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The reliability analysis of complex systems often requires dealing with a computationally expensive simulation code.
To estimate the failure probability, a frequently used method aims at propagating the input uncertainties through the
black-box model. In this paper, as marginal distributions are assumed provided, the lack of knowledge about the
joint distribution of input variables is limited to a copula distribution learnt from an industrial dataset obtained
during past experiences. To describe complex and polymorphic patterns of dependence, attention has turned to vine
copulas whose main advantage rests on their ability to approximate the whole dependence structure with a simple
product of judiciously-selected bivariate copulas. The presented approach couples vine copula fitting to model the
joint distribution on input variables and importance sampling to estimate the failure probability. For a given training
set, the matrix of Kendall’s rank correlation coefficients, which collects information about dependence intensities,
is deeply involved in the inferential procedure leading to the copula vine specification. In this work, a sensitivity
analysis is performed to measure the impact of Kendall’s matrix uncertainty due to scarce data on the estimation
of the failure probability. As Kendall’s coefficients are dependent random variables, sensitivity analysis is achieved
with Borgonovo’s indices, using bootstrap replications of the available data to have a larger amount of estimations.
The ranking of sensitivity indices allows identifying the pair of variables on which one has to acquire new samples
in order to reduce variability in risk assessment. This methodology is applied on the buckling of a composite plate.

Keywords: uncertainty quantification, uncertainty management, statistical inference, importance sampling, rank
correlation, bootstrap, vine copulas, Borgonovo’s indices.

1. Introduction

1.1. Reliability analysis
In many industrial fields, while dealing with a
highly technical system, reliability cannot be as-
sessed with functional design tools. Instead, the
system’s behavior is mimicked by a multidisci-
plinary simulation code that can be seen as a deter-
ministic input-output modelM. In such a black-
box approach, the level of detail onM is restricted
to the following mathematical description:

M : Ω ⊆ Rd −→ R
x = (x1, . . . , xd) 7−→ M (x) .

(1)

As many operating variables are uncertain, a prob-
abilistic framework is adopted and inputs are de-
scribed as a random vector X = (X1, . . . , Xd)
with cumulative distribution function (CDF) FX
and probability density function (PDF) fX. For
any given observations x ∈ Ω, M allows to
compute the associated scalar output y = M(x).
The uncertainties produced by X are transferred to

Y , which is therefore a random variable as well.
The distribution of Y depends on the propagation
of those uncertainties and can be sketched out by
computing related statistics (especially moments,
quantiles and empirical CDF). In our particular
case, the quantity of interest is a rare-event proba-
bility Pf defined as the risk of exceeding a critical
threshold T . The failure domain Df refers to the
inverse image of the event {Y > T} and thus:

Pf = P{Y > T} = P{M(X) > T} (2)
= P{X ∈ Df}.

In practice, the input density fX is often assumed
to be known analytically and modeling decisions
derive from either engineering expertise or sta-
tistical learning. However, in the context of this
study, information on fX is limited to a small-
sized dataset X0 ∈ RN×d. The relatively reduced
amount of available observations (N ≈ 500) in
X0 can be explained by the difficulty to collect us-
able operational data. In that view, estimating the
failure probability Pf may require applying a two-
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step process. As a first step, the joint distribution
of input variables is learnt from X0. Let us denote
by f̂0 the multivariate density obtained after fitting
a probabilistic model to X0. The second step con-
sists in propagating the uncertainties stemming
from the density f̂0 through the modelM in order
to estimate Pf . In this paper, particular attention
has been given to the first step.

1.2. Probabilistic model estimation
Given a multivariate sample, learning the un-
derlying joint density remains a major issue in
statistics. Inference can be performed using three
different approaches: parametric (if considering a
family of densities), non-parametric (with kernel
density estimation) or hybrid (when combining
tools borrowed from the two previous). Another
alternative in high dimension seems to be the
copula-marginal separation. Indeed, since a ma-
jor breakthrough due to Sklar (1959), it is well
known that any absolutely continuous multivariate
distribution function FX can be written in terms of
univariate marginal distributions F1, . . . , Fd and a
copula CX which describes the dependence struc-
ture existing among the variables:

∀x = (x1, . . . , xd) ∈ Rd,

FX(x) = CX

(
F1(x1), . . . , Fd(xd)

)
. (3)

The copula function CX : [0 ; 1]
d −→ R is unique

and can be interpreted as the joint CDF between
the transformed variables Ui = Fi(Xi). The
chain rule provides a very simple link between f X
and the copula density cX computed as the cross
partial derivative of CX:

fX = cX

(
F1, . . . , Fd

)
×

d∏
i=1

fi . (4)

In this work, it is assumed that marginal distri-
butions are prescribed and the uncertainties they
are expected to introduce under normal conditions
are excluded. This situation allows to better focus
on the error committed because of the lack of
knowledge on the copula function. Moreover,
assessing to what extent the presence of epistemic
uncertainty on the margins may have an effect
on the estimated failure probability has already
been deeply investigated, in particular by Der Ki-
ureghian (2008) to cite but one. Under the as-
sumption that the margins are fixed, statistical
learning is therefore all about fitting a copula
model ĉ0 to the rescaled dataset U0 ∈ [0 ; 1]

N×d.
The learnt density can thus be expressed as fol-
lows:

f̂0 = ĉ0

(
F1, . . . , Fd

)
×

d∏
i=1

fi . (5)

Since adopting a copula-based representation
leads to equalize the contributions of all marginal
distributions, copula analysis provides informa-
tion only about intrinsic dependence properties.
In the bivariate case, parametric copula fami-
lies are sufficient to replicate finely any relevant
characteristic (correlation, symmetry, orientation,
tails...) falling within the description of a depen-
dency. In higher dimension, parametric inference
remains tractable provided that dependence mod-
eling incorporates more sophisticated representa-
tions, one possibility being the use of regular vine
copulas.

It has been proven in Bedford et al. (2002) that
any dependence structure arising from a d-copula
can be divided, after several conditioning steps,
into a small number of pair-copulas. A regular
vine copula (R-vine) is an adaptive parametric
model, built upon this factorization result, which
tries to better understand multivariate patterns.
With this method, a very complex arrangement,
maybe inextricable at first sight, can be broken
down into a simple list of bivariate dependencies
that can be treated easily with a parametric ap-
proach. Intense research effort over the past few
years has resulted in the development of efficient
algorithms to use pair-copula constructions. At
first, R-vine models were applied in finance en-
gineering to anticipate the joint behavior of asset
returns in a context of high portfolio volatility.
They have now become a common practice in
many sectors (including meteorology, hydrology,
insurance and marketing) whenever there is a need
to simulate correlated input variables. In relia-
bility analysis, vine copulas have been the sub-
ject of particular interest, as evidenced by recent
works of Jiang et al. (2015), Benoumechiara et al.
(2018), Torre et al. (2018) and Xu et al. (2018).

1.3. Scope of the paper
The dependence pattern described by a vine cop-
ula can be trivial, for instance if the variables are
almost independent, as well as very complicated,
if each bivariate copula belongs to a specific fam-
ily. The ability to recognize and prioritize rela-
tionships between pairs of variables determines
the quality of the learning process. It should
be noted that every pair of variables is driven
by a bivariate copula which is involved (maybe
indirectly) in the estimated R-vine density ĉ0. A
natural question that arises is then to identify the
pair which has the strongest impact on P̂f when
the joint distribution f̂0 is propagated through
M. Targeting the most influential pair might be
a valuable indication if one is seeking to increase
the knowledge on the input distribution. In this
paper, a global sensitivity analysis procedure on
the failure probability is proposed with Kendall’s
rank correlation coefficients used as uncertainty
sources. As will be noticed later in Section 2,
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the R-vine specification has been designed to give
full account of empirical Kendall’s matrix τ̂K . Be-
cause of such a close interaction, the uncertainties
conveyed by empirical Kendall’s coefficients are
expected to have an impact on the stability of the
R-vine model and, by clear implication, on the
whole process of risk estimation.

The paper is organized as follows. In Section 2,
a brief introduction to R-vines is provided, with
particular emphasis on the inferential procedure.
The different stages in the construction of the sen-
sitivity analysis scheme are detailed in Section 3.
To illustrate the point, the presented methodology
is applied to a physical test case in Section 4 while
Section 5 draws some conclusions.

2. Vine Copulas

2.1. Construction
For given margins, Joe (1996) introduced a class
of multivariate distributions with d(d − 1)/2 de-
pendence parameters by iteratively mixing con-
ditional distributions. The starting point is the
Bayes’ theorem for continuous densities which
consists in the recursive decomposition of a multi-
variate density into a product of conditional densi-
ties. The key lies in transferring the conditioning
variables from densities to copulas. A standard
assumption is that conditional pair-copulas de-
pend on their conditioning set only through the
conditional margins:

∀i 6= j,∀A ⊂ {1, . . . , d}r {i, j},

fij|A = cij|A

(
Fi|A, Fj|A

)
× fi|Afj|A . (6)

It amounts to saying that copulas are conservative
with respect to the conditioning process. From
Eq. (6), it is straightforward to see that removing
any variable Xi from the conditioning set A can
be done by incorporating a conditional pair-copula
with respect to the reduced set A−i = Ar {i}:

∀A ⊂ {1, . . . , d}r {j},∀i ∈ A,

fj|A = cij|A−i

(
Fi|A−i

, Fj|A−i

)
× fj|A−i

. (7)

The repeated use of Eq. (7) leads to factorize cX
into a product of d(d − 1)/2 conditional pair-
copulas. As this factorization is not unique, it is
important to determine the role played by each
variable during the conditioning steps. Since the
very start of pair-copula decompositions, a graph-
ical tool has been extensively used in practice for
clarity reasons. It has been shown that a sequence
of nested trees V = {T1, . . . , Td−1}, each one
consisting of nodes Ni and edges Ei, is suited to
summarize a copula factorization. The graph V
is called an R-vine tree if it obeys the following
construction rules:

• N1 = {1, . . . , d} and |E1| = d− 1 ;
• ∀i ∈ {2, . . . , d− 1}, Ni = Ei−1 ;
• Two edges in Ti are joined in Ti+1 if they share

a common node in Ti (proximity condition).

For all i ∈ {1, . . . , d}, every connecting edge
e ∈ Ei corresponds to a conditional pair-copula
cje,ke|De

with De resulting from the successive
applications of the proximity condition. Using the
same notation, the density corresponding to an R-
vine copula may be written as:

cX =

d−1∏
i=1

∏
e∈Ti

cje,ke|De
. (8)

Given an R-vine tree specification V , the de-
pendence structure is organized as a cascade of
pair-copulas which can be chosen independently
among all existing bivariate parametric models.
The resulting collection of families is denoted
by F and the associated parameters are grouped
together into θ ⊆ Rp (with p depending on the
family assortment). As a result, full inference
for an R-vine distribution should comprise the
following steps: (a) selection of the tree structure
V , (b) choice of the parametric families F , and
(c) estimation of the parameters θ. Steps (a)
and (b) constitute what is called model selection
because once V and F are stated, the copula
density cX, as expressed in Eq. (8), becomes fully-
parametric and can then be fitted to data with a
maximum-likelihood approach. However, the last
step implies computing recursively conditional
distribution functions involved in conditional pair-
copulas. Joe (1996) showed that any conditional
distribution function in tree Ti+1 can be derived
from a pair-copula distribution in Ti:

∀i 6= j,∀A ⊂ {1, . . . , d}r {i, j},

Fj|A∪{i} =
∂Cij|A

∂Fi|A

(
Fi|A, Fj|A

)
. (9)

2.2. Inference
A naive method to perform inference should be
to maximize the log-likelihood for all possible
models V-F before selecting the best one. As
highlighted in Morales-Nápoles (2010), the num-
ber of R-vine factorizations increases at a super-
exponential rate and scanning all models is there-
fore intractable in practice. Aas et al. (2009) were
the first to introduce the idea of a stepwise tree-
by-tree procedure. For a given tree structure V ,
family selection and parameter estimation are con-
ducted simultaneously, one tree after the other.
Within a tree Ti, let us denote Fi the copula fam-
ilies and θi the copula parameters. Assuming that
V is known, fitting an R-vine copula distribution
to a given dataset U0 may require to proceed as
follows:
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• Select copula families F1 in the tree T1 by
maximizing a goodness-of-fit criterion (e.g.
Akaike) on each connecting edge.

• Compute copula parameters θ1 from U0 by
maximum likelihood. If there is a mapping
g such that θ1 = g(τK), estimation becomes
computationally trivial.

• Apply Eq. (9) with F1 and θ1 to transform the
initial observations U0 into conditional obser-
vations U1 which will be used in T2.

• Iterate with T2 and so on.

At the end of the sequential procedure, F and θ
are fully determined and it should be noted that
all computing tasks have been performed in a bi-
variate framework. Hence, a final maximum like-
lihood recalibration on model V-F is run with θ as
starting value for gradient-descent optimization.
Moreover, Dissmann et al. (2013) came up with an
heuristic algorithm to improve the tree selection,
which had been an open issue until then. Since the
tree T1 has to be chosen among the set Sd of all
spanning trees between nodes N1 = {1, . . . , d},
he proposed to select the one which maximizes the
sum of absolute empirical Kendall’s coefficients
computed from U0:

T ∗1 = arg max
T∈Sd

∑
(k,l)∈T

|τ̂kl| . (10)

Thus, pairing gives priority to variables which
are identified as strongly dependent in terms of
Kendall’s correlation. It is worth mentionning
that, unlike Pearson’s correlation coefficient or
Spearman’s ρ, Kendall’s τ is not constructed
to quantify linearity, but rather to measure any
form of dependence. For the remaining trees
T2, . . . , Td−1, an almost identical optimization
problem is solved at each step of the tree-by-tree
inference procedure. Differences with Eq. (10) in-
clude the use of conditional Kendall’s correlations
and the integration of a constraint related to the
proximity condition.

3. Proposed approach
As R-vine distributions seem to be essential in
dependence modeling, they are integrated into the
learning model:

LN : RN×d −→ L2(Rd)
X0 7−→ f̂0(· | V,F ,θ) .

(11)

It raises the question of how the sampling vari-
ability due to scarce data is likely to affect risk as-
sessment. From one sample X0 to another, the R-
vine specification may be substantially modified,
with either the tree arrangement V or the copula
assortment F being impacted. If a particular kind
of model disruption always leads to inaccurate es-
timates during risk analysis, it is a clear indication

that the associated pair of variables deserves to
be studied cautiously. In this paper, an attempt is
made to quantify how much influence a pair could
exert on the failure probability.

3.1. Uncertainty sources
The greatest difficulty lies in defining a framework
to address this issue. A prerequisite is to find
a way to account for the uncertainty inherent to
the R-vine specification. For a given pair of vari-
ables, it would be ideal to bring into play all the
sources of variability which can interfere in the
pair-copula representation. Indeed, each time an
R-vine distribution is learnt from X0, one may ask
the following questions about the pair (Xi , Xj).

• Does the edge (i, j) belong to the tree T1 ?
• Which candidate family is selected for cij ?
• How uncertain is the computed parameter θij ?

It is not easy to include all elements in a sensitivity
analysis procedure with clearly interpretable re-
sults. A first idea could be to set an R-vine model
V-F and to focus on the uncertainty propagated
by the dependence parameters θ:

ΨVF : Rp −→ [0 ; 1]

θ 7−→ P̂f
(
f̂0(θ)

)
.

(12)

Uncertainty on a pair of variables is then restricted
to its copula parameter dispersion. Sensitivity
analysis on ΨVF can be achieved with maximum
likelihood estimators as input variables. In the
case of R-vine distributions, Haff et al. (2013) es-
tablished their asymptotic normality, while Stöber
and Schepsmeier (2013) developped a method to
routinely estimate their standard errors without
using finite difference approximations. Never-
theless, this approach is insufficient because it
presupposes to set V and F , whereas in practice
nobody has a clue what a suitable model would
look like. To take into account the full variabil-
ity in automated model selection, changing one’s
viewpoint becomes necessary.

Empirical Kendall’s matrix τ̂K may be used as
a way of tracing back the pairs of variables which
are responsible for variability in the R-vine speci-
fication. Each pair of variables can be matched to
one and unique Kendall’s correlation coefficient
(in the lower triangular portion of the matrix).
An identification mechanism of this nature was
not permitted under ΨVF with parametrization
θ depending only on the pairs involved in T1.
However, it must be clearly understood that the
matrix τ̂K , when separated from U0, is not suffi-
cient to reconstruct f̂0. As described in Section 2,
knowing U0 is imperative to select copula families
and to compute conditional observations. There is
a need to characterize the interactions Ld between
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τ̂K and f̂0:

Ld : [−1 ; 1]
d×d −→ L2(Rd)

τ̂K 7−→ f̂0(· | V,F ,θ) .
(13)

One possibility is to consider Ld as a stochas-
tic model where intrinsic alea affects F and θ
and originates from the initial sample U0 used
for inference. To observe an input-output match
through Ld, both quantities must be derived from
a common training set U0 chosen in advance.
Even if Ld is not a deterministic mapping, this
approach has two main benefits:

• As evoked in Eq. (10), τ̂K acts as a set of
random weights in the maximum spanning tree
problem and has a direct impact on V .

• There is an implicit relationship between τ̂K
and θ which results in a transfer of uncertainty.

In what follows, sensitivity analysis is then per-
formed on the stochastic model which relates
Kendall’s matrix and the failure probability:

ϕ : [−1 ; 1]
d×d −→ [0 ; 1]

τ̂K 7−→ P̂f .
(14)

In that regard, to perform sensitivity analysis, one
must be able to: (a) simulate input uncertainty
on τ̂K , (b) estimate all failure probabilities with
rare-event simulation techniques, and (c) compute
sensitivity indices to measure the impact of each
Kendall’s coefficient on risk assessment.

3.2. Rare-event probability estimation
As statistical learning is focused on the inputs X,
the distribution of the output Y is still unknown at
this point and the Monte Carlo (MC) method must
be applied to estimate Pf . Simply using a crude
MC procedure proves to be unworkable in practice
due to the excessive number of model evaluations
needed to enable an accurate estimation. In order
to construct a computationally viable estimator,
priority is given to rare-event simulation algo-
rithms since they are designed to explore selec-
tively the sample space. Among those techniques,
Importance Sampling (IS), which was first intro-
duced by Kahn and Harris (1951), emerged as
an almost cure-all solution to alleviate the com-
putational effort. IS brought the innovative idea
of generating NS independant and identically dis-
tributed samples X(k) with a goal-oriented auxil-
iary density h. The change of sampling density is
made possible by the construction of a penalized
estimator taking into account the discrepancy be-
tween f̂0 and h:

P̂ IS
f =

1

NS

NS∑
k=1

1Df
(X(k))

f̂0(X(k))

h(X(k))
. (15)

In the equation above (where 1Df
is the indicator

function of the failure domain), the optimal den-
sity hopt is the one which minimizes the variance
of P̂ IS

f . As hopt depends on the quantity of
interest Pf , it has to be learnt with an iterative
algorithm. In this work, Non-parametric Adaptive
Importance Sampling (NAIS) is used to construct
an ad-hoc auxiliary distribution, drawing on the
initial work of Zhang (1996) and improvements
due to Morio (2012). From samples generated
with f̂0, a mixture of weighted Gaussian kernels
ĥ is proposed to learn hopt. At each step of the
iterative process, the samples giving rise to the
highest outputs are integrated into the auxiliary
density which is expected to become closer toDf .
Whether NAIS is a tried-and-tested method for
the application described in Section 4, resorting
to any other IS technique would not have been
a misguided strategy. For instance, Kullback-
Liebler’s cross-entropy, which is thoroughly ex-
amined in Rubinstein and Kroese (2013), would
have led to similar results in all what follows.

3.3. Complete workflow
As explained in Section 1, the raw data consist of
a small amount of observations X0, transformed
into U0 for inference purposes. From this inital
dataset, only a single estimation of Pf can be
computed. To be able to observe variability on P̂f ,
data-driven risk assessment must be performed
for other datasets Ũ

(i)
stemming from the same

underlying distribution than U0. As the theoretical
density fX is unknown, bootstrapping seems to be
the only workable method to replicate the original
data. Invented by Efron (1992) and extensively
used since then, bootstrap resampling relies upon
the empirical distribution function F̂N to generate
new datasets. In this way, NB bootstrap replica-
tions are produced from U0 and they are expected
to give a sufficiently representative idea of how
much the dataset may vary from one experiment
to the other. For each dataset Ũ

(i)
, empirical

Kendall’s matrix τ̂ (i)K is computed and the learning
phase yields the R-vine copula density ĉ(i).

To attain a sufficient level of convergence in
the estimation of the sensitivity indices, it is often
necessary to take large values of NB . For effi-
ciency reasons, applying the NAIS algorithm to
each copula density ĉ(i) cannot be contemplated.
Indeed, running NAIS turns out to be computa-
tionally expensive because the goal-oriented ex-
ploration of the sample space Ω implies many
evaluations of the Gaussian kernel mixture ĥ. To
couple sensitivity analysis and rare-event simula-
tion, Morio (2011) proposed to complete only a
single training of hopt denoted ĥ0. After checking
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ĉ(1)
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Fig. 1. Simulation scheme to study the sensitivity of risk assessment to pairwise dependence modeling.

that the loss of optimality is not detrimental to
estimation accuracy, all other failure probabilities
required in sensitivity analysis are computed by
plugging ĥ0 into a slightly different version of
Eq. (15). The samples X(k) are retrieved from the
last iteration of NAIS and used for all estimations:

P̂
(i)
f =

1

NS

NS∑
k=1

1Df
(X(k))

f̂ (i)(X(k))

ĥ0(X(k))
. (16)

At the end of the workflow process illus-
trated on Fig. 1, several input-output samples
(τ̂ (i)K , P̂

(i)
f ) are available to analyze the stochastic

model ϕ. Special care must be taken to choose
appropriate sensitivity indices because Kendall’s
correlation coefficients are not mutually indepen-
dent inputs. In this context, a direct computa-
tion of Sobol’s indices, as advocated when inputs
are actually independent, could lead to erroneous
interpretations. Over the past few years, as dis-
cussed in Iooss and Lemaı̂tre (2015), several ex-
tensions have been developped to adapt variance-
based importance measures defined in the inde-
pendant case to correlated inputs. Borgonovo’s
indices are preferred since they encompass the
entire distribution of the output rather than only
focusing on the second-order moment. They at-
tempt to quantify the impact suffered by the output
density when conditioned by one or several input
variables. All Borgonovo’s indices lie in [0 ; 1]
but, unlike Sobol’s indices, their sum is not equal
to one. In this work, an estimation scheme pro-
posed by Derennes et al. (2018) is used to estimate

all first-order Borgonovo’s indices with a unique
joint NB-sample of (τ̂ (i)K , P̂

(i)
f ).

4. Application

4.1. Test case
The methodology introduced in Section 3 is now
applied to the buckling of a square plate (a/b = 1)
under uniaxial compression (see Fig. 2). All four
edges are simply supported. The plate is made
of a 8-ply carbon/epoxy composite laminate. An
acceptable modeling should include two major
assumptions: (a) there is no coupling between
the membrane behavior and the bending behavior,
and (b) the bending behavior is orthotropic. It
is assumed that (a) and (b) hold even under the
combined effect of the dispersion observed on the
elastic properties of the carbon/epoxy-based ply
material and the existence of small random errors
in the ply orientations (±2°). Buckling refers to

x 

y 
z 

Lx 
a 

b 

Fig. 2. Buckling of a simply supported plate under uniaxial
loading. The buckling mode is (m∗, n∗) = (2 , 1). The
colormap corresponds to the displacement in the z-direction.
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a loss of stability which occurs within the elastic
range of the material. When the applied load Lx
is increased, the structure deforms into a buckling
mode characterized by m half-waves in the x-
direction and n half-waves in the y-direction. For
any integers m,n ∈ N∗, the buckling factor Λm,n
is a multiplier that gives the magnitude of the load
required to produce such a buckling mode.

4.2. Input-ouput model
Particular attention is paid to the dependence
structure existing among the coefficients of the
bending stiffness matrix D. It should be noticed
that D is a 3-by-3 symmetric positive-definite ma-
trix with coefficientsD13 andD23 being neglected
to conform to the orthotropy assumption:

D =

(
D11 D12 0
D12 D22 0

0 0 D33

)
≡

D11
D12
D22
D33

 ∈ R4. (17)

Constructing a reliable failure criterion rests on
the computation of the buckling factors. As pro-
posed by Berthelot (1999), they can be expressed
in terms of the coefficients of the matrix D:

Λm,n =

[
D11

(m
a

)4
+D22

(n
b

)4
+

2(D12 + 2D33)
(m
a

)2(n
b

)2] π2(
m
a

)2
Lx

. (18)

The critical buckling factor Λ is then the smallest
buckling factor among all m,n ∈ N∗ and must
be regarded as a deterministic functionM of the
bending stiffness matrix:

Λ = min
m,n

Λm,n = Λm∗, n∗ =M(D) . (19)

The optimal values m∗ and n∗ give the shape of
the buckling mode. Under a given load case Lx,
buckling occurs if Λ > 1 and risk assessment aims
at quantifying Pf = P{M(D) > 1}.

4.3. Simulation study
A simulation code R combining several ex-
pert feedbacks within a probabilistic mechanical
model allows to generate samples according to the
underlying density fD. Compared with only being
given X0, having access to R brings two major
benefits: (a) the marginal distributions can be
learnt accurately with kernel density estimation,
and (b) the theoretical failure probabilities can be
estimated trustfully with a crude MC approach.
In view of (a), the marginal distributions are as-
sumed to be known exactly and X0 ∈ RN×4 is
tranformed neatly into U0 ∈ [0 ; 1]

N×4. It was

observed numerically that NB = 3000 bootstrap
replications are required to obtain low-variance
estimators δ̂τ̂ij of Borgonovo’s indices. During
the learning phase, copula modeling is performed
with statistical tools provided by the R package
VineCopula. To shrink as much as possible
the intrinsic stochasticity of the NAIS algorithm,
NP = 3000 particles are incorporated. The auxil-
iary density ĥ0 is reached after a small number of
iterations (two or three according to the rare-event
under study).

4.4. Results
Sensitivity analysis on risk assessment is per-
formed for two cases. The compressive loads
are L

(1)
x = 540 N/mm and L

(2)
x = 560 N/mm.

The failure probabilities are respectively equal to
P

(1)
f = 1.82 × 10−2 and P (2)

f = 1.04 × 10−3.
To simplify notation, the input variables D11,
D12, D22 and D33 play the role of the inputs
X1, X2, X3 and X4. Estimates of all first-order
Borgonovo’s indices are provided in Table 1. The
sensitivity analysis procedure has been run ten
times, the resulting estimates have been averaged
and the corresponding coefficients of variation γ̂ij
have been computed. τ̂12, τ̂23 and τ̂24 emerge
as the most influential Kendall’s coefficients on
the estimated failure probability P̂f . Even if the
estimators δ̂τ̂ij seem to display a large variance,
rankings between sensitivity indices are preserved
from one estimation to the other.

Table 1. Estimation of Borgonovo’s indices.

L
(1)
x L

(2)
x

i− j δ̂τ̂ij γ̂ij δ̂τ̂ij γ̂ij

1− 2 0.089 16 % 0.038 36 %
1− 3 0.041 31 % 0.020 36 %
1− 4 0.028 34 % 0.022 25 %
2− 3 0.086 21 % 0.044 20 %
2− 4 0.109 14 % 0.044 25 %
3− 4 0.025 41 % 0.014 30 %

5. Conclusion
In this paper, a global sensitivity analysis tech-
nique has been developped to quantify and to
rank the influence of the uncertainties conveyed
by each pair-copula modeling on the failure prob-
ability. The main idea lies in taking into account
the variability related to the R-vine specification
through the uncertainties affecting Kendall’s ma-
trix. This framework avoids to make any prior
assumption on the underlying R-vine model but
leads to analyze a stochastic model.
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At the end of the sensitivity analysis, a pair of
variables (or a small subgroup of pairs) is iden-
tified as having a stronger impact on risk assess-
ment. Future works would consist in seeking to
intervene upstream in order to facilitate and to
improve copula modeling for those pairs. Let us
suppose that a pair (Xi , Xj) has been targeted by
the procedure. It can be easily imagined solliciting
some expert knowledge or aquiring new data in
order to improve the way cij is learnt. Then it
raises the obvious question of how this additional
knowledge could be integrated smoothly into a
predefined R-vine model. If the link (i, j) does
not belong to the tree T1, it is not a trivial issue
and it deserves further study.
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