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Abstract. This paper introduces a new epistemic extension of answer
set programming (ASP) called epistemic ASP (E-ASP). Then, it com-
pares E-ASP with existing approaches, showing the advantages and the
novelties of the new semantics and discusses which formalisms provide
more intuitive results: compared to Gelfond’s epistemic specifications
(ES), E-ASP defines a simpler, but sufficiently strong language. Its epis-

temic view semantics is a natural and more standard generalisation of
ASP’s original answer set semantics, so it allows for ASP’s previous lan-
guage extensions. Moreover, compared to all semantics proposals in the
literature, epistemic view semantics facilitates understanding of the intu-
itive meaning of epistemic logic programs and solves unintended results
discussed in the literature, especially for epistemic logic programs includ-
ing constraints.

Keywords: Answer set programming · Epistemic specifications ·
Modal logic S5 · Stable models · Answer sets · World views ·
Autoepistemic equilibrium models

1 Introduction

Logic programming (LP) [21] unifies different areas of computation by exploiting
the greater generality of logic. Answer set programming (ASP) [13,14,24,25] is
an approach to declarative programming, and it relates LP to declarative prob-
lem solving by answer sets—consistent sets A of literals1 in which p /∈ A or
∼p /∈ A. In a sense, they are partial valuations. Some researchers prefer to call
them 3-valued. For instance, empty valuation assigns neither true nor false to
a propositional variable p, leaving it undetermined, which is characterised by
negation as failure (NAF) [6,7] in ASP. Answer set semantics [10] of ASP has

I want to thank Andreas Herzig, Luis Fariñas del Cerro, Michael Gelfond, Patrick
Thor Kahl, Thomas Eiter, Yi-Dong Shen, Pedro Cabalar, and Jorge Fandinno for their
research related to this paper and the anonymous reviewers for their valued comments
on the drafts of this work.
1 In ASP, a literal is a propositional variable p or a strongly-negated propositional

variable ∼p.
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provided a correct interpretation of NAF and related ASP to nonmonotonic rea-
soning [28,32]. ASP is currently central to various approaches in nonmonotonic
reasoning with a wide range of applications in science and technology.

Despite its successes, ASP has some drawbacks. Among others, ASP is not
powerful enough to correctly represent incomplete information, exactly in situ-
ations where there are multiple answer sets of an ASP program because NAF
performs locally (separately in each answer set) and cannot reason about over a
whole range of answer sets. Since 1991, a considerable amount of ASP research
has focused on the problem of incomplete information [3,5,8,9,11,17–20,22,29–
31,33–39], none of which however resulted in a fully satisfactory semantics. We
attack the same problem in order to overcome the obstacles of the previous
approaches towards a solution.

The first approach of this line of research is Gelfond’s epistemic specifications
(ES) [8]: he extended a special form of ASP called disjunctive logic programming
[14] by epistemic operators, able to quantify over belief set (which is, in structure,
analogous to an answer set) collections. The interpretation of this new language
is in terms of a world view—a maximal collection of belief sets about a world
reflected by an epistemic logic program Π. Hence, a world view is a kind of
3-valued S5 model (set of valuations). Similar to the answer set semantics, the
world view semantics is also reduct-based. However, different from the reduct
definition of the former where we only eliminate NAF, here the goal is, in princi-
ple, to remove epistemic modal operators. Thus, the reduct ΠA of an epistemic
logic program Π w.r.t. a world view candidate A is an ASP program which may
include NAF as well. In both semantics, the selection of these special models
from among all models of a program is in two steps (plus a fixed point check):
first, we compute the reduct of a program by a candidate model (a valuation or a
set of valuations, depending on the context); second, we construct the collection
A of all answer sets of this reduct. If the candidate model which is a (possibly
empty) set of literals in ASP, is an element of A, then we call it an answer set.
In ES, if the candidate model (which is similar to A in structure) equals A,
then we call it a world view of the original program. Thus, the ultimate decision
follows a sort of fixed point construction.

Since Gelfond’s first version [8], several semantics proposals have been sug-
gested for ES. The majority are reduct-based world view semantics: while some
offer a slightly different refinement of the preceding approach [9,11,17–20] in
order to correct unintended results, some others propose significantly different
definitions of reducts and world views [29,30]. There is also another kind of
approach, inspired by the Kripke semantics of modal logics over a more gen-
eral language [5,34]. The rest [4,33,35] are based on an epistemic extension of
equilibrium model approach [26,27]. As [35] embeds Gelfond’s obsolete previous
version [9], it is out of our consideration. [4] contains a refinement of [33], and
[4] is somewhat successful in providing intuitive results. To sum up, the (to a
certain extent) successful approaches of the day are [4,20,29].

In this paper, we propose a novel epistemic extension of ASP called epis-
temic ASP (E-ASP), which has a modest, but neat syntax character, compared



to Gelfond’s ES. However, our language is expressive enough to formulate all
motivating examples of ES. The semantics of this new language is given by epis-
temic views, which are, in structure, similar to world views. The main advantage
of our approach over previous semantics is its simplicity and similarity to answer
set semantics of ASP. Moreover, it performs well both with cyclic and acyclic
programs, giving intuitive results. Especially, it offers a solution to the recent
constraint problem discussed in the literature [3,19].

The paper is organised as follows. The first 3 sections present related work:
Sect. 2 recalls ES and its world view semantics. Section 3 introduces autoepis-
temic equilibrium models as an alternative to world views. Section 4 defines
epistemic negation, with which suggests a new reduct and world view defini-
tion. Section 5 includes the main contribution of this paper, where we intro-
duce E-ASP. We propose epistemic view semantics and compare our results with
those of [4,19,29]. Section 6 recalls epistemic splitting property by Cabalar et al.
Section 7 concludes the paper with future work plan.

2 Epistemic Specifications (ES) and Its World View
Semantics

We here recall the recent versions of Gelfond’s ES, suggested by Kahl et al.
[18–20].

2.1 The Language of ES (LES)

The language LES extends that of ASP [1] by the modalities K (‘known’) and
M (‘may be true’). Literals of LES are divided into four kinds: objective literals
( l), extended objective literals (L), subjective literals ( g) and extended subjective
literals (G).

l L g G

p | ∼p l | not l K l | M l g | not g

where p ranges over a set P of propositional variables2. LES has two negations;
strong negation ∼ and NAF (aka, default negation) not : notϕ is read “ϕ is
false by default”.

A rule is a logical statement of the form ‘head ← body’. In particu-
lar, a rule ρ of ES has the structure ‘l1 or . . . or lm ← e1, . . . , en’ in which
body(ρ) viz. ‘e1, . . . , en’ is made up of arbitrary ES literals whereas head(ρ)
viz. ‘l1 or . . . or lm’ is composed of only objective literals. When m = 0, we sup-
pose head(ρ) to be ⊥ and call the rule ρ a constraint. When n = 0, we suppose
body(ρ) to be ⊤ and call the rule ρ a fact.

2 The use of variables in ES is understood as abbreviations for the collection of their
ground instances. Thus, for simplicity, we restrict here the language LES to the propo-
sitional case.



An epistemic logic program is a finite collection of the rules of ES. Here is
Gelfond’s eligibility program ΠG, motivating us for the need of modal operators
in ASP3:

ΠG =
{

e ← h | e ← f,m | ∼e ← ∼h,∼f |h or f ← | i ← notK e, notK ∼e (1)

in which h stands for highGPA; f for fairGPA; e for eligible; m for minority ; i for
interview. The first three rules of ΠG indicate the college rules to decide eligibility
for scholarship. When we consider these rules with a database, consisting of a
disjunctive information given by the fact ‘h or f ’ for a specific student, note
that NAF alone is not sufficient anymore to formalise the statement “a student
whose eligibility is not determined by the college rules should be interviewed”.
The correct representation is given by using modalities, able to quantify over
belief sets, viz. ‘i ← notK e, notK ∼e’.

2.2 The Semantics of ES

Let A be a non-empty collection of consistent sets of objective literals, and let
A ∈ A. Satisfaction of literals is defined by: for an objective literal l and a
subjective literal g,

A, A |=ES l if l ∈ A; A, A |=ES not l if l /∈ A.
A, A |=ES K l if l ∈ A for every A ∈ A; A, A |=ES not g if A �|=ES g.
A, A |=ES M l if l ∈ A for some A ∈ A;

Note that satisfaction of an objective literal l is independent of A, while satis-
faction of a subjective literal g is independent of A. Thus, we sometimes write
A |=ES g or A |=ES l. Then, satisfaction of an epistemic logic program Π is
defined by: for every rule ρ ∈ Π,

A, A |=ES ρ viz. “A, A |=ES body(ρ) implies A, A |=ES head(ρ)”.

Finally, given an epistemic logic program Π, whether A is a world view of Π is
decided as follows: we first compute the reduct ΠA = {ρA : ρ ∈ Π} of Π with
respect to A, in which we eliminate K and M according to Table 1. Then, A is
a world view of Π (w.r.t. [18]) if A = AS(ΠA) where AS(ΠA) denotes the set of
all answer sets of ΠA.

For example, the only world view of ΠG (see (1)) is
{
{h, e, i}, {f, i}

}
. Table 2

contains more examples with focus on disjunctive information, among which the
ones emphasising the necessity for a refinement of Gelfond’s versions [8,9,11] are
given in bold.

Then, Kahl extended his version [18] to allow for expressions, formed from
objective literals being preceded by a sequence of not’s and a modal operator
(K or M). Major forms of such expressions are included in Tables 3, 4 and 5,
together with the equivalence relations they are involved in.

3 We use ‘|’ (a bit informally) to separate the rules of a program in this paper.



Table 1. Kahl’s definition of reduct

Table 2. Epistemic logic programs and their world views

Table 3. Equivalence relations of multiply negated literals by NAF

Table 4. Equivalence relations of extended subjective literals

Table 5. Equivalences with modal operators and double not



Soon after, [4] pointed at another program, Π =
{
p ← M q, not q | q ←

M p, not p giving unintended world views under Kahl’s refined version. Indeed,
[18] proposes two world views {∅} and

{
{p}, {q}

}
, of which the former seems to

be unintended. Following this example, Kahl et al. [20] came up with another
update to address the issue, with semantics supporting only the latter: inspired
by [29] (see Sect. 4), they first define

Ep(Π) = {G : G = notK L for some extended objective literal L and G

appears in Π}.

Note that the set Ep(Π) checks all extended subjective literals occur-
ring in Π and by using the equivalences between notnotK p and K p,
as well as notKnotp and M p, picks the forms notK L (for an extended
objective literal L) in their structure. To illustrate this set, consider
the program Γ = {t ← K p,M q, notK r, notM s}. Thus, Ep(Γ ) =
{notK p, notKnotq, notK r, notKnots}. Then, they take the subset ΦA = {G ∈
Ep(Π) : A |=ES G} w.r.t. a candidate model A. Finally, A is a world view of Π
if:

A = AS(ΠA), and there is no A′ such that A′ = AS(ΠA
′

) and ΦA′ ⊃ ΦA.

On the one hand, as mentioned in [3,19], researchers have now discovered
another problem: different from their effect on answer sets in ASP4, in ES insert-
ing a constraint into a program may now bring out completely new world views.
The reason is because here constraints show their effect on its belief sets rather
than a world view as a whole. So, not only Kahl’s all versions, but also [4,29]
suffer from new counterintuitive results produced over acyclic programs while
they are trying to obtain the intuitive understanding of the behaviour of cycles.
Interestingly, only in Gelfond’s first version [8,9], and its generalisation [34] by
Truszczyński, constraints function to rule out world views, violating that con-
straint (as desired). To sum up, as a negative outcome of added complexity, the
recent semantics approaches seem to have lost this property. On the other hand,
as argued in [29], Kahl’s reduct definition offers a complex program transforma-
tion, lacking an intuitive explanation for the replacement of subjective literals.

Let us terminate our discussion with two examples: Π1 =
{
p ← K p | p ←

notK p and Π2 =
{
p ← M p | p ← notM p. As Kahl obtains no world view for

Π1, he gets a unique world view
{
{p}

}
for Π2. However, the body parts of these

programs produce a tautology (see the equivalence relations given in Table 5), so
it is strange to see two different solutions according to his semantics approach,
but not

{
{p}

}
only for both.

4 In ASP, constraints show their effect on programs by eliminating or keeping their
answer sets.



3 Fariñas et al.’s Approach: Autoepistemic Equilibrium
Models

In 2015, Fariñas et al. [4] proposed the autoepistemic equilibrium models
(AEEMs) approach as an alternative semantics for ES. This section briefly recalls
their approach.

3.1 Epistemic Here-and-There Logic (EHT) and Its Equilibrium
Models

EHT extends the logic of here-and-there (HT) [15] by (nondual) epistemic modal

operators K and K̂, of which K is the same as K in ES, but [4] never explains the

meaning and reading of K̂. Note that as shown later via an example, the modal
operator M in ES is translated to ¬K¬ in EHT. An EHT model is a collection
of HT models. It can also be described as a refinement of S5 models (sets of
valuations) [2] in which valuations are replaced by HT models. Formally, an
EHT model is an ordered pair 〈T , �〉 in which

– T ⊆ 2P is a nonempty set of valuations (i.e., a classical S5 model);
– � : T → 2P is a map, assigning to each there-world T ∈ T a here-world

�(T ) ⊆ T .

Epistemic equilibrium models (EEMs) of a formula ϕ ∈ LEHT are then defined
as particular S5 models satisfying a minimality condition [4] (similar to that of
[27])5:

EEM(ϕ) =
{

T ⊆ 2P : T ,T |=S5 ϕ and there is no h �= id such that 〈T , �〉,T |=EHT ϕ
}

.

A typical ES program Π is translated into an EHT theory Π∗ via a map (.)∗

as in:

Π =
{

p or∼q ← M r, not s | q ← notK p

Π∗ =
(
(¬K ¬r ∧ ¬s) → (p ∨ q̃)

)
∧

(
¬K p → q

)
∧ ¬

(
q ∧ q̃

)
.

The EEM approach fails to give intuitive results, especially in the presence of
disjunction. Gelfond’s example ΠG (see (1)) immediately supports this fact (see
Table 6 for more examples): ΠG has a unique world view

{
{h, e, i}, {f, i}

}
, but

Π∗
G has three EEMs: T1 =

{
{h, e, i}, {f, i}

}
, T2 =

{
{h, e}

}
and T3 =

{
{f, i}

}
,

among which T2 is unintended. To overcome this problem, [4] uses a selection
process over EEMs and proposes autoepistemic equilibrium models (AEEMs)6.

5 For the truth conditions of EHT, you can refer to [4].
6 However, as in Kahl’s approach, adding a constraint into a program may also

give here unexpected results. For instance, take the eligibility program ΠG and
a constraint ← i. Then, the resulting EHT theory Π∗

G ∪ {¬i} has a unique AEEM
T2 =

{

{h, e}
}

, instead of having no AEEM.



The AEEM approach can handle a more general language, but its way of choos-
ing intuitive models is highly complex: the AEEM semantics depends on two
orderings, set inclusion ⊆ and a preference ordering ≤ϕ, which function simul-
taneously. So, it is possible in principle that two EEMs can eliminate each
other w.r.t. their different orderings. To spell it out, it could happen that
T1 ⊂ T2, but also T2 <ϕ T1 for T1,T2 ∈ EEM(ϕ). For instance, let ϕ =
p∨ r ∨K (p∨ q). Then, EEM(ϕ) =

{{
{p}

}
,
{
{r}

}
,
{
{q}

}
,
{
{p}, {q}

}
,
{
{p}, {r}

}}
,

among which there are two satisfying the condition above:
{
{p}, {q}

}
<ϕ

{
{p}

}

and
{
{p}

}
⊂

{
{p}, {q}

}
. Fortunately, in this case, AEEM(ϕ) =

{{
{p}, {r}

}}
since{

{p}
}

⊂
{
{p}, {r}

}
and

{
{p}, {q}

}
<ϕ

{
{p}, {r}

}
. One immediate question is

if
{
{p}, {q}

}
is indeed unintended. Briefly, this approach may be suffering from

such a clash in the selection process although none has been found so far.

4 Shen and Eiter’s Approach: Epistemic Negation

In 2016, Shen et al. [29,30] proposed a new semantics for ES. The idea is to use
notK (which they call epistemic negation) to minimise knowledge in the set of
all belief sets. Given an epistemic logic program Π and a nonempty collection
A ⊆ 2P of consistent sets of objective literals, let Ep(Π) (see Sect. 2.2) be the
set of all epistemic negations appearing in Π, and let Φ ⊆ Ep(Π) be its subset
(which they call a guess). Let ΦA = {G ∈ Ep(Π) : A |= G} be the set
of all epistemic negations in Π, satisfied by A. Then, we transform Π into an
epistemic reduct ΠΦ w.r.t. Φ by replacing every notK L ∈ Φ with ⊤ and every
notK L ∈ Ep(Π) \ Φ with notL. Finally, A is a world view of Π if

1. A = AS(ΠΦ) = {A : A is an answer set of ΠΦ};
2. ΦA agrees with Φ, i.e., ΦA = Φ;
3. Φ is maximal, i.e., there is no bigger guess Φ′ ⊃ Φ such that A′ = AS(ΠΦ′

)
and ΦA′ = Φ′ for some nonempty collection A′ of consistent sets of objective
literals.

Let us illustrate their approach by an important application and motivation of
ES: Closed Wold Assumption (CWA), which says that “p is assumed to be false
if there is no evidence to the contrary” and is expressed in ASP by ∼p ← notp7.
However, it is formalised more adequately in ES as ∼p ← notM p by [12] or ∼p ←
notK p by [29]. For instance, let Π =

{
p̃ ← notK p | ⊥ ← p, p̃. Then, take the

guess Φ = {notK p}. Thus, ΠΦ =
{
p̃ ← ⊤ | ⊥ ← p, p̃. Clearly, AS(ΠΦ) = {{p̃}}

and {{p̃}} |=ES Φ. Since Φ is the maximal guess possible (see item 3 above),
{{p̃}} is the unique world view of Π.

7 However, this formalisation was then discovered to cause problems [12]. Consider
Π =

{

p or q | ∼p ← notp. Then, AS(Π) =
{

{p}, {q, ∼p}
}

, and it answers the query
∼p? unknown (as it does not appear in both answer sets) while p is undetermined.
This result is unintended.



5 Our Approach: Epistemic ASP (E-ASP) and Its
Epistemic Views

This section introduces an epistemic extension of ASP called epistemic ASP. We
begin with a discussion on our motivation and the main differences with other
approaches.

5.1 Motivation and Novelty

The problem of incomplete information in ASP still matters after more than
two decades of research on the subject. Despite their successes, the approaches
[4,20,29] are not fully satisfactory, and some of their seemingly intuitive results
are still under discussion.

Compared to Kahl’s language [18], we introduce a simpler language. We
propose a modest syntax character, allowing only one epistemic operator K.
However, different from ES, K may also appear in the head of a rule. We find our
language strong enough to solve the problem of incomplete information in ASP

because most of the critical examples in the literature, including Gelfond’s ΠG

(1) and the new formalisation of CWA, use notK only to solve the quantification
problem. Note that Kahl and others use also M as dual of K . Besides, we more
naturally extend the syntax of ASP through the same structure of program rules,
allowing not to appear only in front of literals. Note that Kahl and others use
it in a literal formation as notK , notKnot , Knot etc.

The semantics of the new language is via an epistemic view, which is a
straightforward generalisation of the answer set notion in ASP. Different from
world view semantics, our semantics approach exploits a two-fold computation
procedure, by splitting the program into two levels: we first look for if the can-
didate model, which is involved in the reduction process, is a maximal minimal
model of the first level. Our reduct definition is oriented to eliminate NAF in a
similar way with that of ASP. Existing reduct definitions simplify the program
by removing subjective literals in the form of Kl, Ml, notKl and notMl (but,
not ‘notl’) for an objective literal l. So, our reduct is always a positive program
containing no NAF in it. The minimality condition is understood in the sense of
set inclusion. It is given by checking the minimality of each set making up the
(biggest possible) collection. This is similar to the method, searching for answer
sets. Second, we check if such minimal models of the first level are compatible
with the second level, composed of only the constraints of the main program.
So, we aim to solve the recent constraint problem discussed in Sect. 2.2. We find
the semantics approaches of [18,29] a bit nonstandard: first, is it a right attitude
to eliminate the “positive” constructs in the form of K l and M l especially while
world views of ES are given as kind of S5 models? Second, why do we force each
valuation in such S5 models to be an answer set of the resulting program? In ES,
we ask the query to the collection as a whole rather than its elements separately.
At least, there is something going wrong in these approaches as always a new
unintended model is being discovered, and then the reduction definitions have
to be changed. To end with, our semantics approach can also be more smoothly



adapted to E-ASP programs with NAF in the head [16] and to E-ASP programs
with nested expressions [23], also including subjective literal K l.

5.2 The Language of Epistemic ASP (LE-ASP)

Literals (λ) of LE-ASP are of two types: objective literals ( l) and subjective literals
( g).

l g

p | ∼p K p | K ∼p

in which p ∈ P, and ∼ denotes strong negation. K l is read “l is known”. Different
from ES, we do not allow NAF to appear in a literal formation. However, NAF
can precede any literal λ in the body of a rule, and notλ means that: there is no
evidence for λ, and so, the query λ? is undetermined. Again, different from ES,
we allow K l to appear in the head of a rule. Thus, an E-ASP program is defined
as a finite collection of rules

λ1 or . . . orλk ← λk+1, . . . , λm, notλm+1, . . . , notλn

in which λi’s are arbitrary (objective or subjective) literals. When we restrict λi’s
to objective literals, the resulting program is a disjunctive logic program [14].
Hence, E-ASP rules are conservative extensions of ASP’s disjunctive rules. As we
follow the same structure, extensions to richer languages are straightforward via
the main ASP track.

5.3 The Semantics of Epistemic ASP

The semantics of E-ASP is given by an epistemic view. Similar to a world view,
it is a nonempty collection of consistent sets of objective literals. What we sub-
stantially differ is how we pick such intuitive models from among all models
of an epistemic program. Let Π be an E-ASP program. We first split Π into
two disjoint parts. The set of all constraints rc ∈ Π constitutes the upper layer
(‘top’), symbolised by Π. This is the part of the program where we decide the
ultimate epistemic views of Π through the process: refute, accept or reorganise.
The rest, i.e., the set Π \Π forms the lower layer (‘bottom’), where we determine
the collections of possible belief sets. We denote it by Π.

Example 1. Given a program

Σ =
{

p ← not∼q | ∼q ← not p | r ← notK p | ← not r (2)

we have Σ =
{
p ← not∼q | ∼q ← not p | r ← notK p and Σ =

{
← not r.

We start by computing the epistemic views of Π, each of which are then involved
in an evaluation process carried out in Π. However, if Π = ∅, then EV(Π) =
EV(Π), where EV(Π) denotes the set of all epistemic views of Π. In this case, the



epistemic view of the program is either {∅} or none. For instance, EV({← p}) ={
{∅}

}
. Recall that ←p has a unique answer set, namely ∅. If EV(Π) = ∅, then

EV(Π) = ∅. When Π = ∅, EV(Π) = EV(Π).
Our reduct based semantics is oriented to eliminate only NAF as in ASP.

Remember that NAF appears as part of a construct notλ in an E-ASP program
in which λ is an arbitrary literal. We here follow a “guess-and-check” method:
let A be a nonempty collection of consistent sets of objective literals, and let
A ∈ A. Then, 〈A, A〉 is a sort of pointed (3-valued) S5 model with A being the
actual world. In an explicit representation, we simply underline the actual world
A in a collection A. The partial valuation of A assigns true to p if p ∈ A and
false if ∼p ∈ A (undefined otherwise). The reduct Π〈A,A〉 of Π w.r.t. 〈A, A〉 is
given by replacing every occurrence of notλ with8

R.1 ⊥ ifA, A |=E-ASP λ (simply, for λ= l if A |=E-ASP l; for λ=K l ifA |=E-ASP K l);
R.2 ⊤ ifA, A �|=E-ASP λ (simply, for λ = l if A�|=E-ASP l; for λ=K l ifA�|=E-ASPK l).

Example 2. Given a pointed model
{
{p}, {∼q}

}
, consider (2) above. Then,

Σ{{p},{∼q}} =
{
p ← ⊤ | ∼q ← ⊥ | r ← ⊤ since {p} �|=E-ASP ∼q, {p} |=E-ASP p and

{{p}, {∼q}} �|=E-ASP K p. Now, we replace notK p by K p and notr by notK r in Σ
and call the resulting program Γ :

Γ =
{

p ← not∼q | ∼q ← not p | r ← K p | ← notK r. (3)

Then, Γ {{p},{∼q}} =
{
p ← ⊥ | ∼q ← ⊤ | r ← K p since {∼q} |=E-ASP ∼q, but

{∼q} �|=E-ASP p.

Thus, our reduct definition simplifies a program, removing only NAF w.r.t. R.1
and R.2.

First of all, we introduce a truth-minimality criterion, based on set inclusion
over each set A making up a collection A: let O-Lit be the set of all objective
literals of LE-ASP, and let s : A → 2O-Lit be a (subset) map such that s(A) ⊆ A
for every A ∈ A. (When s equals the identity map id, we obtain A itself.) Then,
a weakening of A at a point A ∈ A is identified with 〈s[A], s(A)〉 such that
s �= id and s|

A\{A} = id, by which we take a strict subset of A ∈ A and do

not modify the rest. We say that 〈s[A], s(A)〉 is weaker than 〈A, A〉 and denote
it by 〈s[A], s(A)〉 ✁ 〈A, A〉. For example, the weakenings of {{p,∼q}, {r}} are
{{p}, {r}}, {{∼q}, {r}} and {∅, {r}}. Finally, we define a nonmonotonic satis-
faction relation |=∗ for pointed (three-valued) S5 models: A, A |=∗ Π if and
only if

A, A |=E-ASP Π and s[A], s(A) �|=E-ASP Π for every s viz. 〈s[A], s(A)〉 ✁ 〈A, A〉

where the latter condition says that none of the weakenings of 〈A, A〉 is a model
of Π.

8 The satisfaction relation |=E-ASP of E-ASP is the same as the relation |=ES (see
Sect. 2.2).



Definition 1. Let A ⊆ 2O-Lit be a nonempty set of consistent sets of objective
literals. Then, A is a minimal model of Π if A, A |=∗ Π〈A,A〉 for every A ∈ A.

Example 3. {{p}, {∼q}} is a minimal model of Γ (3): Γ {{p},{∼q}} =
{
p ← | r ←

K p and {{p}, {∼q}} |=E-ASP Γ {{p},{∼q}} while its weakening {∅, {∼q}} refutes it.

Likewise, Γ {{p},{∼q}} =
{
∼q ← | r ← K p and {{p}, {∼q}} |=E-ASP Γ {{p},{∼q}}

while its only weakening {{p}, ∅} does not satisfy it. Clearly, {{p, r}} and {{∼q}}
are the other minimal models of Γ . Similarly, {{p, r}, {∼q, r}} is a minimal

model of Σ (2): indeed, Σ{{p,r},{∼q,r}} =
{
p ← | r ← and it is obvious

that {{p, r}, {∼q, r}} satisfies it while all its weakenings refute it. We also have

Σ{{p,r},{∼q,r}} =
{
∼q ← | r ← and {{p, r}{∼q, r}} |=E-ASP Σ{{p,r},{∼q,r}}

while any of its weakenings violates it. The other two minimal models of Σ are
{{∼q, r}} and {{p}}. In each program, the last two minimal models (i.e., the
singleton models9) are unintended.

As seen above, minimality of truth does not always guarantee intuitive
results. Therefore, we will now introduce a criterion to choose intended mod-
els among all such minimal models. Given an E-ASP program Π, we first define
a Π-indexed partial preorder (denoted by �Π) over three-valued S5 models by:
A �Π A

′ if and only if

A ∪A′, A |=E-ASP Π for all A∈A implies A ∪A′, A′ |=E-ASP Π for all A′ ∈ A′.
(4)

The strict version of �Π is given as usual: A ≺Π A
′ iff A �Π A

′ and A′ ��Π A.
If A �Π A

′ and A′ �Π A, then A is equivalent to A′ w.r.t. �Π (denoted by
A ≈Π A

′).

Example 4. The program Υ =
{
p or q | p ← notK q has two minimal mod-

els: {{p}} and {{q}}, among which {{q}}≺Υ {{p}} since {{p}, {q}} |=E-ASP Υ , but
{{p}, {q}} �|=E-ASP Υ .

Definition 2. A ⊆ 2O-Lit is an epistemic view of a “constraint-free” program
Π if

1. A is a minimal model of Π;
2. there is no minimal model A′ of Π such that A ≺Π A

′;

9 Singleton minimal models of a program Π are sometimes source of a problem in
capturing intuitive results: for a singleton set, Kp and p are of no difference, as well
as notKp and notp. Thus, an E-ASP program performs like an ASP program, and
we may obtain “unjustified” minimal models. For instance, in Σ, if we replace notK

with not, the resulting ASP program has the answer sets {p} and {∼q, r}. Note
that {{p}} and {{∼q, r}} are minimal models of Σ. We get a similar result if we
change K p with p in Γ . Thus, singleton sets do not allow us to quantify over all
possible beliefs. In order to overcome this obstacle, we need to check the behaviour
of singletons in an interplay with other minimal models by using an ordering.



Example 4, cont. Thus, EV(Υ ) =
{
{{p}}

}
. Let Λ =

{
p ← not q | q ← notK p.

Clearly, {{p}} and {{q}} are the only minimal models of Λ. Recall that for
singletons, Λ behaves as an ASP program Λ′ =

{
p ← notq | q ← notp and Λ′ has

2 answer sets {p} and {q}. So, again we cannot quantify over all beliefs. Indeed,
{{p}, {q}} �|=E-ASP Λ, but {{p}, {q}} |=E-ASP Λ. Thus, we have {{p}} ≺Λ {{q}}.

Consequently, EV(Λ) =
{
{{q}}

}
.

Example 5. We have seen that Σ (2) and Γ (3) have 3 minimal models.
Among these, we have the order, {{p}} ≺Σ {{∼q, r}} ≈Σ {{p, r}, {∼q, r}} and
{{∼q}} ≈Γ {{p, r}} ≈Γ {{p}, {∼q}}. So, the ordering �Π is not strong enough
to rule out all unintended models. When this is the case, we need to apply a
third condition to compare equivalent models w.r.t. �Π .

We now introduce a knowledge-minimising condition: Let L(.) represent the
set of objective literals occurring in any syntactic construct (head, body, etc). We
first consider the set HΠ =

⋃
r∈Π L(head(r)) of all objective literals occurring

in the head parts of a program Π. For example, HΣ = HΣ = HΓ = HΓ =
{p,∼q, r} (see (2) and (3)). Note that belief sets A’s of an epistemic view A of
Π can only contain literals from HΠ

10. Inspired by [29] (but, in a different way),
we define the set of all unknowns among the literals in HΠ w.r.t. A and denote
it by ΦΠ

A = {l ∈ HΠ : A |=E-ASP notK l}.

Definition 2, cont.

3. ΦΠ
A is maximal, i.e., there is no minimal model A′ of Π such that ΦΠ

A ⊂ ΦΠ
A′ .

Intuitively, item 3 means A to answer maximum possible head-literals undeter-
mined.

Example 5, cont. If we reconsider the above �Σ-equivalent and �Γ -equivalent

minimal models, then we see that {p,∼q} = Φ
Σ

{{p,r},{∼q,r}} ⊃ Φ
Σ

{{∼q,r}} = {p}.

As a result, EV(Σ) =
{
{{p, r}, {∼q, r}}

}
. Similarly, Φ

Γ

{{p},{∼q}} = {p,∼q, r},

Φ
Γ

{{∼q}} = {p, r} and Φ
Γ

{{p,r}} = {∼q}. Then, we have: Φ
Γ

{{p},{∼q}} ⊃ Φ
Γ

{{∼q}} and

Φ
Γ

{{p},{∼q}} ⊃ Φ
Γ

{{p,r}}. Thus, EV(Γ ) =
{
{{p}, {∼q}}

}
.

Remark 1. Note that there is also an order between the orders of item 2 and
item 3: we only use item 3 over minimal models of Π that are maximal, but
equivalent w.r.t. �Π .

Example 6. We now consider Gelfond’s program ΠG (1): ΠG has 3 minimal
models, namelyA1 = {{f, i}},A2 = {{h, e}} andA3 = {{f, i}, {h, e, i}}, among
whichA2≺ΠA3≈ΠA1. Thus, we need to check the unknowns ofA3 andA1. Since
{e,∼e, h, f} = ΦΠG

A3
⊃ ΦΠG

A1
= {e,∼e, h}, we have EV(ΠG) =

{
A3

}
. However,

we may not always compare maximal �Π-equivalent minimal models: let Ω ={
p ← notK q | q ← notK p. Ω has two minimal models {{p}} and {{q}} such that

10 Fact [in ASP]: if A ∈ AS(Π), then every l ∈ A belongs to the head of one of the rules
in Π.



{{p}} ≈Ω {{q}} since {{p}, {q}} �|=E-ASP Ω and {{p}, {q}} �|=E-ASP Ω. Moreover,

ΦΩ
{{p}} = {q} and ΦΩ

{{q}} = {p}. As a result, EV(Ω) =
{
{{p}}, {{q}}

}
.

When a program Π contains constraints, i.e, Π �= ∅, we first compute EV(Π)
as explained above. Then, we evaluate each A ∈ EV(Π) w.r.t. their behaviour on
Π: take ϕ =

∨
rc∈Π body(rc). For every A ∈ A, if A, A �|=E-ASP ϕ, then we accept

A and call it Aaccept; else if A, A |=E-ASP ϕ, then we eliminate A and call it
Arefute. Finally, we reorganise the rest in such a way that we take the biggest
possible subset Anew ⊆ A such that Anew is still a minimal model of Π and
Anew, A �|=E-ASP ϕ, for every A ∈ Anew. As a result, EV(Π) is the collection of
all Aaccept’s and Anew’s. Note that when Π exclusively contains the constraints
composed of only (negated) subjective literals, we either refute or accept the
epistemic views of Π.

Example 5, cont. We have seen that EV(Σ) =
{
{{p, r}, {∼q, r}}

}
and EV(Γ ) ={

{{p}, {∼q}}
}
. As {{p}, {∼q}} violates ←notKr, it fails to be the epis-

temic view of the program Γ (refute!). Hence, EV(Γ ) = ∅. However, as
{{p, r}, {∼q, r}} |=E-ASP r, it satisfies ←notr, and so, it passes the test (accept !).
Thus, EV(Σ) =

{
{{p, r}, {∼q, r}}

}
.

Example 7. Let ∆ =
{
p or q ← | r or s ← notKp | ← r. It is easy to see that

EV(∆) =
{
{{p, r}, {q, r}, {p, s}, {q, s}}

}
.

Then, since {{p, r}, {q, r}, {p, s}, {q, s}} |=E-ASP r, we have to remove the actual
worlds {p, r} and {q, r}, resulting in a new collection {{p, s}, {q, s}} (reorgan-
ise!). As a result, EV(∆) =

{
{{p, s}, {q, s}}

}
. However, while EV(∆ ∪ {←Ks}) =

EV(∆), EV(∆ ∪ {←Ks}) = ∅.

Example 8. Let Ψ1 = {←Kp, notq} and Ψ2 = {←notKp} be the one-rule (con-
straint) E-ASP programs. As mentioned above, the only candidate epistemic
view is {∅} for Ψ1 and Ψ2. Since {∅} �|=E-ASP q and {∅} �|=E-ASP K p, we have

Ψ
{∅}
1 = {←Kp,⊤} and Ψ

{∅}
2 = {←⊤}. Clearly, EV(Ψ1) =

{
{∅}

}
and EV(Ψ2) = ∅.

5.4 Comparison of Epistemic Views with World Views and AEEMs

We here compare epistemic views with world views and AEEMs over some
examples. Table 6 illustrates all these approaches. Overall, epistemic views of
an E-ASP program perform well, aligning with its world views and AEEMs.
However, one striking advantage of our method over existing semantics is its
reasonable behaviour with programs including constraints: we have seen that
EV(Γ ) =

{
{{p}, {∼q}}

}
and EV(Γ ) = ∅. However, while Γ has a unique world

view (AEEM) {{p}, {∼q}}, when we add a constraint ← notKr into Γ , the
resulting program Γ has another world view (AEEM) {{p, r}}, violating the
above property (see the last two examples of Table 6 as well).

To end with, Shen et al. [29] discuss that Pearce’s equilibrium semantics
suffers from circular justifications and relatedly claim that [4] inherits the same



Table 6. World views by both [20] and [29], AEEMs (bold), and epistemic views
(bold)

circularity, leading to some undesired results. One supporting example is Π ={
p ← notKp | p ← p. [29] argues that Π has no AEEMs, but in fact,

{
{p}

}
is

expected to be its unique world view since notKp ∨ p constitutes a tautology.
However, for {{p}}, this formula is of no difference than notp ∨ p and it is hard
to believe that the latter is a tautology. Our approach agrees with [4]: since
{{p}} �|=E-ASP notK p, we have Π{{p}} =

{
p ← ⊥ | p ← p. Clearly, {∅} is the

unique minimal model of Π{{p}}. Thus, EV(Π) = ∅. Moreover, the first rule of
Π intuitively says that if there is no evidence for Kp, then p is always true,
so as already agreed by most of the approaches in the literature, this rule does



not have a world view in ES. The second rule is just a tautology, giving no
information. Under these conditions, Π cannot have a world view in ES.

6 Splitting Epistemic Logic Programs

Cabalar et al. [3] have recently established a formal property called epistemic
splitting, with which they test if a semantics proposal of ES has a reasonable
behaviour when subjective literals are stratified. The idea is to separate a pro-
gram Π into two disjoint subprograms (if possible), top and bottom, among which
top questions bottom via its subjective literals, and bottom never refers to head
literals of top. If splitting is the case w.r.t. a set of literals U , then we calculate
world views of Π in four steps: first we compute the world views Ab of bottom;
second for each Ab, we take kind of partial reduct ΠAb

U by replacing subjective
literals (whose literals are included in U) of top with their truth values in Ab;
third we find the world views At of ΠAb

U , and end with a solution 〈Ab,At〉 for
Π; finally we concatenate the elements of Ab and At, and result in new world
views Ab ⊔ At = {Ab ∪ At : Ab ∈ Ab and At ∈ At}, answering the queried
information.

All proposed semantics trials in the literature fail to satisfy this candidate
property, but Gelfond’s first version [8], which suffers most, among others, the
counterintuitive behaviour of cyclic programs. (Recall that [8] computes two
world views

{
∅
}

and
{
{p}

}
for both p ← Kp and p ← Mp. For the former rule,

while
{
{p}

}
is counterintuitive, for the latter,

{
∅
}

is counterintuitive, which has
been justified by almost all semantics proposals in the literature.) The other
semantics that passes epistemic splitting test is Truszczyński’s approach [34].
(Remember that [34] produces a world view

{
∅
}

for the program p ← p, notp,
which departs it even from ASP.) Our approach is also compatible with epis-
temic splitting property because first, in a splittable program we can always
put all (and only) constraints composed of just (negated) subjective literals into
topmost layer since they are headless, and they do not contain objective literal
conjuncts, and the rest of the constraints will appear in the below layers; second,
we can compute the epistemic views of the lower layers as defined in Sect. 2.2
by dividing each layer into two parts where constraints are located at the top;
finally, we evaluate the final epistemic views according to the truth values of
topmost subjective literals conjuncts in the candidate world view by keeping or
eliminating candidate epistemic views.

Example 9. We can split Γ (see (3)) into 3 layers: L0 =
{
p ← not∼q | ∼q ←

notp, L1 =
{
r ← Kp and L2 =

{
← notKr. Then, EV(L0) =

{
{{p}, {∼q}}

}

and EV(L
{{p},{∼q}}
1 ) = EV(r ← ⊥) =

{
{∅}

}
. Next, EV(L0∪L1) =

{
{{p}, {∼q}}

}
.

Finally, since EV(L
{{p},{∼q}}
2 ) = EV(← ⊤) = ∅, we have EV(Γ ) = ∅.

7 Conclusion

In this paper, we propose a neat and more standard epistemic extension of ASP

(E-ASP). E-ASP is a strong rival to existing approaches in the sense that: we



introduce a simpler and more intuitive semantics, which will be better suited for
knowledge representation, and the design of intelligent agents. The new reduct
definition, which is similar to that of ASP, will hopefully lead to an efficient
implementation of an E-ASP program solver, allowing the new language to be
of more practical use. We will search first if ASP technology can be exploited to
compute epistemic views. E-ASP provides a solid framework for further language
extensions of ASP. Therefore, we also plan to adapt previous language extensions
of ASP to E-ASP. Finally, we would like to propose a new epistemic extension of
equilibrium logic, embedding E-ASP as well.
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