
HAL Id: hal-02421492
https://hal.science/hal-02421492v1

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The CAPH Language, Ten Years After
Jocelyn Sérot, François Berry

To cite this version:
Jocelyn Sérot, François Berry. The CAPH Language, Ten Years After. Embedded Computer Systems:
Architectures, Modeling and Simulation (19th International Conference, SAMOS 2019), pp.336-347,
2019, �10.1007/978-3-030-27562-4_24�. �hal-02421492�

https://hal.science/hal-02421492v1
https://hal.archives-ouvertes.fr

The CAPH language, ten years after.
What did we do wrong ?

Jocelyn Sérot1, Francois Berry1

Institut Pascal, UMR 6602 Université Clermont Auvergne/CNRS/SIGMA
{jocelyn.serot,francois.berry}@uca.fr

Abstract. This paper is a critical self-assessment of the CAPH dataflow-
based programming language. We try to identify some design mistakes
which could explain why the language and its associated toolset, despite
some very innovative features, never received a wide acceptance.

1 Introduction

CAPH [1, 2] is a dataflow-based, domain-specific language for describing, sim-
ulating and implementing stream-processing applications. Applications are de-
scribed as networks of purely dataflow actors exchanging tokens through unidi-
rectional channels. From this description, the CAPH compiler can, as illustrated
in Fig. 1 :

– simulate the behavior of the application,
– generate a software implementation in SystemC,
– generate an hardware implementation in VHDL, ready to be synthetized on

a FPGA circuit.

The development of the CAPH language and associated toolset started in
2008. The initial motivations were very pragmatical1. Our research team had
started to develop FPGA-based cameras for embedded vision applications and
we immediately agreed on the fact that having to use RT-level languages, such
as VHDL or Verilog, to program these devices would significantly hinder their
usage, esp. by “software” programmers with no specific skills in hardware design.
High-Level Synthesis was only emerging at this period and available tools were
either too expensive or produced inefficient or platform-specific code. Our target
applications, however, shared a particular feature : they had to operate “on the
fly” on digital video streams coming directly from sensors and were limited to
low level image processing. For this kind of application, the dataflow model of
computation offers a very elegant solution to the synthesis problem, because
it can be used both as a programming and an implementation model : actors
can be described as finite state automata and channels as FIFOs, which can
both be implemented directly and efficiently in hardware, without the need for
a global control mechanism. The development of the CAPH language therefore

1 For a detailed account on the origins of the CAPH project, see [4].

2 J. Sérot

Source

Code

Front-end (Parsing,

 type checking)

Abstract

Syntax Tree

Elaboration

SystemC

Back-end

VHDL

Back-end

.cpp, .h .vhd

C++ Compiler

executable

Synthesis

Bit Stream

Intermediate

Representation

B
ac

k
 A

n
n

o
ta

ti
o

n
s

(F
if

o
 s

iz
e)

FPGA

Graph

Visualizer

Reference

interpreter

 Compiler

Fig. 1. The CAPH design flow

started with the very simple goal of allowing applications to be described as
dataflow graphs in which the behavior of actors could be reduced to some kind
of automaton. Compared to other similar projects2, the two main distinctive
characteristics were

– the possibility to systematically derive hardware implementations (by means
of RTL transcription of actor behavior),

– the choice of a purely functional formalism for describing the structure of
the dataflow networks.

Other features were added to the language latter with the general idea of
increasing the expressivity of the language3. But, and contrary to what we ex-
pected, these additions did not help in increasing the audience of the language.
In fact, a survey showed that most of users were only relying on the core, “his-
torical”, possibilities of the language, ignoring these extra features.

In this paper, we describe, in Sec. 3, two of these features and propose ex-
planations for their non-adoption. In Sec. 4, we try to identify more general
reasons why the language did not gain a wide acceptance, with the hope that
the drawn conclusions can help language designers in the context of dataflow-
based design. In order to be as self-contained as possible, the paper starts by a
short presentation of the CAPH language in Sec. 2.

2 The CAL language, for instance.
3 Up to very recently. The latest version (2.9.0) was released in November 2018.

The CAPH language, ten years after. What did we do wrong ? 3

2 CAPH in a nutshell

The CAPH language is built from two layers : an actor description language
(ADL) for describing the behavior of dataflow actors and a network description
language (NDL) for describing the structure of dataflow networks. The ADL
describes the behavior of individual actors as a set of transition rules involving
pattern matching on input values and local variables. The NDL is a small, purely
functional, polymorphic and higher-order language in which graphs are described
by applying actors, interpreted as functions, to values representing wires.

A very simple CAPH program and its corresponding dataflow graph repre-
sentation is given in Fig. 2. The application is a very simple 1 × 3 FIR filter4.
The filter coefficients are defined as a global array constant line 1. The program
uses two actors. The d actor, defined lines 3–6, is a delay. Given a stream of
token x0, x1, . . ., it produces the stream 0, x0, x1, The behavior of this actor
is described using a internal variable z and a single activation rule, saying that
whenever the actor reads a token carrying a value x on its input a, it writes the
value of the internal variable z on its output c and replaces this value by x. The
madd actor, defined lines 8–12 describes a multiply-accumulate operation. Given
a pair of tokens x and s, it produces the token s + x × c, where c is given here
as a (static) parameter. Lines 14–16 describes the global inputs and outputs of
the program. In this version of the program, used for simulation, both input and
output streams are read (resp. written) to files5. The input port z produces a
stream of 0’s. The dataflow graph (DFG) describing the filter itself is defined
lines 18–22. The d actor is instanciated twice, producing respectively the one
and two sample(s) delayed streams x1 and x2. The madd actor is instanciated
three times, implementing the classical “cascade” describing the filter. Each in-
stance specifies a distinct value both for the parameter c and the actual IOs.
The corresponding DFG is also given in Fig. 2.

3 Extra features

The program in Fig. 2 only uses the so-called “core” features of the language.
In particular

– the involved actors are very simple and operate on basic types (signed, 8-bit
integers),

– the application DFG is described in a low level, explicit manner, by simply
naming intermediate wires.

In the sequel, we describe several reformulations of this program, each in-
troducing a new feature of the CAPH language. In each case, we first try to

4 This program is given only to illustrate some features of the language. It should
not be viewed, in particular, as representative of the complexity of typical CAPH
programs.

5 A version intended for hardware synthesis will bind these inputs to process perform-
ing the physical IOs.

4 J. Sérot� �
1 const c o e f f = [1 , 2 , 1] : s igned<8> array [3] ;
2
3 actor d in (a : s igned<8>) out (c : s igned<8>)
4 var z : s igned<8> = 0
5 rules
6 | a : x −> (c : z , z : x) ;
7
8 actor madd (c : s igned<8>)
9 in (x : s igned<8>, s : s igned<8>)

10 out (y : s igned<8>)
11 rules
12 | (x : x , s : s) −> y : s+x∗c ;
13
14 stream x : s igned<8> from ” sample . txt ” ;
15 port z : s igned<8> in i t 0 ;
16 stream y : s igned<8> to ” r e s u l t . txt ” ;
17
18 net x1 = d x ;
19 net x2 = d x1 ;
20 net y1 = madd (c o e f f [0]) (x , z) ;
21 net y2 = madd (c o e f f [1]) (x1 , y1) ;
22 net y = madd (c o e f f [2]) (x2 , y2) ;� �

y

z

madd(1)

 0

x

d

madd(2)

 y1 x1

d

 x1

madd(1)

 y2 x2

 y

Fig. 2. A simple FIR filter described in CAPH

demonstrate the benefits of the feature and then speculate on the reasons why,
despite this, it has not been adopted.

The reader must keep in mind that most of the explanations are very spec-
ulative because they were drawn from feedback from a very small set of users
(less than a dozen) and from indirect observations6.

3.1 Higher-order functions

A higher-order function (HOF) is a function accepting other functions as argu-
ment. A classical example is the map HOF, which takes a function f , a list of
values (x1, . . . , xn) and returns the list obtained by applying f to each value xi :

map f (x1, . . . , xn) = (f x1, . . . , f xn)

In functional programming languages, HOFs play a key role by allowing
the encapsulation of common, recurring patterns of computation. In the con-
text of network description languages, HOFs naturally map to the concept of
higher-order wiring function (HOWF). For example the program in Fig. 2 can
be rewritten as in Listing. 1.1 (in which all unchanged parts have been denoted

6 For example, if there’s an obvious bug in the implementation of a feature which is
not reported, we know that this feature has not been exercized. . .

The CAPH language, ten years after. What did we do wrong ? 5

as ...). The fir HOWF is defined lines 2–7 as taking an array of coefficients
c, a wiring function7 tap, an input wire x and instanciated as specified line 9
to generates the “cascading” graph pattern shown in Fig. 2. In listing 1.1, the
tap argument passed to the fir function is a single actor (madd). But – and
this is where higher-orderness really shows its power – nothing prevents from
passing a function. Listing 1.2, for example, gives another reformulation of the
program in Fig. 2 in which the single actor madd is replaced by a wiring function
madd, describing a subgraph composed of two distinct actors, mult and add. The
corresponding DFG is given in Fig. 3.

Listing 1.1. A reformulation of the program in Fig. 2 using a higher-order wiring
function� �

1 . . .
2 net f i r c tap x =
3 let x1 = d x in
4 let x2 = d x1 in
5 let y1 = tap (c [0]) (z , x) in
6 let y2 = tap (c [1]) (y1 , x1) in
7 tap (c [2]) (y2 , x2) ;
8
9 net o = f i r c o e f f madd i ;� �

Listing 1.2. Another reformulation of the program in Fig. 2 using the fir higher-order
wiring function defined in Listing 1.1� �

1 . . .
2 actor mult (c : s igned<8>)
3 in (i : s igned<8>) out (o : s igned<8>)
4 rules
5 | i : x −> o : c∗x ;
6
7 actor add in (i 1 : s igned<8>, i 2 : s igned<8>)
8 out (o : s igned<8>)
9 rules

10 | (i 1 : x , i 2 : y) −> o : x+y ;
11
12 net madd c (x , s) = add (s , mult c x) ;
13 . . .
14 net o = f i r c o e f f madd i ;� �

Discussion Despite the fact that they significantly increase the abstraction
level and reusability of programs, HOWF do not seem to have been widely used
by CAPH programmers, at least as a means of defining their own abstractions8.
Here is a list of potential reasons :

7 The reason for using this term is given below.
8 The CAPH standard library provides several pre-defined HOWF.

6 J. Sérot

o

z mult(1)

i

add

d
add

mult(1)

add

mult(2)

d

Fig. 3. The DFG corresponding to the program described in Listing 1.2

. The main usage of higher-order wiring functions is for encapsulating graph
patterns and such patterns are only present in DFGs exhibiting some kind of
regularity. Such regularity simply does not exist or is not worth to be encapsu-
lated for “small” DFGs, containing only a few actors. This might be the case for
the applications which have been developed with the tools.

. Large DFGs, describing applications at a finer grain level, essentially come from
explicitely data-parallel formulations, for which specific solutions have already
proposed to the “node explosion” problem. For example, in Preesm [5], repli-
cation is generally handled at the actor level. The LabView dataflow-oriented
IDE has a builtin factorisation mechanism to replicate actors.

. Higher-order functions ultimately requires a fully polymorphic type system,
which can be disruptive for programmers not familiar with the subtleties of
Hindley-Millner type inference and checking9.

. The CAPH compiler systematically flattens the graph resulting from the in-
stanciation of HOWFs. This is because all functions, including higher-order ones,
are viewed as specification-level entities, not implementation-level ones. As a re-
sult, HOWF cannot be used to describe hierarchical graphs, in the sense used
in the PiMM meta-model for example [6]. Having a direct interpretation of the
former in terms of the latter would probably help for their adoption.

3.2 Algebraic data types

Algebraic data types (ADTs), also called tagged unions, allow values of different
types to be mixed together by tagging them with a distinct label. Taking again
our FIR example, consider the situation in which the data tokens could carry
either real or complex values and that decision of how to process these values
can only be made at runtime. A type for this kind of tokens could be defined
with the following type declaration :� �
type sample =

Real of s igned<8>
| Complex of s igned<8> ∗ s igned<8>� �

9 As a illustration, here’s the type of the fir function given in Listing 1.2 :
∀α, β. α array[β]→ (α→ signed〈8〉 × signed〈8〉 → signed〈8〉)→ signed〈8〉 → signed〈8〉.

The CAPH language, ten years after. What did we do wrong ? 7

This declaration says is that a value with type sample is

– either a real, encoded here as a 8-bit integer,

– or a complex, encoded here as a pair of 8-bit integers.

The associated tag (Real or Complex) is used to distinguish between these two
cases. More generally speaking, the declaration of a variant type lists all possible
“shapes” for values of that type. Each case is identified by a specific tag, called
a value constructor, which serves both for constructing values of the variant
type and inspecting them by pattern-matching. This is illustrated in Listing 1.3,
which is a reformulation of the program in Fig.2 in which the type signed<8>

has been replaced by the type sample defined above (again, all unchanged parts
are denoted as ...). The filter coefficients are here defined (line 1) as an array of
values with type sample10. Both the d and madd actors now consume and produce
values with type sample. The behavior of the madd actor is now described using
four activation rules (lines 10–15). These rules respectively handle the situation
in which both inputs are real, both inputs are complex and one input is real and
the other complex. The actual computation is here supposed to be carried out
by a function madd_f, taking the real and imaginary parts of the arguments and
returning either a real or a complex value11.

Listing 1.3. A reformulation of the program in Fig. 2 using algebraic data types� �
1 const c o e f f = [Complex (1 , 0) , Complex (2 , 1) , Complex (1 , 1)]
2 : sample array [3] ;
3
4 actor d in (a : sample) out (c : sample) . . . ;
5
6 actor madd (c : sample)
7 in (x : sample , s : sample)
8 out (y : sample)
9 rules

10 | (x : Real x , s : Real s) −> y : Real (madd f (s , 0 , x , 0 , c))
11 | (x : Complex (xr , x i) , s : Complex (sr , s i))
12 −> y : Complex (madd f (s r , s i , x r , x i , c))
13 | (x : Complex (xr , x i) , s : Real s)
14 −> y : Complex (madd f (s , 0 , x r , x i , c))
15 | (x : Real x , s : Complex (sr , s i))
16 −> y : Complex (madd f (s r , s i , x , 0 , c) ;
17
18 stream x : sample from ” sample . txt ” ;
19 port z : sample in i t (Real 0) ;
20 stream y : sample to ” r e s u l t . txt ” ;
21 . . .� �

10 With the convention, for simplicity, that the real coefficients are stored in the real
parts.

11 The code of this function has not been reproduced in Listing 1.3 for simplicity.

8 J. Sérot

Algebraic data types can be polymorphic, i.e. they can be parameterized
over (an)other type(s), called the argument types(s). For example, we could have
defined the type sample as follows� �
type $t sample =

Real of $t
| Complex of $t ∗ $t� �
where $t can be any type suitable for encoding the real and imaginary parts,

so that

– the program of Listing 1.3 can be rewritten by replacing all instances of type
sample by signed<8> sample,

– another version of the program, in which the real and imaginary parts are
encoded, let say, as 32-bit float values, can be readily obtained by replacing,
in the same program, the type sample by float32 sample.

Algebraic data types were originally introduced in CAPH to support the
“data is control” concept. The idea that all the information required to interpret
data streams must be embedded in the transported tokens. For example, images
are encoded in CAPH using the following type :� �
type $t img = SoI | EoI | SoL | EoL | Pixe l of $t� �
Tokens with values SoI and EoI (resp. SoL and EoL) are control tokens indicating
the start and end of images (resp. lines) and pixels are carried by tokens having
values Pixel v, so that, for example, the 4×4 image of Fig. 4 may be represented
by the following stream of tokens:

SoI, SoL, Pixel(10), Pixel(30), Pixel(55), Pixel(90), EoL,

SoL, Pixel(33), Pixel(53), Pixel(60), Pixel(12), EoL,

SoL, Pixel(99), Pixel(56), Pixel(23), Pixel(11), EoL,

SoL, Pixel(11), Pixel(82), Pixel(46), Pixel(11), EoL, EoI

10 30 55 90

33 53 60 12

99 56 23 11

11 82 45 11

Fig. 4. A 4× 4 image

With this representation, the dimensions of the images are explicitly con-
tained in the token stream and hence no global control and/or synchronization
is needed, which both allows the definition of size-generic actors and significantly
eases the generation of RTL code. Moreover, it can be used to encode not only
images but arbitrarily structured data.

The CAPH language, ten years after. What did we do wrong ? 9

Discussion Except for the img type described above12, the use of ADTs seems
to have been limited in programs. Again, there are several possible explanations.

. Historically, most of dataflow-based programming languages have only sup-
ported “flat”, unstructured data, essentially viewing tokens as “black boxes”,
the interpretation of which was left to the actors themselves. As a result, pro-
grammers in the related fields are not familiar with the typing concepts and
mechanisms used by functional programming languages – from which CAPH
borrowed the notion of polymorphic ADT13.

. The idea of encoding the size of the manipulated data structures within the
token stream is in strong contrast with other incarnations of the dataflow MoC,
such as PSDF [7] and PiSDF [6], in which these dimensions are explicitely and
separately specified as parameters passed to the concerned actors during a spe-
cific configuration step. Our experience shows that for programmers used to
model applications with the latter kind of MoC, the former idea is often disrup-
tive.

. Moreover, this idea seems to imply that the CAPH MoC is a purely dynamic
one and this may have taken away programmers requiring a more static MoC.
Even if CAPH allows specification of DDF applications, it can also be used
to describe application obeying to the SDF (Synchronous Dataflow) or CSDF
(Cyclo Static Dataflow) MoCs.

. The initial choice of representing images using ADTs was maybe a bad idea
since it actually forces the programmer to delve into the syntax and semantics
of ADTs even for trivial image processing applications. Having a pre-defined,
dedicated type for images with ad-hoc syntax elements to access the individual
pixels might have been preferable14.

4 Lessons learned

Several reasons can be invoked to explain why CAPH did not gain a wide accep-
tance as a programming language. We believe that these reasons can be related
to three key questions that we probably have overlooked.

The first question concerns the problems the language is supposed to tackle.
The features discussed in Sec. 3.1 and 3.215 are undoubtedly powerful features

confering to CAPH a distinctive position on the landscape of dataflow-based pro-
gramming languages. They can also be viewed as a good example of the benefit

12 Which is predefined in the standard library.
13 A similar concept exists in C++-11, under the name “variant” but it was introduced

recently and does not seem to be widely used.
14 Moreover, representing images as lists of lists, as described above, has a very “lisp-

ish” flavor which seems to induce strong repulsive reactions on certain kinds of
programmers.

15 And a few others not presented here, such as higher-order actors and dependent
types for example.

10 J. Sérot

of cross-fertilization between scientific domains (hardware design and program-
ming language theory here). The problem is just that they were introduced not
because there was a need for them expressed by the users, but because we, the
designers of the language, thought there was.

Innovative and disruptive concepts may have an interest if the goal is to
foster scientific or engineering understanding – which may perhaps later catalyze
development of future languages – but, as long as the primary goal is to gain
wide acceptance, these concepts should be introduced only if they solve a clearly
identified problem or bottleneck in the existing design flow.

In this light, if we had the opportunity to restart the project from the begin-
ning, we would probably devote more time to “low level” and pragmatic issues
such as :

1. FIFO size minimisation whenever possible (the actor classification and static
computation of these sizes for SDF DFGs only appear in version 2.9),

2. automatic retiming / pipelining for actors with long critical paths,
3. support for “soft” actors, written in C or C++ (and implemented as either

as soft cores or on the HPS on the target FPGA),
4. support for common, cheap target platforms.

(1+2) would have helped breaking the “adoption barrier” among the hard-
ware designers. Within a community which is much more concerned with resource
usage and performance than the software one, a 50% overhead is often not ac-
ceptable, whatever the associated gain in productivity [8], as it is in sofware, by
contrast.

(3) would have allowed to use CAPH as a high-level dataflow modeling tool
within which the behavior of actors could be specified using a sequential im-
perative language such as C or C++. Of course, the scalability of the derived
implementations remains low in this case because it is ultimately limited by the
number of cores that can be instanciated on the target FPGA. But, with this
approach, users can start by writing simple programs using their favorite pro-
gramming language to specify actor behavior and then, if required, gradually
switch to more hardware-friendy descriptions, such as those currently used in
CAPH (a kind of Trojan horse, in a sense).

(4) Because such a support is, by essence, platform-specific, we did not pro-
vide one in the CAPH distribution (we had one, of course, but for our own needs,
targeting a custom board designed in our laboratory). The idea was that CAPH
was essentially platform-agnostic and that the so-called board support packages
(BSPs) should be provided by the user. This makes sense of course when the tar-
get board is a specialized board (using for example specialized hardware drivers
for image acquisition). But for the casual user, who simply wants to experiment
with the language, the required effort is simply too high.

The second question concerns the audience of the language.
There clearly was an ambiguity, right from the start, concerning this audi-

ence. Was CAPH targeting in priority hardware of software designers ? In the
first case, the language should have been presented as a way of increasing the

The CAPH language, ten years after. What did we do wrong ? 11

productivity by, for instance, removing the hassle of explicit synchronisation be-
tween computation units and extending the data abstraction levels compared
to classical HDLs such as VHDL or Verilog HDLs. In the second case, it should
preferably have been presented as an introductory path to FPGA design, making
HDL coding unnecessary whenever dataflow is an appropriate MoC. This ques-
tion is of great practical importance because hardware and software designers,
as far as our experience has shown us, do not seem to put focus on the same
concerns. Many of the former view expressivity as a secondary concern and are
reluctant to the adoption of any tool increasing productivity as long as the price
to pay is a decrease in performances. Many of the latter are not ready to give up
the “good old sequential imperative” way of thinking and are simply waiting for
C++ HLS because they view efficiency and resource optimisation as a secondary
concern.

The third and last question is not specific to CAPH and probably concerns
all dataflow-based programming languages and frameworks. It has to do with
the invasive nature of the proposed language and toolset.

In many cases, the dataflow model is only used to give a very coarse grain
formulation of an application, in which the actors implement complex functions,
even algorithms, and the edge essentially carry “opaque” packets of data (full im-
ages for example). This interpretation limits the shift in programming paradigm
imposed to the programmer, who essentially continues to think in a imperative
way16. Going to lower granularity requires that the semantics of the underlying
MoC is exposed. Many (most) programmers are reluctant to this : unless they
have no other choice, they frequently think that the price to pay is too high17.

The situation is even worse if using a dataflow model requires a complete
reformulation of the algorithm. Unfortunately, this is exactly what CAPH does.

In this light, we’d better have provided, right from the start, a way to use
actors written in C or C++. This would have made possible to introduce the
language in a less invasive and hence more attractive way, as follows :

1. describe how CAPH can produce a software implementation from a set of
actors written in C or C++,

2. exhibit some typical, performance critical, applications for which a few actors
are acting as bottlenecks,

3. show how these actors – which are likely to be associated to low level
compute-intensive operations – can be rewritten using CAPH actor descrip-
tion language,

4. demonstrate that the resulting effort/gain ratio is significative (compared to
direct re-coding in VHDL or Verilog).

On a technical side, for this approach to be effective, some work should
have been devoted in developing a general mechanism / framework allowing a
dataflow application, composed both of software actors, running on a soft core

16 The DFG is in this case nothing more than a call-graph in disguise.
17 To be fair, the subtleties in the taxonomy of dataflow-based MoCs, does not help.

12 J. Sérot

for example, and hardware actors, implemented on a reconfigurable part of an
FPGA, to seamlessly exchange tokens. This task has been in the “TODO” list
of the CAPH project for years. Not giving it a high priority is likely to be one
the worst mistake we made.

Acknowledgements Some ideas developed in this paper stem from numerous
and fruitful discussions held during visits at the IETR laboratory in Rennes, in
particular with M. Pelcat, K. Desnos and J.F. Nezan.

References

1. The CAPH software and reference manual, http://caph.univ-bpclermont.fr
2. Sérot, J., Berry, F.: High-Level Dataflow Programming for Reconfigurable Comput-

ing. In: 2014 International Symposium on Computer Architecture and High Perfor-
mance Computing Workshop, pp. 72–77, Paris (2014)

3. Sérot, J.: The CAPH Reference Manuel. http://caph.univ-bpclermont.fr/dist/caph-
lrm.pdf

4. Sérot, J.: CAPH - A bit of history. http://caph.univ-
bpclermont.fr/papers/misc/caph-history.pdf

5. Pelcat, M., Desnos, K., Heulot, J., Guy, C., Nezan, J.-F., Aridhi, S.: Preesm: A
dataflow-based rapid prototyping framework for simplifying multicore DSP pro-
gramming. In 6th European Embedded Design in Conferenece on Education and
Research, pp. 36–40, Milan (2014)

6. Desnos, K., Pelcat, M., Nezan, J.-F., Bhattacharyya, S.; Aridhi, S.: PiMM: Parame-
terized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration.
SAMOS XIII, Samos (2013)

7. Bhattacharya, B., Bhattacharyya S.: Parameterized dataflow modeling for DSP sys-
tems. IEEE Transactions on Signal Processing, 49(10), pp 2408–2421, 2001

8. Pelcat, M.: Models, Methods and Tools for Bridging the Design Productivity Gap
of Embedded Signal Processing Systems. Habilitation á Diriger des Recherches. U.
Clermont, 2016.

