgrids. The primary control (low level) includes a

localized supervision of the power distribution and the voltage/current adjust-

1Bond Graph is a graph−oriented approach for the modular modeling of complex mul-

tiphysical systems, implemented in many existing simulation software. This graphical rep-

resentation is based on the power interconnections amongst the physical elements within a

dynamical system [16].
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ment among the distributed energy resources (DERs) and the converters. The

converters contain an internal switching activity that obeys to an external power

loop based on a management strategy [48]. One such example is the maximum

power point tracking [22], which includes controllers for extracting the maximum

available power from solar panels or other renewable energy resources. Another

approach is the master/slave control [29], where a device is selected as the mas-

ter controller over one or more devices that act as slaves. Furthermore, droop

control [4, 47] allows load balancing during the operation of parallel generators.

The secondary control (middle level) targets the internal processes of the system

under voltage and frequency disturbances. The main purpose is to reduce volt-

age, frequency or power deviations. These deviations can be controlled locally,

but in case of a possible failure the whole system is influenced. Therefore, both

centralized [40] and distributed [25] secondary controllers have been investigated

and various control methods have been proposed. In [40], a phase controller is

used which regulates the phase angle of the distributed generators instead of the

frequency to decrease frequency and amplitude discrepancies. In [49], the au-

thors aim to reduce the voltage deviations caused by droop control method in a

distributed control framework for accuracy in current sharing. Fuzzy controllers

are also investigated, for example in [50] a control structure for the aforemen-

tioned Takagi−Sugeno fuzzy systems is developed, mitigating the computational

burden. [2] improves the performance of a microgrid by controlling the reactive

power under disturbances caused by power outages, short circuits and the like.

In [42], frequency and voltage controllers are designed, enabling the possibility

to the system to achieve either frequency or voltage regulation while maintain-

ing reactive power sharing. Predictive controllers are used such as MPC [28].

For instance [1] implements MPC in combination with a PI controller in order

to decrease the discrepancies between the nominal and the actual frequency, to

increase the stability of the system and to diminish the communication delays.

The tertiary control (high level) deals with the power flow and optimization

by taking into account different economical aspects. Here, the power flow is

optimally regulated succeeding the load balancing within the transmission net-
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work and providing the most economical solution. Several methods have been

developed which consider the maximum generation capacity of the energy stor-

age [30], the constraints or the uncertainties. The combined use of MPC with

Mixed Integer Programming (MIP) for battery scheduling is employed in [38].

Finally, profile uncertainties are considered in an MPC framework with chance

constraints and machine learning algorithms are employed in [9] for developing

approximate MPC laws for household temperature control.

Amongst the methods and techniques previously described, the microgrid

model is most commonly considered as a set of differential equations [35] based

on constitutive equations from physics which do not explicitly represent a struc-

ture of power−preserving functions or maintain the energy conservation within

the system. In addition, these systems combine fast and slow dynamics. There-

fore, hierarchical control is an important and suitable tool which can manage

supervision at multiple time scales. The generation of optimal profiles is strongly

investigated by the researchers. Constrained optimization−based control meth-

ods are often considered such as MPC [28] MPC is a popular method to generate

on−line optimal profiles for discrete−time systems. Depending on the type of

MPC, the cost function penalizes the cost, the dissipation or the error among

the actual and reference signal profiles. However, the microgrids are convoluted

networks where numerous factors need to be examined and considered at the

same time, such as power optimization, cost minimization, stability, robustness

and the like. Consequently, no definitive microgrid models and control methods

exist and the matters are still under investigation. In this work, a different ap-

proach, based on PH systems for modeling and differential flatness for optimal

profile generation, will be presented.

Contributions: This paper is based on our previous results in [52], where

the meshed DC microgrid in PH form was described and in [51] where a brief

introduction of a flatness−based control approach for energy management was

introduced. The contributions of this paper stem from:

• the use of the PH formalism which ensures of power−preserving intercon-
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nections among all the DC microgrid’s elements. Furthermore, aspects

such as energy conservation, the isolation of physical quantities for fur-

ther use (battery charge, voltages, etc.), dissipation conditions, etc.;

• the use of differential flatness, which is an advantageous method that

allows the off-line study of physical systems in order to predict their be-

havior. It is considered also as a suitable tool to inverse the system dy-

namics: the states and inputs are given as combinations of the system’s

flat outputs. Furthermore, the B-spline properties ensure continuous time

constraints validation (the flat output, given as a weighted sum of B-spline

basis functions, is fully described by these weights);

• the multi−level control design which produces at the high and middle level

optimal profiles to be followed by the lower level. For instance, power

balancing requirements at the high level lead to an optimal profile for

battery usage, to be tracked at the middle level; the middle level provides

voltage and current references for the battery. These profiles are tracked

at the low level by an explicit switching law of the DC/DC converters.

In all cases we consider bottom to top information for a reliable profile

generation (e.g., tracking errors are accounted for);

• the validation of the proposed hierarchical control through extensive sim-

ulations based on realistic load, renewable power and electricity price pro-

files. The behavior of the system is analyzed at the high, the middle and

the low levels over a meshed DC grid benchmark.

Outline: This paper is organized as follows. Section 2 contains the nota-

tions. Section 3 refers to the modeling methodology and the detailed description

of the ES model. Then, the flat representation for the ES is introduced with

the B−spline parametrization. In section 4 the multi−layer control problem

is analyzed. In section 5, the simulation results are presented and, finally, in

section 6, the conclusions and the future work are highlighted.
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2. Notations

ES, es energy storage system

UG, ug utility grid

PV, pv solar panel system

KiBaM Kinetic Battery Model

P electrical power

Sw switches of the Split−Pi converter

d1sc duty cycle which for Sw4 is 1-d1sc and Sw3 is d1sc

d2sc duty cycle which for Sw1 is 1-d2sc and Sw2 is d2sc

q1b available charge state of the KiBaM battery

q2b bound charge state of the KiBaM battery

r derivative of the B-spline

pi ith control point

bi,d ith B-spline of order d

B(t) vector of the B-splines ∈ Rd×N

P vector of control points ∈ R3×N

Sκ,d−r,d translation matrix from higher to lower degree basis functions

Md,d−r matrix performing the linear combinations of the lower-degree

basis functions

T knot vector ∈ RN+d

τκ κth knot

κ number of knots

e electricity price

Qỹ, Rũ weight matrices

RPI Robust Positively Invariant

⊕ Minkowski sum of two sets X1 ∈ Rn and X2 ∈ Rn which is the

result of the addition of each element in X1 to each element in X2

	 Pontryagin difference of two sets X1 ∈ Rn and X2 ∈ Rn, which

is the difference between each element in X1 and each element in

X2 resulting in another element X3 ∈ Rn : X3 +X2 ⊆ X1
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3. Meshed DC microgrid model description

This section follows our previous work in [51], where the meshed DC micro-

grid model has been primarily presented. In this work, a further analysis leads

to the mathematical model of the battery attached to the Split−Pi converter.

Next, the flat representation and the advantages of the associated B−spline

parametrization are described, two instrumental notions for the formulation of

the hierarchical control problem.

3.1. Modeling methodology

In microgrids, a decomposition into subsystems leads to a structure sim-

plification. To achieve this decomposition and to express in detail the power

interconnections among the components, a modeling methodology based on PH

representation is considered. A schematic view (Bond Graph) for PH represen-

tation multiphysical systems is given in Fig.1. It is seen as the interconnection

of three types of elements: i) energy sources; ii) storing elements (capacitors,

inductors); iii) dissipative elements (resistors). These three components are

connected through a generalized interconnection structure (Dirac structure [46]

denoted by D in Fig.1 ) which accounts for the power continuous energy bal-

ance equations (e.g. Kirchoff’s laws, ideal transformers equations in an electrical

network). The general PH state−space representation of a system is [46, 10]:

Figure 1: Schematic view for the PH formulation of a multiphysics system, where the arrows

describe the power flow direction, considered as the product of associated pairs of efforts e

and flows f variables. In the case of electrical circuits, e is the voltage and f is the current.
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ẋ(t) = [J(t)−R]∂xH(x)−Gu(t),

y(t) = G>Qx(t) +Du(t),
(1)

where x(t) ∈ Rn is the state vector of the extensive energy variables p(t) and

q(t), which, in the case of electrical circuits, p(t) is the magnetic flux of the

inductors and q(t) is the electrical charge of the capacitors. Furthermore,

u(t) ∈ Rm is the input vector and y(t) ∈ Rm is the output vector. In the

following, we explain the matrices of the PH representation: i) J(t) ∈ Rn×n and

R ∈ Rn×n are skew−symmetric and symmetric positive semi definite matrices

which represent the system’s interconnection structure power continuity (struc-

tural balance equations which typically contain no numerical parameters) and

dissipation; ii) Q ∈ Rn×n is a positive definite matrix which is, in the linear

case, with one−port2 storage elements considered here, a diagonal matrix with

the capacitance values C for the capacitors and the inductance values I for the

inductors. More complex nonlinear constitutive equations may also be consid-

ered; iii) D ∈ Rm×m describes the direct interconnection of the input variables

and G ∈ Rn×m is the control matrix.

The collocated output y(t) in (1) results from the inputs selection and the

input map G, in a way that the inner product among input and output vectors

minus the dissipative energy gives always the external power supplied to the

system [11] as you can see below:

i) The Hamiltonian H is the total energy stored in the storage elements within

the system, which in the linear case is equal to the following:

H(x) =
1

2
x(t)>Qx(t); (2)

ii) From (1) and (2) we obtain the external power supplied to the system:

d

dt
H = u(t)>y(t)− x(t)>Q>RQx(t)− u(t)>Du(t). (3)

2One−port storage elements are the simplest components of a Bond Graph as they have

only two terminals (typical examples are the capacitors and the inductors).
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The power balance equation (3) is equivalent to the Tellegen’s theorem, which

describes the energy conservation in an electrical network. Note that the Hamil-

tonian H in an electrical circuit is defined as H =
1

2

q2

C
+

1

2

p2

I
, where q is the

charge of the capacitor and p is the magnetic flux of the inductor.

3.2. DC microgrid dynamical representation

Figure 2: Meshed DC microgrid architecture.

The following work presents the meshed DC microgrid architecture (see

Fig.2). A meshed topology allows the electricity transmission through a va-

riety of sources and transmission lines. Consequently, a possible interruption

of the power transmission can be avoided and the safe operation of the sys-

tem can be ensured. The system is composed by a set of PVs, an ES and an

ensemble of loads as in Fig.2. The global system dynamics is separated into

different timescales. Primarily, the existence of the DC/DC converters useful

for the voltage regulation creates a fast dynamics which needs to be stabilized

around a set−point. Secondly, the slow dynamics is related to the battery and
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the PV system. At the same time, we cope with variable profiles and costs and

obey to a set of constraints related to the different characteristics of the system

components like the battery’s capacity or the permissible UG power.

Figure 3: Corresponding electrical circuit of the DC microgrid presented in Fig.2.

Fig.3 illustrates the corresponding electrical circuit of the DC microgrid

(Fig.2): its components and their links. Priority is given to the analysis of the ES

since its proper operation is indispensable for the continuous power distribution

and cost minimization. For the PV system, profiles are provided generated

by the PV model proposed in [52], taking into account specific temperature

and irradiation data. Additionally, we use specific profiles for the consumer’s

demand.

3.2.1. Dynamical representation of the Split−Pi/ES system

Fig. 4 illustrates the lead−acid battery/Split−Pi electrical circuit. Accord-

ing to the Kinetic Battery Model (KiBaM) [27], the battery consists of two

capacitors (with storage capacities q1b and q2b) and a resistor which links them.

In the following, the associated PH model is presented:ẋes(t) = [Jes(d(t))−Res]Qesxes(t) +Gesues(t),

yes(t) = G>esQesxes(t) +Desues(t),

(4)

11



where xes(t) =
[
p1sc(t) p2sc(t) q1sc(t) q2sc(t) q3sc(t) q1b(t) q2b(t)

]>
∈ R7×1, ues(t) =

[
−vDC(t) −iR1b

(t)
]>
∈ R2×1, yes(t) =

[
iDC(t) vR1b

(t)
]>

∈ R1×2, where iDC(t) is the current during charging mode. Additionally, the

Figure 4: Detailed electrical network of the ES system during charging mode. The notations

of the switches (Sw1sc, Sw2sc, Sw3sc, Sw4sc) have been replaced by the corresponding duty

cycles d1sc and d2sc.

diagonal matrix Qes is equal to diag( 1/I1sc, 1/I2sc, 1/C1sc, 1/C2sc, 1/C3sc,

1/C1b, 1/C2b ) ∈ R7×7. The skew-symmetric matrix Jes(t) ∈ R7×7, the dissipa-

tion matrix Res ∈ R7×7, the G>es ∈ R2×7 and Des ∈ R2×2 are equal to:

Jes(t) =



0 0 1 −(1− d1sc(t)) 0 0 0

0 0 0 (1− d2sc(t)) −1 0 0

−1 0 0 0 0 0 0

1− d1sc(t) − (1− d2sc(t)) 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (5)

Res =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0
1

R1sc

0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
1

R1b
+

1

R2b
− 1

R2b

0 0 0 0 0 − 1

R2b

1

R2b



, (6)
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G>es =

0 0
−1

R1sc

0 0 0 0

0 0 0 0 1 −1 0

 , Des =

 1

R1sc
0

0 0

 (7)

where d1sc(t), d2sc(t) are the control variables of our system. All the unknown

variables and parameters of the battery model can be found in the literature and

depend on the type of the lead−acid battery. The Split−Pi converter switches

control the charging and the discharging of the battery.

3.3. Dynamical representation of the central transmission network

The transmission network model (4−line transmission network, see Fig.3) is

also represented by using the Bond Graph method [52]. Its dynamical represen-

tation is presented below:

Pug(t)+Ppv(t)− Pes(t)− Ploads(t)− PR1(t)−

−PR2(t)− PR3(t)− PR4(t) = 0,
(8)

where Pug(t) = iug(t) · vug(t) and Pes(t) = ib(t) · vb(t). At first, because of the

complexity of the equations, the power losses within the transmission central

network are not considered in this work and are equal to 0:

PR1(t) = PR2(t) = PR3(t) = PR4(t) = 0. (9)

Combining (8) and (9) the power conservation equation becomes:

Pug(t) + Ppv(t)− Pes(t)− Ploads(t) = 0. (10)

3.3.1. Flat representation of the ES connected to the Split−Pi converter

Hereinafter, the ES state−space representation model (4, 5, 6, 7, 10) will

be rewritten in function of the flat outputs of the system using the differential

flatness notion. Differential flatness allows to describe the system’s states and

inputs as algebraic combinations of the flat outputs and a finite number of their

derivatives. In turn, the flat output is an algebraic combination of states and

input derivatives [12]. A nonlinear system [12]:

ẋ = f(x, u), (11)
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with x ∈ Rn the state vector and u ∈ Rm the input vector , for which f(0, 0) = 0

and rank
∂f

∂u
= m are verified, can be characterized as differentially flat, if

there exists a flat output vector z = [z1 z2 ... zm]> which satisfies the following

conditions: i) the flat output z is presented in function of the states and the

inputs of the system and their derivatives, z = Φ(x, u, u̇, ü, ...); ii) the states and

the inputs of the system (4, 5, 6, 7) are described in terms of the flat outputs and

a finite number of their derivatives, x = Φx(z, ż, z̈, ...) and u = Φu(z, ż, z̈, ...);

iii) the flat outputs z and their derivatives are differentially independent.

Flatness and controllability are two associated properties. In [12] it is demon-

strated that a nonlinear system is flat if and only if it is controllable. Finding

the flat outputs set for nonlinear systems is convoluted. The literature provides

useful approaches, such as the algorithm proposed by [13], which is a methodical

computation of flat outputs for nonlinear control systems. The algorithm uses

symbolic linearization of the system to generate flat outputs. A subsequent cal-

culation of matrices, nullspaces and inverses leads to a set of the corresponding

flat outputs through integration. The algorithm simultaneously verifies if the

system is not controllable and, consequently, not flat [21].

The dynamical PH model presented in (4), (5), (6) and (7) has two inputs

(vDC(t), iR1b
(t)). The duty cycles (d1sc(t), d2sc(t)), as control variables, are

considered also as inputs to the system. According to [12], the number of flat

outputs is equal to the number of inputs, which means that four flat outputs

need to be found. Therefore, the four flat outputs provided by the algorithm

are the following:

z1(t) =
1

I1sc

p1sc(t)
2

2
+

1

I2sc

p2sc(t)
2

2
+

1

C2sc

q2sc(t)
2

2
, (12a)

z2(t) = q3sc(t) + q1b(t), (12b)

z3(t) = q2b(t), (12c)

z4(t) = q2sc(t). (12d)

The flat outputs are in function of the states p1sc(t), p2sc(t), q3sc(t), q1b(t),

q2b(t). Substituting (12a)−(12d) into the PH model (4−7), the remaining states

14



and inputs are written in function of the flat outputs. Appendix A presents the

detailed flat representation of the system. Below, the general flat representation

of the system is written where the states and the inputs are described in function

of the flat outputs (12a−12d) and their derivatives3:

p1sc(t) = Φ1(z1, ż2, z3, ż3, z4), (13a)

p2sc(t) = Φ2(ż2, z3, ż3), (13b)

q1sc(t) = Φ3(z1, ż1, z2, ż2, z̈2, z3, ż3, z̈3, z4, ż4), (13c)

q2sc(t) = Φ4(z4), (13d)

q3sc(t) = Φ5(z2, z3, ż3), (13e)

q1b(t) = Φ6(z3, ż3), (13f)

q2b(t) = Φ7(z3), (13g)

d1sc(t) = Φ8(z1, z2, ż2, z̈2, z3, ż3, z̈3, z4), (13h)

d2sc(t) = Φ9(z2, z̈2, z3, ż3, z̈3, z4), (13i)

vDC(t) = Φ10(z1, ż1, z̈1, z2, ż2, z̈2,
...
z 2, z3, ż3, z̈3,

...
z 3, z4, ż4, z̈4), (13j)

iR1b
(t) = Φ11(ż3, z̈3). (13k)

Next, the B−splines curves are employed, an appropriate tool for flat output

parametrization due to its properties of convexity, smoothness and differentia-

bility used for continuous−time constraints validation. The B−splines degree

depends on the highest order derivative where the continuity needs to be en-

sured. Hence, in the following the flat output z(t) is projected over N B−splines

of order d [44]:

z(t) =

N∑
i=1

pi · bi,d(t) = PBd(t), (14)

where pi ∈ R3 is gathered into the matrix P ∈ R3×N of N control points,

P =
[
p1 p2 ... pN

]
. In (14) Bd(t) =

[
b1,d(t) b2,d(t) ... bN,d(t)

]>
is the

3Wherever it is straightforward implied by the text, we discard the time dependence.
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B−spline vector. Furthermore, the B−splines are defined over a knot−vector

T = {τ0 ≤ τ1 ≤ ... ≤ τm} ∈ RN+d which is a set of non−decreasing time

instants with m = N + d + 1. More details on the theory and the properties

of B−splines, employed in the following section, can be found in [43].

4. Hierarchical constrained optimization−based control

Figure 5: Flowchart of the hierarchical control for the DC microgrid.

This section analyzes the hierarchical control problem. The main goal is to

reduce the electricity cost by minimizing the energy consumption of the UG,
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hence taking advantage of the PV power production and the ES system capac-

ity. The control variables of the ES system (4, 5, 6, 7) are the duty cycles of the

Split−Pi converter (5), d1sc(t), d2sc(t), and the power generated from the UG,

Pug(t). Considering all the elements introduced in section 3, the hierarchical

control approach is presented in Fig. 5: i) high level (power flow optimization):

optimal profiles for the battery current ib and voltage vb are generated by an

optimization problem with continuous−time constraint validation ensured by

the B−splines properties; ii) middle level (battery scheduling): a tube−MPC

tracking mechanism [20] is employed which provides an efficient battery schedul-

ing under current and voltage additive noises; iii) low level (switching activity

in the converter): an explicit control law for the duty cycles of the converter is

provided for tracking the a priori given battery current and voltage profiles.

4.1. High level control

Hereinafter, the high level considers the minimization of the power generated

by the UG (with Pug(t) = −Ppv(t)+Pes(t)+Ploads(t) as in (10)) while satisfying

the ES system dynamics (4, 5, 6, 7) and the constraints:

min
ib(t),vb(t)

∫ tf

t0

e(t)( Pes(t)︸ ︷︷ ︸
ib(t)vb(t)

+ Ploads(t)− Ppv(t))dt, (15a)

subject to : the system dynamics (13a)− (13k), (15b)

vmin,hb ≤vb(t) ≤ vmax,hb , (15c)

imin,hb ≤ib(t) ≤ imax,hb , (15d)

qmin,h2b ≤q2b(t) ≤ qmax,h2b , (15e)

Pmin,hug − Ploads(t) + Ppv(t) ≤Pes(t) ≤ Pmax,hug + Ploads(t)− Ppv(t), (15f)

with the control variables being the battery’s voltage, vb, and the battery’s

current, ib. Replacing in (15a)−(15f) the ES power in terms of the control

variables, ib, vb, we obtain a nonlinear optimization problem. Furthermore,

considering q1b(t) and iR1b
(t) from (4) (which verify ib(t) = iR1b

(t) and vb(t) =
q1b(t)

C1b
) in function of the flat outputs as in (13f) and (13k), the voltage and
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current profile references are expressed as:

vb(t) =
1

C2b
z3(t) +R2bż3(t), (16a)

ib(t) = (1 +
C1b

C2b
)ż3(t) + C1bR2bz̈3(t). (16b)

Next in (16a) and (16b), we continue with the B−spline parametrization of

z3(t):

vb(t) =

N∑
i=1

(
1

C2b
P +R2bP

)
B(r)d (t), (17a)

ib(t) =

N∑
i=1

[(
1 +

C1b

C2b

)
P + C1bR2bP

]
B(r)d (t). (17b)

In (17a) and (17b) the differentiation property of the B−splines is employed.

The r−order derivatives of d−order B−splines can be expressed as d− r order

B−splines which, in turn, can be expressed as d−order B−splines over each

knot sub−interval:

B(r)d (t) = Md,d−rBd−r(t) = Md,d−rSκ,d−r,dBd(t), ∀t ∈ [τκ, τκ+1). (18)

From (14), (16b), (16a) and (18), the battery’s output current and voltage are

derived in function of the B−splines:

vb(t) =

N∑
i=1

[
1

C2b
pi +R2b (PMd,d−1Sκ,d−1,d)i

]
Bi,d(t), (19a)

ib(t) =

N∑
i=1

[(
1 +

C1b

C2b

)
(PMd,d−1Sκ,d−1,d)i + C1bR2b · (PMd,d−2Sκ,d−2,d)i

]
·

· Bi,d(t), ∀t ∈ [τκ, τκ+1) . (19b)

The representation obtained in (19a) and (19b) is introduced in the cost

function and the constraints of the optimization problem (15a)−(15f). Hence, it

is rewritten in function of the B−splines and a finite number of control variables

represented by the control points. For the detailed calculation, see Appendix

B. The reference profiles obtained at the high level for the battery current and

voltage will be denoted in the middle level as irefb and vrefb , respectively.
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4.2. Middle level control

In this section, a tube−MPC controller is developed to track the output

voltage reference profile, vrefsc out, of the Split−Pi converter under bounded noise.

Note that the output voltage reference of the converter can be written in function

of the battery current and voltage reference profiles obtained at the high level

from (15a)−(15f) following:

vrefsc out(t) = vrefb (t) + irefb (t)R1b. (20)

Using the Euler explicit method, the battery dynamics is discretized with the

charges of the battery, q1b and q2b, as state variables, the output voltage from the

Split−Pi converter, vsc out, as input variable and the current and voltage of the

battery, vb and ib, as output variables, considered as x̃(k) =
[
q̃1b(k) q̃2b(k)

]>
,

ũ(k) = ṽsc out(k) and ỹ(k) =
[̃
ib(k) ṽb(k)

]>
, where ĩb(k) = ĩsc(k) and ṽb(k) =

q̃1b(k)

C1b
(see the ES circuit in Fig.4). Therefore, the obtained discretized system

is presented as follows: x̃(k + 1) = Ax̃(k) +Bũ(k),

ỹ(k) = Cx̃(k) +Dũ(k),

(21)

with A =

1− Ts
C1b

(
1

R1b
+

1

R2b

)
Ts

C2bR2b

Ts
C1bR2b

1− Ts
C2bR2b

, B =

[
Ts
R1b

]
,

C =

−
1

C1bR1b
0

1

C1b
0

, D =


1

R1b

0

 and Ts the sampling time.

Next, a tracking MPC formulation is proposed in which the cost penalizes

the tracking error (the difference between actual and reference output profiles)

over a finite prediction horizon Np:

min
ũ(k)

k+Np−1∑
i=k

(ỹ(i)− ỹref (i))>Qỹ(ỹ(i)− ỹref (i))+

+(ũ(i)− ũref (i))>Rũ
(
ũ(i)− ũref (i)

)
(22a)
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subject to : the system dynamics (21), (22b)

ṽmin,mb ≤ ṽb(k) ≤ ṽmax,mb , (22c)

ĩmin,mb ≤ ĩb(k) ≤ ĩmax,mb , (22d)

q̃min,m2b ≤ q̃2b(k) ≤ q̃max,m2b , (22e)

P̃min,mug ≤ P̃ug(k) ≤ P̃max,mug , (22f)

with ỹref (k) =
[̃
irefb (k) ṽrefb (k)

]>
, the current and voltage references of the

battery, and ũref (k) = ṽrefsc out(k), the output voltage reference of the Split−Pi

converter, taken at Ts sampling time. The control variable of the tracking prob-

lem is the output voltage of the Split-Pi converter, vsc out. The last constraint

Pug(t) is rewritten below:

P̃min,mug − P̃loads(k) + P̃pv(k) ≤ P̃es(k) ≤ P̃max,mug − P̃loads(k) + P̃pv(k), (23)

where P̃es(k) = ĩb(k)ṽb(k) as aforementioned. The aforementioned objective

function is in quadratic form with nonlinear constraints and a variable electricity

cost. Additionally, the profiles of the PV, the loads demand and the electricity

price are taken into account. Furthermore, the problem is formulated to track

the profiles under perturbations.

At the high level, a desired profile is generated for the voltage, vb, and

the current, ib, of the battery. The dynamics considered at the middle level

has to follow these profiles (replaced by the output voltage of the Split−Pi

converter vsc out) as best as possible. The considered approach is the so−called

tube−MPC [20] where an MPC law provides the nominal input (based on the

nominal, noise−free dynamics) and the actual input adds to the nominal value

a corrective term which counteracts the noise.

The tracking error, under certain assumptions, can be bounded by an RPI

set. Since the profile to be tracked is generated at the high level we can tighten

the constraints considered in its design so as to guarantee reliability under noises

(with the tightening factor being defined by the aforementioned RPI set). The

pair of nominal input and nominal state (ũ(k), x̃(k) are considered generated
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by the repeated application of a MPC law over the nominal dynamics of the

battery (24b). Furthermore, the real dynamics (24a) is affected by the bounded

noise w̃(k):

x̃w(k + 1) = Ax̃w(k) +Bũw(k) + w̃(k), (24a)

x̃(k + 1) = Ax̃(k) +Bũ(k), (24b)

where w̃(k) is the perturbation, x̃(k) is the nominal state and x̃w(k) is the

real, noise−affected, state. Linking the nominal and actual inputs through the

relation ũw(k) = ũ(k) + K(x̃(k)-x̃w(k)) allows us to write the tracking error

dynamics as:

s(k + 1) = (A+BK)s(k) + w̃(k). (25)

For any controllable pair (A, B) in (25), there exists a static feedback K such

that (A+BK) is stable which means that there exists an RPI set S for which

s(k) ∈ S ∀ k ≥ k0 holds. Such a set can be computed with the ultimate bounds

method [18] or iterative procedures [32].

Having s(k) ∈ S is equivalent with x̃w(k) ∈ {x̃(k) ⊕ S} (note that ⊕ is

the Minkowski sum). In other words, the nominal x̃(k) has to be chosen more

conservatively than x̃w(k). Thus, to ensure that x̃w(k) ∈ X̃ = {xmin,m ≤ x ≤

xmax,m}, x̃(k) is limited as follows:

x̃(k) ∈ X̃ 	 S (26)

Note that the restriction on x̃(k) translates to a similar restriction on ỹ(k):

ỹ(k) ∈ Ỹ 	 CS, (27)

where Ỹ is a shorthand notation for constraints (22c), (22d) and (22f). The 	

symbol refers to the Pontryagin difference. The same tightening term CS is con-

sidered in the profile generation implemented at the high level as in (19a)−(19b).

4.3. Low level control

The low level control focuses on the fast dynamics of the system caused

by the switching activity within the Split−Pi converter. The tracking profiles
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obtained in the middle level are taken into account as references for the duty

cycles supervision. In order to proceed to the analysis of the Split−Pi converter

system, we follow the patent of United States Patent and Trademark Office No:

US 6914420 B2 published on July 2005 [7]. The patent provides the relations

among the input/output voltage (vsc in, vsc out) and the duty cycles (d1sc, d2sc)

of the converter. Notice that the output voltage vsc out is always between 12-13

V , according to the battery’s parameters considered later in the simulations,

and the input voltage vsc in is always approximately equal to 400 V . Therefore,

the Split−Pi converter always operates in down−conversion during battery’s

charging (positive direction) and up−conversion during battery’s discharging

(negative direction). Consequently, only the duty cycle d2sc can take values

from 0 to 1 ( on/off switching between Sw3 and Sw4) and the duty cycle d1sc

is always equal to 0 (Sw2 is always off and Sw1 is always on). Therefore, the

control variable is d2sc and obeys to the relations below:

vsc out(t)

vsc in(t)
= 1− d2sc(t) (28)

where, from Ohm’s law,

vsc in(t) = vDC(t)− iDC(t)R1sc, (29)

vsc out(t) = vb(t) + ib(t)R1b. (30)

Moreover, since there is no dissipation within the converter, at the equilibrium

point, where ṗisc = 0 and q̇isc = 0, the total energy contained in the capacitors

and inductors is preserved. Therefore, the relation below is deduced:

usc in(t)isc in(t) = usc out(t)isc out(t), (31)

iDC(t)vsc in(t) = ib(t)vsc out(t). (32)

Substituting equations (29), (30), (32) in (28) concludes in the relation below:

d2sc(t) = 1−
vDC(t)−

√
v2DC(t)− 4(vsc out(t)− vb(t))(vsc out)

2(vsc out(t)− vb(t))
. (33)

The duty cycle d2sc is the control variable of the low level. The last equation

(33) can be valid only if vsc out(t) 6= vb(t) as in (20) and (16a).
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5. Simulation results

In this section, we present the simulation results of the three levels of the

hierarchical control design. In tables 1 and 2, the parameters of the DC micro-

grid and the simulation settings are indicated for the the high and the middle

levels.

Table 1: Model parameters for the simulations

Variable Values Units

R1sc, R1b, R2b 0.1, 0.025, 0.088 [Ω]

I1sc, I2sc 0.25, 0.25 [H]

C1sc, C2sc, C3sc 0.0008, 0.0008, 0.0008 [F ]

C1b, C2b 86400, 21600 [F ]

Table 2: System settings for the simulations

Variable Values Units

N as in (19a),(19b) 18
High level

d as in (19a),(19b) 4

vmin,h
b ≤ vb(t) ≤ vmax,h

b 12.1 ≤ vb(t) ≤ 12.9 [V ]

imin,h
b ≤ ib ≤ imax,h

b −9 ≤ ib(t) ≤ 9 [A]

Constraints qmin,m
1b ≤ q1b(t) ≤ qmax,m

1b 290 ≤ q1b(t) ≤ 307 [Ah]

qmin,h
2b ≤ q2b(t) ≤ qmax,h

2b 72.5 ≤ q2b(t) ≤ 77.5 [Ah]

Pmin,h
ug ≤ Pug(t) ≤ Pmax,h

ug −2100 ≤ Pug(t) ≤ 4200 [W ]

Np as in (22a) 10 [h]

Ts as in (21) 300 [s]
Middle level

Qy as in (22a) diag(1, 1)

Ru as in (22a) 800

vmin,m
b ≤ ṽb(k) ≤ vmax,m

b 12 ≤ ṽb(k) ≤ 13 [V ]

imin,m
b ≤ ĩb(k) ≤ imax,m

b −10 ≤ ĩb(k) ≤ 10 [A]

Constraints qmin,m
1b ≤ q̃1b(k) ≤ qmax,m

1b 288 ≤ q̃1b(k) ≤ 308 [Ah]

qmin,m
2b ≤ q̃2b(k) ≤ qmax,m

2b 72 ≤ q̃2b(k) ≤ 78 [Ah]

Pmin,m
ug ≤ P̃ug(k) ≤ Pmax,m

ug −2100 ≤ P̃ug(k) ≤ 4200 [W ]

For the simulations we use a set of DS−100 PV modules (180 W peak PV

generation) with external temperature and irradiation profiles gathered for a
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whole summer day [5]. Through the model developed in [52] implemented in

MATLAB/Simulink, we obtain the power profiles for the PV system. For the

ES system in (4), a collection of AGM 12−165 lead acid batteries (165 Ah

battery capacity) is considered. Additionally, for the load profiles, two types of

loads are provided, one for commercial use (4308 W peak demand) [31], where

the demand is higher during the day, and one for domestic use (3901 W peak

demand) [8], where the demand increases after 4 p.m.. Concerning the electricity

price, the cost varies between 0.147 [euros/kWh] from 4 p.m. to 10 p.m. and

0.116 [euros/kWh] for the rest of the day. The DC microgrid is connected to

the UG ( 4200 W maximum UG generation ) through a DC breaker, as shown

in Fig.2. MATLAB 2015a version is used for the simulations. Furthermore,

the YALMIP [23] tool is applied for both high and middle level optimization.

This tool allows the use of the IPOPT solver [3], capable to handle nonlinear

formulations. For the low level, we design and implement the ES system in

MATLAB/Simulink in order to validate the proper operation of the switching

activity within the Split−Pi converter.

We a priori choose the constraints for the current and the voltage of the

battery at the high level according to the RPI set computation (24b). At this

point, disturbances are added to the system’s input variable, which is the output

voltage of the Split−Pi converter (ṽsc out) of the middle level, equal to 5% of

the difference between the minimum and the maximum value of ṽrefsc out in (22a).

In Table 2, the constraints chosen for the high level are restricted with respect

to the constraints chosen for the middle level.

Fig.6 and Fig.7 present the RPI set S and the nominal and noise−affected

variables. The sets at several time instants highlight that the profiles are robust

under bounded noise (i.e., the real trajectory lies in a tube centered around the

nominal trajectory). Below the corresponding RPI set is written:

S ,


-0.38 [Ah]

-0.11 [Ah]

 6

q̃w1b
-q̃1b

q̃w2b
-q̃2b

 6

0.38 [Ah]

0.11 [Ah]

 (34)

and the associated static feedback K =
[
0.685 · 10−4 0.139 · 10−4

]
as in (25).
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Figure 6: RPI set S of the model states.

Figure 7: Ultimate bounds for discrete time events of the model states, q̃1b and q̃2b following

the commercial use load profile.

Hence, it can be verified that the states, q̃1b and q̃2b (Fig. 8), lie in the RPI set.

High level: First, the simulation results of the high level in Fig.9 are pre-

sented for both commercial (Fig.9a) and domestic load (Fig.9b) profiles gen-

erated through a B−spline parametrization, as in section 4.1, with N = 18

control points. The simulation is based on a constrained open−loop dynamics

implementation in continuous−time over a horizon of 24 hours. The profiles

of the PV and the loads are imported at the beginning with a sampling time

equal to 600 s. Note that the power positive sign indicates the power supplied

to the microgrid. Fig.9a and Fig. 9b depict the power profiles generated by the
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Figure 8: (a) ES system states q̃1b and q̃2b with (real profile) and without (nominal profile)

perturbation (commercial use load profile). (b) ES system states q̃1b and q̃2b with and without

perturbation (domestic use load profile). The red lines represent the corresponding constraints.

ES and the UG within 24 hours (power balancing), taking into account the PV

and the consumers’ demand profiles for commercial and domestic use. For the

commercial load profile, the demand is high during the day from 6 a.m. to 4

p.m.. On the other hand, the domestic load demand increases during the after-

noon after 4 p.m.. In Table 3 percentages of the power produced or consumed

by the sources (UG, PV, ES) and loads are presented as percentages of the

total generated power. In the case of the commercial load demand (Fig.9), the

PV generates 47% of the total power giving priority to the consumers’ demand,

while the rest is sold to the UG. While, in the afternoon, both the UG and ES

contribute to the loads’ supply especially after 4 p.m. when the energy gener-

ated from the PV is decreasing. Overall, only 1% is sold to the UG and 93% of

the total energy produced is used by the consumers. On the other hand, for the

domestic use profile, when the electricity price is high, the demand is low. The

remained PV power (almost 12% of the total power consumed) is either sold to

the UG or is used to charge the batteries (also charged during the night, when

the electricity cost is lower). In general, in both cases, whenever the PV power

fully covers the consumers’ demand, the remaining power is either stored in the

ES system or sold to the UG.

As a next step, several simulations are performed for different number of

control points, N from the B−splines parametrization and the results are de-

picted in Table 4. We observe that as the number of control points grows, the
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Figure 9: (a) Power balancing, optimal reference profiles and state of charge of the ES system

of the commercial load profile. (b) Power balancing, optimal reference profiles and state of

charge of the ES system of the domestic load profile. The red lines represent the corresponding

constraints.

computation time and the number of battery discharges increase, whereas the

electricity cost decreases. The number of discharges influences the lifetime of
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Table 3: Percentage of power with respect to the total power produced or consumed.

Load profile Power Power produced [%] Power consumed [%]

Commercial

Pug 46% 1% sold to the UG

Pes 7% 6% for ES charging

Ppv 47% −

Ploads − 93% for load usage

Domestic

Pug 40% 12% sold to the UG

Pes 9% 9% for ES charging

Ppv 51% −

Ploads − 79% for load usage

Table 4: Results for different numbers of control points.

Load profile
N as in

(19a),(19b)

Electricity cost

[euros]

Computation

time [s]

ES

discharges

Commercial

18 4.090 146 2

27 4.029 257 3

36 3.614 514 7

45 3.447 854 9

54 3.226 1322 11

Domestic

18 2.534 667 2

27 2.577 779 2

36 2.265 1013 7

45 2.074 1230 8

54 1.869 1230 9

the battery meaning that a large number of discharges leads to a decrease of

the battery’s capacitance. This results in a reduced life for the battery and,

thus to higher operational costs (necessitated by its premature replacement).

Additionally, the electricity cost has been calculated in the absence of the ES
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and it is equal to 4.173 euros for the commercial use profile and 2.644 euros for

the domestic demand.
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Figure 10: (a) Power balancing, tracking references, available charge and UG power of the

commercial load profile. (b) Power balancing, tracking references, available charge and UG

power of the domestic load profile. The red lines represent the corresponding constraints.

Middle level: Afterwards, the results for the middle level are introduced

using as reference the optimal profiles generated at the high level. As previously
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mentioned, in the middle level, we use MPC for reference tracking with a pre-

diction horizon, Np, equal to 10 h and a sampling time, Ts, equal to 300 s. The

power profiles of the PV and the loads are updated following the sampling time

Ts. Fig.10 shows the tracking profiles of the Power Balancing, and the control

input, vsc out (the output voltage of the Split−Pi converter, which is a function

of the current, ib, and the voltage, vb of the battery as in (20)). According to

Fig.10 and Table 5, where the power produced and the power consumed are

illustrated in respect to the total power, the optimal profiles obtained at the

high level are very closely followed.

Table 5: Percentage of power with respect to the total power produced or consumed. Com-

parison with high level optimal profiles.

Load

profile
Power

Power

produced [%]

Power

consumed [%]

Power

production

difference

from high

level [%]

Power con-

sumption

difference

from high

level [%]

Commercial

Pug 47%
1% sold to the

UG
1% 0%

Pes 6%
7% for ES

charging
-1% 1%

Ppv 47% − 0% −

Ploads −
92% for load

usage
− -1%

Domestic

Pug 40%
12% sold to

the UG
0% 0%

Pes 9%
11% for ES

charging
0% −2%

Ppv 51% − 0% −

Ploads −
77% for load

usage
− −2%
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Figure 11: (a) Voltage and current tracking profiles for the commercial load profile. (b)

Voltage and current tracking profiles for the domestic load profile.

For the commercial load profile, a slight difference of 1% is observed in

battery’s charging and discharging and in the UG power production. The cost

of the electricity increases at about 1% and from 4.090 raises to 4.140 euros for

the real noise−affected profile. A similar case is also observed for the domestic

load demand regarding the discharging of the battery. The computational time

of the simulation lasts around 180 s for each load profile.

Low level: In the following, the results obtained at the low level are pre-

sented following the tracking profiles of the middle level for the battery current,

ib, and voltage, vb, under perturbation (Fig.11). For the simulations, we develop

the model of the ES (4, 6) in MATLAB/Simulink. The continuous−time simu-

lation lasts about 10 s and demonstrates the proper operation of the converter

which regulates very well the current and the voltage (Fig.11a, Fig.11b). The

control variable d2sc is updated continuously (i.e., in simulation, this means,

that the values are refreshed at each simulation sampling time equal to 300 s).

Comparisons: As previously described, the reference trajectories were ob-

tained through differential flatness and B−spline parametrization. As a next
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Figure 12: Power balancing using commercial load profile. Comparisons of Pes and Pug with

optimal profiles obtained by MPC.

step, the reference trajectories generation obtained through differential flatness

and B−spline parametrization are compared with MPC, as presented also in [34]

and [15]. The simulation results are presented in Fig.12 and Fig.14 taking into

account that Np is equal to 24 h with a sampling time Ts equal to 1800 s. The

obtained trajectories are similar. In Fig.13 for the commercial load profile and in

Fig.15 for the domestic load profile, we take the optimal profiles generated from

MPC in order to follow them directly in the low level and calculate the electric-

ity cost. As a result, the electricity cost for the commercial use profile is equal

to 4.657 euros and in case of the domestic use is equal to 2.912 euros, which is

higher than the electricity cost obtained from the flatness−based optimization

problem. Table 6 compares the power produced and the power consumed from

the sources and loads between flatness-based approach and MPC. In both pro-

files with MPC, it is observed that the Pug generates more power to satisfy the

consumers’ demand instead of exploiting the use of the battery. Consequently,

although the power sold to the UG is higher with the MPC approach, the elec-

tricity cost remains higher than the electricity cost obtained from flatness as in
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Table 7.
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Figure 13: (a) Voltage tracking profile at the low level obtained from MPC using the com-

mercial load profile. (b) Current tracking profile at the low level obtained from MPC using

the commercial load profile.
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Figure 14: Power balancing using domestic load profile. Comparisons of Pes and Pug with

optimal profiles obtained by MPC.

Because of the difference in the electricity cost among the optimal profiles

obtained by MPC and flatness, we perform more simulations with MPC with

different prediction horizons Np and sampling times Ts. Table 8 shows that,

for MPC with a prediction horizon equal to 24 h and a sampling time equal
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Figure 15: (a) Voltage tracking profile at the low level obtained from MPC using the domestic

load profile. (b) Current tracking profile at the low level obtained from MPC using the

domestic load profile.

Table 6: Percentage of power with respect to the total power produced or consumed. Com-

parisons with flatness-based high level Table 3.

Load

profile
Power

Power

produced

with MPC

[%]

Power

consumed

with MPC

[%]

Power

produced

with

flatness[%]

Power

consumed

with

flatness[%]

Commercial

Pug 49%
2% sold to

the UG
46%

1% sold to

the UG

Pes 4%
5% for ES

charging
7%

6% for ES

charging

Ppv 47% − 47% −

Ploads −
93% for

load usage
−

93% for

load usage

Domestic

Pug 45%
14% sold

to the UG
40%

12% sold

to the UG

Pes 4%
7% for ES

charging
9%

9% for ES

charging

Ppv 51% − 51% −

Ploads −
79% for

load usage
−

79% for

load usage

to 1800 s, the computational time of a simulation is around 1384 s instead of

approximately 150 s with differential flatness. Furthermore, because of the dis-

34



Table 7: Total electricity cost of the power produced from the UG and sold to the UG with

MPC and flatness.

Load

profile
MPC Flatness

Electricity cost [euros]
Commercial 4.657 4.090

Domestic 2.912 2.534

Table 8: Simulation results obtained for optimal profiles with MPC

Load

Prediction

horizon Np

[h]

Sampling

time Ts [s]

Electricity cost

[euros]

Calculation

time [s]

Commercial 48 1800 4.416 2853

24 1800 4.657 1384

24 1200 4.491 1670

24 600 4.319 1862

10 1800 4.322 1475

10 1200 4.281 2075

Domestic 24 1800 2.912 1868

24 1200 2.815 2062

10 1800 2.894 1533

10 1200 2.889 1491

10 600 2.774 1530

cretization in MPC, the value of the sampling time greatly influences (for better

or worse) the simulation’s performance (note in particular the variation of the

electricity cost). Therefore, we cannot ensure which case is the most effective

to obtain the optimal profiles for the optimization problem. On the other hand

with differential flatness, apart from the complexity of the flat outputs’ calcu-

lation to construct the objective function and constraints, there are significant

advantages:

• we avoid discretization since we solve an optimization problem in contin-

uous time;

• since the simulations generated from differential flatness with B−spline
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parametrization are generated in continuous−time, the results are not

affected by discretization approximations or under−sampling. Moreover,

the profile is generated in its entirety for the full simulation horizon (and

not piece by piece, as would be the case for a discrete optimization problem

like MPC);

• practically, the total economic cost and required computational resources

are lower when exploiting the flat representation.

6. Conclusion

In this paper, a multilevel supervision for a meshed DC microgrid has been

introduced. Firstly, the DC microgrid system has been presented in PH form

giving high importance to the ES system. Then, a constrained optimization

based control approach is introduced which solves the power balancing prob-

lem. Then, the three control levels are analyzed: the high, the middle and

the low level. In a meshed topology, the optimization problem to solve becomes

complicated since a model consists of multiple sources, different timescales, non-

linearities and constraint satisfaction at the same time. Therefore, we built a

controller that can manage and take into consideration all the aforementioned

factors. Afterwards, the reference profile generation obtained with differential

flatness and B−spline parametrization have been compared with the optimal

profile deduced by MPC. This work has proven that the differential flatness

represents an accurate and a straightforward way to purchase optimal profiles

generation for power balancing optimization.

The main contributions of this work are summarized below:

• the dynamical model was given through the port−Hamiltonian formalism.

This method allows a well−structured dynamical representation: it pre-

serves power balancing relations and isolates physical quantities (such as

voltage, current, charge, magnetic flux) within the model;

• the differential flatness and the associated B−splines parametrization have
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been used for optimal profile generation. The method handles successfully

continuous constraints (validated not only at each sampling time, but for

the entire sampling interval) and integral costs (along the entire simula-

tion horizon). Even the preliminary implementation has proven superior

to a standard approach (i.e., applying MPC over a discretized model to

compute the profiles iteratively);

• a multi-scale approach was implemented in the control architecture. Most

of the works in the state of the art concentrate on a single aspect of

microgrid control due to the large disparities in sampling times (from hours

for load balancing to tenths of seconds for DC/DC converter switching).

Here, each level is analyzed and an appropriate control law is given (which

takes into account computation time limitations);

• overall, we may conclude that the PH implementation and the avoidance of

discretization at the load balancing level provide significant improvements

in comparison with standard approaches which discretize the dynamics

and apply, e.g., MPC to solve the problem.

As a short term future work, further improvements in the constrained op-

timization problem are envisioned, e.g., energy dissipation minimization in the

central transmission network by explicitly considering power losses in the cost.

Furthermore, developing the transmission-line model will allow to analyze the

robustness of the scheme under unexpected events, such as continuity of the

system operation in case of a faulted line. In a long term future work, aspects,

such as the proper sizing of the renewable sources or the batteries, addition of

other elements (electrical vehicles, other battery models, other sources), will be

studied. Finally, additional properties of the PH formulation will be exploited

from the viewpoint of stability and performance in the control scheme (passivity,

energy conservation, the Hamiltonian as a candidate Lyapunov function).
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ria for the optimal sizing of a hybrid energy storage system in pv household-

prosumers to maximize self-consumption and self-sufficiency. Energy 186,

115827.

[15] Iovine, A., Rigaut, T., Damm, G., De Santis, E., Di Benedetto, M. D.,

2018. Power management for a dc microgrid integrating renewables and

storages. Control Engineering Practice.

39

https://openei.org/datasets/files/961/pub/
https://openei.org/datasets/files/961/pub/


[16] Karnopp, D. C., Margolis, D. L., Rosenberg, R. C., 2012. System dynamics:

modeling, simulation, and control of mechatronic systems. John Wiley &

Sons.

[17] Khan, M. R. B., Jidin, R., Pasupuleti, J., 2016. Multi-agent based dis-

tributed control architecture for microgrid energy management and opti-

mization. Energy Conversion and Management 112, 288–307.

[18] Kofman, E., Haimovich, H., Seron, M. M., 2007. A systematic method

to obtain ultimate bounds for perturbed systems. International Journal of

Control 80 (2), 167–178.
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Appendix A. Flat representation of the states and the inputs

In this part, we will present thoroughly the states and inputs of the physical

model (4, 5, 6, 7) in terms of the aforementioned flat outputs and its derivatives

(12c):
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(ż3 + ż2),
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where for the vsc, because of the convoluted equation, we do not mention it

here, but we can proceed to the calculation similarly by replacing q1sc, q̇1sc, p1sc

in terms of the flat outputs as it is shown above. Additionally, we consider

1/C1sc = a, 1/C2sc = b, 1/C3sc = c, 1/C1b = e, 1/C2b = f , 1/I1sc = g,

1/I2sc = h, 1/R1sc = n, 1/R1b = k, 1/R2b = m).

Appendix B. Explicit calculation of the objective function

In this appendix, we give the detailed calculations for the objective function

in (15a) function of the B−splines following thee property in (18):

min
ib(t)vb(t)

∫ tf

t0

Pes(t)︸ ︷︷ ︸
ib(t)vb(t)

+ Ploads(t)− Ppv(t))dt = (B.1a)

=

tf∫
t0

e(t)(ib(t)vb(t))dt

︸ ︷︷ ︸
Jes

+

tf∫
t0

e(t)(Ploads(t)− Ppv(t))dt

subject to : the system dynamics (13a)− (13k), (16a), (16b), (B.1b)

vmin,hb ≤
N∑
i=1

pvbκi
Bi,d(t) ≤ vmax,hb , (B.1c)

imin,hb ≤
N∑
i=1

pibκi
Bi,d(t) ≤ imax,hb , (B.1d)

qmin,h2b ≤
N∑
i=1

piBi,d(t) ≤ qmax,h2b , (B.1e)

Pmin,hug ≤Pug ≤ Pmax,hug . (B.1f)

Then, we rewrite the a priori constraints from (B.1b) and (B.1f) in function of

the B-splines:

pvbκi
=

1

C2b
pi +R2b (PMd,d−1Sκ,d−1,d)i , (B.2a)

pibκi
=

(
1 +

C1b

C2b

)
(PMd,d−1Sκ,d−1,d)i + C1bR2b · (PMd,d−2Sκ,d−2,d)i , (B.2b)
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considering (19a) and (19b). The matrices S change across the knot sub−intervals

[τκ, τκ+1]. Thus, the constraints need to be considered for each of the intervals.

For the Pug constraint in (B.1f), we use the power conservation equation (10):

Pmin,hug − Ploads(t) + Ppv(t) ≤ Pes(t) ≤ Pmax,hug − Ploads(t) + Ppv(t), (B.3)

where Pes(t) = ib(t)vb(t) as aforementioned.

In the following we show also the detailed calculation of Jes as in (B.1a) [43]:

Jes =

tf∫
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The previous multiplication in (B.4) concludes in 4 terms and we proceed to

the calculation of the Jes by solving each term separately:
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Since the Term1 results in scalar values, the obtained objective function will

be in quadratic form. Similarly, we continue with the calculation of the other

terms:
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