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Abstract. The new scenarios associated with launchers reusability force
the enhancement of control algorithms for their liquid-propellant rocket
engines. The transient phases of these engines are generally executed in
open loop. The goal of this paper is to improve the control performance
and robustness throughout the fully continuous phase of the start-up
transient of a generic gas-generator cycle. The controller has to guaran-
tee an accurate tracking in terms of combustion-chamber pressure and
chambers mixture ratios, as well as to satisfy a set of hard operational
constraints. The selected strategy comprises a nonlinear preprocessor and
a linearised MPC (Model-Predictive Control) controller, making use of
nonlinear state-space models of the engine. The former plans the refer-
ence trajectory of states and control, which is tracked by the latter. Con-
trol goals are attained with sufficient accuracy while verifying constraints
within the desired throttling range. Robustness to internal parameters
variations is considered in the MPC controller by means of an epigraph
formulation of the minimax robust optimisation problem, where a finite
set of parameter-variation scenarios is treated.

Keywords: Liquid-propellant rocket engines, model predictive and optimisation-
based control, control of constrained systems, tracking, trajectory plan-
ning, robustness

1 Introduction

The current context of launcher vehicles design is strongly related to the reusabil-
ity feature. From the automatic control perspective, this potential need for
reusable liquid-propellant rocket engines (LPRE) is translated into stricter ro-
bustness requirements, mainly forced by their multi-restart and thrust-modulation

ACD2019, 028, v5 (final): ’Trajectory planning and tracking via MPC for transient control . . . 1
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capabilities. These demanding requirements arise from the possible endogenous
perturbations due to components faults or evolving parameters and from exoge-
nous perturbations related to the more complex mission profiles envisaged by
new launchers.
Multivariable-control studies of main-stage LPRE have attained a short throt-
tling envelope (70%-120%) in test benches [7]. In flight, the control system is
generally conceived to attain the nominal operating point. One of the design ca-
pabilities of the future European PROMETHEUS engine is to throttle down to
30% of thrust [1]. Hence, it seems necessary to enlarge the controlled operating
domain. Tracking and robustness have to be maintained at those low throttle
levels, where physical phenomena are more difficult to anticipate.
The main control problem in these multivariable systems is the tracking of set-
points in combustion-chamber pressure and mixture ratio, whose references stem
from launcher needs. Control-valves opening angles are varied so as to adjust en-
gine’s operating point while respecting a series of constraints. Most of the control
approaches in the literature make use of linearised models about operating points
for developing steady-state controllers, commonly based on PID techniques (such
as [14]). In general terms, initial MIMO (Multi Input Multi Output) systems are
decoupled into dominant SISO (Single Input Single Output) subsystems. Other
conventional closed-loop (CL) linear strategies considered multivariable state
feedback [23]. Off-line optimisation studies have also been developed [5]. More
advanced works identified in the literature, incorporating some nonlinear [9], hy-
brid [13] or robust [20] techniques, improve certain aspects of performance and
robustness. Besides, regarding the treatment of component faults, some strate-
gies for reconfiguration control have been proposed [13, 19].
To the best of our knowledge, there are no publications which deal with not
only the steady state but also the demanding transient phases at the same level
of performance and robustness [17]. Pre-defined sequences of engine operation
(start-up and shutdown), are commonly performed in open loop with narrow
adaptation margins. The first part of the start-up transient presents a succes-
sion of discrete events including valves openings and chambers ignitions. Once
these commands have all been activated, the second part of the transient, which
is completely continuous, takes place until the steady state is reached. The main
reasons for carrying out open-loop (OL) control in the initial (discrete-event)
phase, exposed in [14], are controllability and observability problems at very low
mass flows. Transient control via valves becomes possible once all events have
taken place. This observation has also been considered in this paper, where only
the second part of the start-up transient, fully continuous, is controlled.
The main goal of this work is to control the start-up transient of a pump-fed
LPRE. Concretely, accurate tracking of combustion pressure (related to thrust)
and mixture ratio all along the transient is targeted. At the same time, a set of
hard operational constraints has to be satisfied, mainly concerning mixture ra-
tios, turbopumps rotational speeds and valves actuators angular velocities. The
type of LPRE studied is a gas-generator-cycle engine, but the methodology is
intended to be generally applicable to other cycles. As in [16], the control loop
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presented in this paper is based on Model Predictive Control (MPC), which is
accompanied by a preprocessor for reference-trajectory generation. The MPC
method has been chosen as the most adequate for this type of complex sys-
tems with hard operational constraints, as introduced in the next sections. In
fact, it is gaining popularity at academic and industrial levels and can take into
account robustness [12] or hybrid aspects, which are relevant for future work
on this topic. Regarding the generation of reference trajectories, the algorithm
in this paper is also based on MPC, which is common in the literature [6, 21].
Other trajectory-planning methods have been proposed, especially in the field
of robotic motion, but they are also mostly based on optimisation [2].
This paper is organised as follows. Section 2 serves as a recapitulation of mod-
elling considerations. The state-space system considered in the subsequent sec-
tions is stated there. Section 3 explains the control strategy carried out, mainly
based on MPC techniques. The main results are presented and analysed in Sec-
tion 4. Finally, Section 5 serves as a conclusion.

2 Modelling

The modelling approach considered in this paper was first introduced in [15]
and further explained and updated in [16]. Basically, a set of different models
is used, characterised by diverse degrees of complexity according to their pur-
poses. In order to represent the plant to be controlled, a simulator of the engine
was first developed. In this simulator, constructed component-wise, the main
thermo-fluid-dynamics of LPRE elements are modelled: mass, energy and mo-
mentum conservation equations. Besides, since the application considered in this
paper, representative of the Vulcain 1 engine, is based on a gas-generator (GG)
cycle, turbopumps dynamics are also modelled via shaft mechanical conservation
equations. In these cycles, the hot-gas flow required for spinning turbines comes
from a GG, which is a small combustion chamber receiving a portion of the main
propellant flow.
Fig. 1 depicts the main components of the engine and lists the main acronyms
used. Actuators in this system are mainly five continuously-controllable valves
(VCH, VCO, VGH, VGO and VGC). There are also two discrete actuators: one
binary igniter (iCC) and one binary starter (iGG). Nevertheless, discrete inputs
are deemed active in this paper since the goal is to manage the continuously-
controlled part ot transients (up from 1.5s after start command). Valves opening
angles (α), having a nonlinear and monotone relation to sections (A), control
the flows to the main combustion chamber (VCH and VCO), to the GG (VGH,
VGO), and to the oxidiser turbine (VGC). Their fully open position is 90➦. The
latter is the main contributor to determining mixture ratio (MR), defined as
the quotient between oxidiser and fuel mass flow rates MR = ṁox/ṁfu. This
ratio is a key performance indicator in LPRE and is set at three levels: at an
engine’s global level (MRPI), accounting for pumped propellants; in the com-
bustion chamber (MRCC) and in the GG (MRGG).
The simulator was rewritten as a nonlinear state-space (NLSS) model by joining
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Fig. 1. Vulcain 1 simplified flow plan with engine acronyms

components equations symbolically. As explained in [15, 16], throughout that
translation several simplifications, comprising physical assumptions and math-
ematical rewriting, were carried out until obtaining the here-called simplified
NLSS such that ẋ = fs(x,u).
The number of states is n = 12 and m = 5 is the number of control inputs.
The state vector x contains the two turbopumps speeds ωH and ωO, the four
pressures in the system (pCC of combustion chamber, pGG of the GG, pLTH for
hydrogen-turbine inlet cavity and pV GC for oxygen-turbine inlet cavity) and six
mass flows, including the ones streaming through control valves (ṁV CH , ṁV CO,
ṁV GH , ṁV GO and ṁV GC) and the one streaming through the hydrogen-turbine
inlet pipe ṁLTH .

x = [ωH ωO pCC pGG pLTH pV GC ṁLTH ṁV CH

ṁV CO ṁV GH ṁV GO ṁV GC ]
T . (1)

The states with greater tracking importance are incorporated into a reduced
state vector xz:

xz = [pCC ṁV CH ṁV CO ṁV GH ṁV GO]
T . (2)
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The control input u comprises the sections of the five control valves:

u = [AV CH AV CO AV GH AV GO AV GC ]
T . (3)

All equations, states and control have been rendered non-dimensional with re-
spect to the nominal equilibrium values. The form of the dynamic system ẋ =
fs(x,u) is the following, in which ai, bi, ..., hi ∈ R+ are internal parameters and
wt is an exogenous input corresponding to starter mass flow:

ẋ1 = −a1x5x1 + b1x5 + (−c1x8 − d1x10)x1 + e1x8
2 + f1x8x10, (4)

ẋ2 = −a2x2
2 − b2x6x2 + c2x6 − (d2x9 + e2x11)x2 + f2x9

2 + g2x9x11, (5)

ẋ3 = a3x8 + b3x9 − c3x3, (6)

ẋ4 = a4x10 + b4x11 − c4 (x7 + x12) + d4wt, (7)

ẋ5 = a5x7 − b5x5, (8)

ẋ6 = a6x12 − b6x6, (9)

ẋ7 = a7 (x4 − x5)−
b7x7

2

x4
, (10)

ẋ8 =

(
a8x1

2 − b8x8
2 − c8x10x8 − d8x3 + e8

)
u1

2 − f8x8
2

(g8u1 + h8)u1
, (11)

ẋ9 =
(
a9x2

2 − b9x9x2 − c9x9
2 − d9x3 + e9

)
u2 −

f9x9
2

u2
, (12)

ẋ10 =
(
a10 x1

2 − b10 x8
2 − c10 x10x8 − d10 x10

2 − e10 x4 + f10
)
u3 −

g10 x10
2

u3
,

(13)

ẋ11 =
(
a11 x2

2 − b11 x9x2 − c11 x9
2 − d11 x11

2 − e11 x4 + f11
)
u4 −

g11 x11
2

u4
,

(14)

ẋ12 =

(
x4 − x6 −

a12 x12
2

x4u5
2

)
u5. (15)

It is noticeable that the system presents numerous nonlinearities and is non-affine
with respect to control. Besides, full-state estimation is considered as perfect in
this paper. This assumption is realistic for ω and p. Nevertheless, measuring some
mass flows is generally inconvenient in practice. Hence, discussion on estimation
will be relevant in future work.

3 Controller design

The synthesised controller is composed of two main blocks. First, a preprocessing
block serves to generate state and control trajectories for arriving to a constant
steady-state reference, xr, up from some given initial conditions. The main com-
ponent is the MPC block, which receives those full-state and control reference
trajectories and drives the system to them while meeting constraints. At the end
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of the start-up transient, the state should track xr, with a particular interest in
having a small tracking error in xz. Simultaneously, a set of hard constraints on
x and u has to be satisfied throughout the transient. This second goal is major
during these operation phases in order to avoid excessive temperatures, p or ω
along the operation. The entire control loop is depicted in Fig.2.

Fig. 2. Control-loop diagram

The remaining elements in that loop are the following. On the right-hand side
the rocket engine is simulated (complex simulator), at an integration time step of
10−5s in order to capture fast dynamics and to be robust to numerical stiffness.
The inputs of that simulator and of the state-space model considered for control
are valve sections u. However, the actuators model (internal valve actuators) is
expressed in terms of α. Consequently, a conversion block defining static and
monotone nonlinear relations is required. The MPC controller provides valve
sections that are then converted into angles. Valve actuators are considered as
a separate element since they consist in an internal servo-loop, in which the
angular position of the valve is regulated via a hydraulic or electrical actuator,
modelled as a second-order system. This is a simplified modelling assumption
since internal phenomena such as hysteresis and solid friction are not taken into
account.

3.1 Preprocessor block: final-reference and trajectory generation

The preprocessing block serves as an off-line reference generator for the MPC
controller. First of all, the end reference has to be constructed because the set
of reference commands derived from launcher needs (pCC,r, MRPI,r, MRCC,r

and MRGG,r) is not sufficient to provide a full-state target equilibrium point xr

to the engine controller. This reference generation is presented in [16], in which
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differential equations (4) to (15) are equated to zero. A steady-state reference in
terms of control inputs ur is also obtained in this calculation, since it is required
for defining trajectories and for linearising the system.
Once these end targets (xr,ur) have been computed, a reference start-up tra-
jectory (Xt,Ut) from some given x0 and u0 can be built. X and U are defined
in general as the series of x and u at each time step k along a horizon N (valid
throughout the whole paper):

X = [x1, ...,xk, ...,xNp
]T ,

U = [u1, ...,uk, ...,uNu ]
T .

(16)

To do so, an optimisation- and model- predictive-based scheme is used. It can be
regarded as an OL finite-horizon MPC scheme in which the prediction horizon is
set to cover the duration of the start-up buildup transient, considered between
1.5s, the end of the discrete sequential phase, and 2.5s, the time when it is aimed
at attaining the reference in the studied engine. This algorithm is based on the
minimisation of a classical quadratic cost function JOL, defined as:

JOL(Xt,Ut) =




Np,OL∑

k=1

∆xT
kQOL∆xk +

Nu,OL∑

k=1

∆uT
kROL∆uk)


∆t, (17)

where ∆xk = xk −xr and ∆uk = uk −ur are the variables to minimise, that is
to say, the distances with respect to the reference equilibrium point. QOL = In
and ROL are the weight matrices associated to states and control respectively.
Diagonal terms in ROL are set to 1010 so as to minimise control action. Np,OL

and Nu,OL are states and control prediction horizons, which in this case are
taken equal to the horizon (1s) over the discretisation time ∆t = 10ms, the
latter selected to comply with controller’s computational restrictions. Concern-
ing the dynamics considered to predict the behaviour at each time step k, as
announced in Section 2, the system is highly nonlinear. Hence, neglecting non-
linear dynamics can lead to relevant prediction errors, especially at points far
from the equilibrium one. However, the main repercussion of imposing nonlin-
ear constraints in optimisation problems is generally the loss of convexity of the
optimised function and hence the increase in resolution complexity. The com-
promise chosen in this paper, related to the specific behaviour of the system,
is the inclusion of nonlinear dynamic constraints until the system approaches
its reference values to within 90%. This coincides approximately with the first
half of the transient, where modelling errors of linearisation would be relevant if
linear dynamics were used. Concretely, the aforementioned fs is discretised via
an Euler implicit scheme:

xk+1 = xk + fs(xk+1,uk+1)∆t, k ∈ [1, Np,OL90%]. (18)

This scheme has been selected since it is the most stable among the first-order
integration methods, required for lowering the complexity of the optimisation
by reducing the interdependencies between decision variables. Once the pressure
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pCC (x3 or xz,1) attains its reference value, xz states are forced to be equal to the
end-reference values and only linear dynamics is imposed, in order to simplify
the optimisation. A few time steps before the start of those end-state constraints,
a smooth transition between nonlinear and linear dynamics is set via maximum
slope constraints. Linear dynamics (Ac, Bc) stems from the linearisation of fs
about (xr, ur), which are then discretised via zero-order hold at ∆t (Ad, Bd):

∆xk+1 = Ad(xr,ur)∆xk +Bd(xr,ur)∆uk, k ∈ [Np,OL90% + 1, Np,OL + 1].
(19)

Having defined the different dynamics, the optimisation algorithm which is exe-
cuted once for the whole horizon (OL trajectory planning) under constraints is
the following:

min
Xt,Ut

JOL(Xt,Ut) (20)

s.t. Xt ∈ X, Ut ∈ U

Aineq[Xt Ut]
T ≤ bineq

xk+1 ≤ xk + fs(xk+1,uk+1)∆t+ ε, ∀k ∈ [1, Np,OL90%]

xk+1 ≥ xk + fs(xk+1,uk+1)∆t− ε, ∀k ∈ [1, Np,OL90%]

Aeq[∆Xt ∆Ut]
T = beq (including xNp+1 = xr).

X and U are the allowable sets for states and control (compact subsets of
Rn(Np,OL+1) and RmNu,OL respectively). The set U for the first control u1 is
specially constrained to comply with actuators capacity as in [10]:

u1 ∈ [max(U,u0 − u̇max∆t),min(U,u0 + u̇max∆t)], (21)

where u̇max is the maximum sectional velocity of valves.
Regarding the rest of constraints, (20) contains linear inequality constraints (de-
fined by Aineq and bineq), for satisfying MR and actuators sectional-velocity
bounds, as well as for defining a monotonically increasing pressure buildup. Non-
linear dynamic constraints are not defined as strict equality constraints, but are
treated as inequalities with a small margin ε = 10−2 × 1n×1 (non-dimensional)
so as to simplify the computation of a feasible optimal solution. Linear dynam-
ics (19), initial conditions and end-state reaching are considered in the equal-
ity constraints (defined by Aeq and beq). The end-state hard constraint forces
the trajectory to precisely finish at the desired point. Fig. 3 depicts the set of
generated trajectories for the different operating points (70%, 100%, 120% of
thrust) in terms of combustion-chamber pressures. The interior-point optimisa-
tion software IPOPT [22] is used to solve (20). Due to the inclusion of nonlinear
constraints in this quadratic-cost optimisation problem, the solution might not
be global.
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Fig. 4 presents the u trajectories for the nominal case.
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Initial conditions are fixed according to the end of the discrete part of the
transient (until t = 1.5s). The first control inputs (VCO and VCH), related to the
main chamber, are pretty constrained in terms of operation, thereby imposing
straight trajectories.

3.2 MPC algorithm for trajectory tracking

MPC predicts the future behaviour of the modelled system along a horizon,
and optimises control inputs according to a cost function related to a reference
trajectory or to an end state. In this paper, the strategy is to track the predefined
trajectory (Xt, Ut). A similar algorithm, directly tracking an end state, was
presented in [16]. However, tracking a trajectory enables a more precise control
of transients, which is advantageous in this application. Dynamics is predicted in
this controller in a linearised way, so as to enable a real-time control computation.
The discrete-time matrices Ad and Bd are evaluated about each step in the
trajectory, improving the prediction representativeness with respect to the use
of single end-state matrices.

∆xk+1 = Ad(xt,k,ut,k)∆xk +Bd(xt,k,ut,k)∆uk. (22)

Thus, the goal of the controller is to drive X and U to Xt and Ut. The matrix
Ad is always stable along the trajectory, which is a particularity of these GG-
cycle LPRE models. The approach selected here incorporates the quasi-infinite
horizon (QIH) notions from [4]. That reference presents proofs for guaranteed
stability and end-state reachability of MPC via the consideration of a terminal
region and a fictitious local controller K acting at the end of the state prediction
horizon, Np + 1. The main role of that controller appears in the computation of

the P matrix of a Lyapunov function V (x) = ∆xTP∆x, by solving the following
Lyapunov equation:

(AK(xt,Np+1,ut,Nu)+κI)TP +P (AK(xt,Np+1,ut,Nu)+κI) = −QK −KTRKK.
(23)

In (23), the system considered is the composition of the end linear system with a
simple LQR feedback controller,AK = Ac(xt,Np+1,ut,Nu

)+Bc(xt,Np+1,ut,Nu
)K,

κ ∈ R+ (satisfying κ < −λmax(AK)) and QK and RK are positive definite sym-
metric matrices QK ∈ Rn×n, RK ∈ Rm×m. As explained in the aforementioned
references, the first use of the computed P ∈ Rn×n is to add a terminal-region
penalty term in the MPC cost (24). It is used in constraints too, which are ex-
plained later. Besides, an integral action is added for increasing tracking precision
on xz (in a similar manner to [18]). Integrator decision variables are denoted by
z (contained in Z) and are also penalised in the cost through a weight matrix
S ∈ Rnz×nz , whose diagonal is [1, 0.1, 0.1, 0.1, 0.1]. Thus, the MPC cost J to
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Transient control of liquid-propellant rocket engines 11

minimise consists in:

J(X,U,Z) =




Np∑

k=1

(xk − xt,k)
TQ(xk − xt,k) +

Nu∑

k=1

(uk − ut,k)
TR(uk − ut,k)

+

Np∑

k=1

zTk Szk


∆t+ (xNp+1 − xt,Np+1)

TP (xNp+1 − xt,Np+1).

(24)

Basically, the integral and terminal costs are added to the traditional quadratic
cost on states and controls, with a prediction horizon Np = 10 steps (0.1s) and a
control horizon Nu = 5. Implicitly, the last control uNu is used for k ≥ Nu. Since
these horizons are shorter than those used in trajectory generation (Section 3.1),
the last step does not necessarily correspond to the end reference point. Longer
horizons (more costly) did not enhance tracking or constraints satisfaction. Q
and R are positive-definite symmetric weighting matrices Q ∈ Rn×n, R ∈ Rm×m,
whose diagonals have been tuned off-line via Kriging-based black-box optimisa-
tion as in [11]. The criterion for that weight definition involves the minimisation
of static error and overshoot in simulations.
Moreover, some robust considerations have been implemented. The minimisation
of the previous J under constraints is not intrinsically robust. In fact, robust-
ness to parameters and initial conditions variations and to modelling error is of
interest in this application. In robust MPC approaches, the minimax optimisa-
tion, which minimises the worst-case scenario, is usually employed. A generic
expression of this problem with uncertain dynamics is the following [8], in which
∆ represents uncertainty in dynamic matrices Ad(·, ·,∆), Bd(·, ·,∆):

min
U

max
∆

J(X,U)

s.t. X ∈ X ∀∆ ∈ ∆c

U ∈ U ∀∆ ∈ ∆c.

(25)

Nevertheless, solving (25) for large compact uncertainty sets ∆c is too computa-
tionally costly for this application. Thus, only a finite set of uncertain scenarios
are considered (inspired from [3]); and an equivalent formulation to the minimax
in [8] is solved. Precisely, a scalar γ ∈ R+ is minimised via an epigraph formu-
lation. That γ constrains the previous cost J defined in (24) evaluated at some
perturbed states propagations Xi:

Xi = [xi,1, ...,xi,k, ...,xi,Np+1]
T , i ∈ I

∆xi,k+1 = Ad(xt,k,ut,k,∆i,k)∆xi,k +Bd(xt,k,ut,k,∆i,k)∆uk, k ∈ [0, Np + 1],
(26)

where ∆i,k are certain selected internal parameter variations belonging to ∆ =
{∆i,k, i ∈ I, k ∈ [0, Np + 1]}. I is a finite set which indexes the perturbed cases.
The epigraph formulation shifts robustness considerations into the constraints
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list, thereby not requiring maximisation. Only a smooth convex nonlinear pro-
gramme (NLP) is solved. That minimisation problem, in which decision variables
are extended to account for all Xi, is stated below:

min
Xi,U,Zi,γ

γ (27)

s.t. J(Xi,U,Zi) ≤ γ ∀i ∈ I

Xi ∈ X, U ∈ U ∀i ∈ I

Aineq[Xi U]T ≤ bineq ∀i ∈ I

Ai,eq[Xi U]T = bi,eq ∀i ∈ I

(xi,Np+1 − xt,Np+1)
TPi(xi,Np+1 − xt,Np+1) ≤ αP ∀i ∈ I

zi,k+1 = zi,k +∆tKI(xz,i,k − xz,t,k) ∀i ∈ I, k ∈ [0, Np].

As in Section 3.1, the set U for the first control uMPC ≡ u1 is specially con-
strained as in (21), but in this closed-loop case u0 is the previous-step control
(warm start is performed). In (27) there are also equality constraints (defined by
Ai,eq and bi,eq) for the different linear dynamics along the whole horizon (26)
and the same linear inequality constraints as in (20) applied to all Xi. Concern-
ing the terminal region, a constant αP refers to the neighbourhood in which the
Lyapunov term of J is constrained in a nonlinear way (further details on the
QIH method in [4]). A specific Pi is used in each perturbed case since matrices
are different. The series of ∆i, where I = {1, 2, 3}, are taken constant for all k
and represent the following parameter-variation cases:

– i = 1: nominal parameters.
– i = 2: the main varying parameters are increased by 10%: interdependent

tanks pressures and temperatures.
– i = 3: the main varying parameters are decreased by 10%: interdependent

tanks pressures and temperatures.

These cases consist in the worst ones which the controller must face in terms
of tanks parameters variations, corresponding to the bounds of ∆. It can be
checked in simulations that these would be the extreme dynamics-perturbing
cases related to the compact uncertainty set ∆c, for which a costly minimax
would be necessary. Since the resulting U computed in (27) is forced to comply
with all these uncertainty scenarios and all propagated perturbed states must
verify all constraints, the robustness of the controller is increased. The last set of
constraints in (27) consists in the integrator dynamics [18], where KI is a gain
matrix computed off-line in the same manner as Q and R.

4 Analysis of results

The interior-point optimisation software IPOPT [22] has been employed due to
the smoothness and convexity of the NLP (27). Simulations of the aforemen-
tioned control loop within the MATLAB environment are executed from 1.5s
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Transient control of liquid-propellant rocket engines 13

until 3s after the engine-start command, which is the time window in which
continuous control is applied in the start-up transient.
Mixture-ratios initial values commence very far from the allowable area, ow-
ing to the low initial mass flows that alter the definition of quotients. In fact,
chambers are still not physically ignited during the first instants (even if igniters
have been activated). Hence, MR are not representative quantities at the very
beginning of the start-up. Fig. 5 comprises the results of pCC tracking at three
non-dimensional pressure levels: pCC,r = 1 (nominal), pCC,r = 0.7 (minimum for
this engine) and pCC,r = 1.2 (maximum). At all three points, the final reference
mixture ratios remain equal MRCC,r = 6, MRGG,r = 1 and MRPI,r = 5.25, as
usual during start transients. MR tracking in the nominal case is shown in Fig.
6 (with end-reference curves for enhancing visualisation).
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Fig. 5. Tracking results in pCC for pCC,r = 1 (nominal), pCC,r = 0.7 (minimum) and
pCC,r = 1.2 (maximum)
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Tracking is accomplished with acceptable accuracy in pCC for all cases (un-
der 0.12% in nominal, under 0.9% in off-nominal) and in MR (under 0.2% in
nominal, under 3% in off-nominal). Simultaneously, constraints are respected up
from the time when it is considered feasible and acceptable to respect them in
practice (1.9s). The presence of a slight overshoot (2.6% in nominal) before the
final convergence is generated by the nonlinear influence of the GG-starter input
mass flow, which is not accounted for in the linearised model. It is more elevated
in the minimum case since the relative impact of the starter is greater. Planned
trajectories from Fig. 3 do not present overshoot in order to counteract this
aspect of real engine behaviour. Fig. 7 shows the computed control as well as
the planned trajectories. Some differences are present, especially during the first
0.5s in αV GC , due to the more realistic initial mixture ratios in the simulator,
which lie outside the bounds considered in trajectory generation. Even though a
nonlinear model is used in the planning of those first instants, modelling errors
are still relevant due to simplifications [15, 16].

The controller achieves that tracking performance even if random initial con-
ditions (after the sequential transient phase) are set, while constraints-satisfaction
times vary by some hundredths of seconds. Computational times in MATLAB
are generally ten times longer than real time, not ruling out a future real-machine
implementation.

4.1 Comparison with open loop and alternative MPC controller

Table 1 contains the comparison in terms of some performance indicators be-
tween this trajectory-tracking MPC (T.MPC) proposal, the end-state tracking
(E.MPC, with different robustness considerations) presented in [16], and OL
simulations.

Table 1. Performance-indicators comparison between this MPC proposal, end-state
MPC [16] and OL at the three selected operating points

Operating
point

Nominal Minimum Maximum

Indicator OL E.MPC T.MPC OL E.MPC T.MPC OL E.MPC T.MPC

Settling time
(pCC,r ± 1%)
[s]

2.8 2.51 2.54 2.67 2.55 2.57 2.69 2.53 2.51

Overshoot (%
in pCC)

6.31 5.04 2.6 15.1 11.46 11.29 3.34 4.04 2.57

Constraints
verification [s]

1.81 1.8 1.82 1.83 1.76 1.78 1.77 1.81 1.84
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The nominal OL corresponds to engine’s original input command, which is
precisely tuned for the standard case, as traditionally done in flight-ready en-
gines. The minimum and maximum OL commands have been calculated via the
preprocessor explained in Section 3.1, maintaining the same control as in the
reference ur along the transient. It seems clear that the strategy in this paper
results in a higher level of performance than OL and that it reduces overshoot
with respect to the alternative approach in [16]. Indeed, the real benefit of this
CL MPC control is more noticeable at off-nominal points, where it is more prob-
lematic to accomplish multivariable tracking at high performance while meeting
constraints during the transient. Furthermore, even if the nominal pressure and
MR are targeted, the precomputed ur would not always drive the system in OL
to the same state xr. As explained in the next subsection, robustness is also an
advantage.

4.2 Robustness analysis

In Section 3.2, the different perturbed cases have been listed. The system has
to be robust to those scenarios in which some internal parameters can vary in
real operation. These scenarios have been simulated by intentionally altering
those parameters in the simulator. The performance indicators obtained with
the different approaches for the nominal thrust are shown in Table 2.

Table 2. Performance-indicators comparison between this MPC proposal, end-state
MPC [16] and OL at the perturbed scenarios

Perturbed
cases

Nominal Increased by 10% Decreased by 10%

Indicator OL E.MPC T.MPC OL E.MPC T.MPC OL E.MPC T.MPC

Settling time
(pCC,r ± 1%)
[s]

2.8 2.51 2.54 2.7 2.6 2.55 2.66 2.52 2.53

Overshoot (%
in pCC)

6.31 5.04 2.6 5.72 4.79 2.67 5.3 5.45 2.6

Constraints
verification [s]

1.81 1.8 1.82 1.79 1.79 1.82 1.8 1.8 1.82

pCC static er-
ror (%)

0.25 0.26 0.12 0.35 0.36 0.22 0.64 0.17 0.04

MRCC static
error (%)

0.17 0.01 0.13 3.07 0.19 0.3 3.48 0.17 0.05

MRGG static
error (%)

1.39 0.05 0.12 0.6 0.0008 0.09 0.83 0.1 0.16

MRPI static
error (%)

1.43 0.3 0.19 3.24 0.12 0.01 3.65 0.48 0.37
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Results point to the moderately greater robustness to parameters variations
of the approach presented in this paper in comparison to [16]; and considerably
greater with respect to OL. Comparing both CL approaches, the enhancements
of T.MPC in terms of static errors and settling time are not elevated. The
noticeable reduction of overshoot is the major advantage.

5 Conclusion

The control of the transient phases of liquid-propellant rocket engines is nor-
mally carried out in open loop due to its highly nonlinear and hybrid behaviour.
In this paper, the control of the fully continuous part of the start-up of a gas-
generator-cycle LPRE has been treated. Continuous valves are the considered
actuators for regulating pressure in the main chamber and mass-flow mixture
ratios. The tracking of these quantities, states in the model used, is accomplished
via an MPC controller, which at the same time verifies a set of hard operational
constraints. Concretely, what the controller tracks are pre-generated trajecto-
ries of states and control. These are computed off-line in a preprocessor which
takes into account a full-state end reference constructed according to launcher
commands, via a nonlinear state-space model of the engine. The linearised MPC
controller with integral action achieves trajectory tracking with sufficient accu-
racy and constraints are satisfied during the transient. Robustness considerations
are also included in the controller so as to face a set of internal-parameter vari-
ation scenarios, plausible in real engine operation. The computationally costly
nested minimax optimisation, commonly used in robust MPC approaches, has
been rewritten as the minimisation of a scalar cost. The controller demonstrates
robustness against the predefined worst-case scenarios, since performance is not
degraded. In future work, other ways of posing this robustness consideration
globally, for instance via the estimation of perturbations, will be investigated.
The use of discrete actuators in control may also be a relevant factor to consider.
A more extensive validation study with respect to parametric variations will be
carried out.
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