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Abstract

New asymptotic models are formulated to capture the thermal transfer across falling
films. These models enable us to simulate a wide range of Biot and Peclet number values,
without displaying nonphysical behaviors. The models correctly capture the onset of the
thermally developed regime at the inlet of the flow. To evaluate the parameter space
of acceptability, a comparison has been made with the primitive equation solution for
periodic boundary conditions, as well as for an open flow with a periodic forcing at the
inlet. A good agreement is obtained for moderate to high Peclet numbers.
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x  streamwise coord. Tw wall temp. We Weber number
y  cross-stream coord. T, ath. temp. Ct Inclination number

time h film thickness Pe Peclet number
g grav. acc. q local flow rate Bi  Film Biot number
B plate inclination 0 T|y=n Bi Biot number
v kinematic visc. 7 h2 0yyT|y=n Pr  Prandtl number
1 dynamic visc. T fluid temp. Nu Nusselt number
p specific mass U velocity (x)
a diffusivity v velocity (y)
k conductivity Xnu  Nu. flow equiv. var.
H conv. coeff. Re Reynolds number

Table 1: Nomenclature
Introduction

Falling films form thin layers of liquid flowing on a tilted plate, with a thickness of the
order of a millimeter or less. Starting with the works of Nusselt [25], followed by Kapitza
and Kapitza [20], this topic has been heavily studied and the hydrodynamic of a tilted
falling film flowing on a smooth plate is well known. Curiously, the interplay between heat
or mass transfers and the wavy dynamics of falling films has been far less studied, even
though Frisk and Davis [14], Yoshimura et al. [40] demonstrated that the wavy regime of
the film can indeed increase several folds the heat and mass transfer coeflicients between
the liquid and the gas. Most studies on heat and mass transfer across the film focus on
the wave-less smooth film situation [21]. Only a few studies have been devoted to the
wavy regime and addressed heat transfer and hydrodynamics couplings by solving the
Fourier equation across the film, the hydrodynamics being dealt with the Navier-Stokes
equations or a reduced model. The former approach leads to expensive computations,
hardly compatible with a parametric study of the phenomena. It has been restricted
either to 2D simulations in a domain corresponding to a full exchanger plate [35], or
to numerical domains of limited extensions [17, 16, 38, 24, 23]. The latter approach

allows better performances with acceptable accuracy but is still not fast enough to allow
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extensive studies, such as sensibility analyses or optimizations. This explains a lack of
numerical studies of non-isothermal falling films, the computation being too expensive to
simulate evolution on a full exchanger plate for a significant time interval at a reasonable
cost.

Another approach is to use reduced models for both fluid dynamic and heat trans-
fer as proposed by Hirshburg and Florschuetz [18] some years ago or more recently by
Aktershev et al. [2] but under a fully-linear assumption for the temperature field. The
convection effect has thus been neglected. Later, Ruyer-Quil et al. [30] have developed
a reduced model, based on the weighted residual integrated boundary layer (WRIBL)
approach. They considered a linear distribution of the temperature field as a closure
hypothesis. This linear distribution was parameterized with only one variable corre-
sponding to the free surface temperature § = T'|;=;. Unfortunately, this model shows
nonphysical behaviors at large Peclet numbers, as the temperature field may lie outside
the admissible range. Trevelyan et al. [37] proposed a family of models for both constant
temperature and imposed heat flux conditions at the wall. Their approach improves over
Ruyer-Quil et al. [30] by using test functions verifying all boundary conditions. However,
occurrences of non-physical negative temperatures are still observed as the Peclet num-
ber is raised. Recently, Chhay et al. [9] derived a one-equation model in a conservative
and Galilean-transform invariant form. In that case, the temperature is bounded, but
the model introduced a non-physical critical value 8. = 7/22 at which convective terms
cancel out. It seems that a more complex parameterization of the temperature field is
required to overcome this deficiency. Lastly, Thompson et al. [36] considered the inter-
action of a falling film with a non-uniform heating and derived second-order consistent
models. However, the inclusion of second-order convective terms limits their applicability
to low and moderate Peclet numbers. This is due to the non-physical vanishing of the
diffusion terms at a critical Peclet number. The main focus of our study is to overcome
the aforementioned limitations of previous attempts and reach a moderate to high Peclet
number domain of applicability with reduced models.

A cure to these shortcomings have been proposed with a two fields parametrization
(Cellier [7]), adding a second variable ¢ = 0, T h|j=o corresponding to the heat flux at the

wall. This approach leads to better results than before but still shows some nonphysical
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behaviors, with an unbounded temperature. Moreover, the damping terms were not
correctly accounted for, non-stationary simulations showing a faster development of the
wall thermal boundary layer in the case of the primitive Fourier equation than predicted
by the model. While not being an issue when studying fully developed traveling waves,
it impedes the simulation of heat transfer whenever the thermal healing length is not
negligible compared to the exchanger dimension. This is especially the case when the
Peclet number is increased.

At the same time, only a few experimental studies on this topic are available due
to numerous difficulties. Thermocapillarity (Marangoni effect) leads to dry patches for-
mation that is highly problematic when a tracer is used in the fluid. Properly probing
the temperature field inside the fluid depth (and not only the surface temperature) is
not trivial. Promising approaches involve planar laser-induced fluorescence (PLIF) or
laser-induced luminescence to access the temperature volumetric mean [5, 8, 39, 33].
Furthermore, most of the study leads to three-dimensional hydrodynamic regimes, for
which an extension of the modeling is required in order to perform a proper comparison
[10, 12, 11]. Difficulties also occur with the control of the boundary condition. Imposing
a constant temperature or even a constant flux at the wall is experimentally challenging.
A similar issue arises with the heat transfer at the free surface, whose precise monitor-
ing requires to account for the development of thermal boundary layers in the gas flow,
a difficulty we disregard here using a Newton law of cooling. In order to avoid these
difficulties and to validate precisely our modeling attempts, numerical experiments have
been used instead. Solutions to the Fourier equation are used as a reference, which allows
us to get rid of the experimental difficulties and focus on the modeling of heated falling
film at high Peclet number .

In this study, we propose a new non-isothermal falling film model in which the tem-

perature field is parameterized with two variables:
o*T
0="T|;= =h—| . 1
‘y—l ¥ 6:1/2 g=1 ( )
This is an attempt to overcome the limitation of the modeling proposed by Ruyer-Quil
et al. [30] and Chhay et al. [9] by adding more accuracy in the temperature field repre-
sentation, and obtain a model that possesses coherent damping rates.

The paper is structured as follows: section 1 presents the problem to be solved. Our
4



modeling attempt follows in section 2. These attempts are validated by the Fourier
solutions and former attempts by performing two tests. The first one consists of lineariz-
ing the equations assuming a non-deformable interface. Construction of large-amplitude
nonlinear traveling waves provides the second test. We next discuss time-dependent sim-
ulations of heat transfer across falling liquid films in extended domains using our model
(section 3). The accuracy and region usefulness of our models are then discussed in the

parameter space Biot versus Peclet numbers.

1. Primitive equations

Notations

We consider a plane making an angle 8 with the horizontal. We restrict ourselves to
the two-dimensional case where the solution is independent of the span-wise coordinate,
and we introduce z and y to refer to the steam-wise and cross-stream coordinates respec-
tively. A film of thickness h flows on a plane maintained at constant temperature T, and

exchanges heat with a cold atmosphere T, with a constant heat transfer coefficient H.

Figure 1: Sketch of a heated falling film (slice).

Here we turn directly to dimensionless equations and choose a scaling based on the
Nusselt film thickness hy = [3vqr/(gsinB8)]'/? and the velocity 3uy = gsinBh% /v
corresponding to three times the averaged velocity of the Nusselt solution, where ¢y, is

the volumetric flow rate per unit span-wise length, v = u/p is the kinematic viscosity
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and g is the gravitational acceleration. Our choice of a velocity scale corresponds to
the speed of kinematic waves generated by the deformation of the free surface in the
long-wave limit, as traveling waves have a speed close to it.

The dimensionless primitive equations thus consist in the Navier-Stokes equations

3Re (Qyu + udyu + voyu) = —0zp+ Opgut+ Oyyu+1, (2a)
3Re (0pv + udyv + vOyv) = —0yp+ Ozzv + Oyyv, (2b)
Ou+0v = 0, (2¢)

the Fourier equation
3Pe (0T + u0, T + v0yT) = Oz T + 0y, T, (2d)
completed by the no-slip condition at the wall
u=v=0 at y=0, (2e)
the kinematic condition at the free surface
Och + ulp0zh = vl , (2f)

a temperature imposed condition at the wall and a Newton law of cooling at the free

surface

T=1 at  y=0, (2g)
O0yT — 0,h0,T = —BiT\/1 + (0,h)? at y=nh. (2h)

We note that equation (2f) is formally equivalent to the mass balance
Oth+0;¢=0 (2i)

where ¢ = foh udy is the flow rate. Re = “NVhN = 2 is the Reynolds number, Pe = PrRe

is the Peclet number and Pr = £ is the Prandtl number. Finally, Bi = % is the film
Biot number, where a, k and H are the thermal diffusivity, the conductivity and the

convective heat transfer coefficient. It is also useful to define a second Biot number

~ 1/3

Bi = % based on a length [, = (ﬁ) corresponding to the balance of gravity and

viscosity. In contrast with the film Biot number Bi, the Biot number Bi is independent
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of the Reynolds number. The atmosphere has no active effect on the film hydrodynamic
and the thermocapillary effect is not taken into account (but can be easily added to the
model derivation if needed) as this study focus on developing a model compatible with

the high Peclet case.

2. Development

In the following, we focus on the derivation of averaged heat equations which enables
us to solve the heat transfer within the film more easily than solving the Fourier equa-
tion (2d) within the framework of the long-wave assumption. We thus introduce a film
parameter € as the ratio of the typical thickness of the film to the typical length of the
waves. The derivatives are of the order of this £ term, with respect to the stream-wise
direction z or with time, as the film evolution is assumed to be slow. As a consequence,
the cross-stream velocity is v = — [/ d,udy = O(e).

Within this framework, we further assume that the velocity field u remains close to

the parabolic profile corresponding to the Nusselt flow, i.e.

u = u?+0(@) (3)
= 3—,3 (g - ;zf) +0(e), (4)

where ¢ = foh u dy is the local flow rate and § = y/h is a reduced coordinate. The velocity
field is thus parameterized with two variables, the film thickness h and the local flow rate
g, whose evolution is governed by the mass balance (2i) and an averaged momentum
balance. Several models have been proposed within this framework. Let us cite for

instance, the model proposed by Vila and coworkers [3].

2.1. Gradient expansion approach

We thus aim at an integral approximation of the energy balance which mimics the
elimination of the cross-stream coordinate that is achieved in Saint-Venant like models.
To this aim, we shall project the temperature distribution onto a carefully chosen set of
functions. The associated amplitudes of these functions will form our parametrization
of the temperature field. The evolution equations associated to these amplitudes will

approximate the variations in space and time of the temperature within the waves. The
7



obtained sets of reduced equations will be validated using two different tests. The first one
corresponds to the linear damping eigenmodes of the diffusion operator. As observed in
[6], passing this test is crucial to correctly capture the thermal entrance region of the film
where the thermal boundary layers develop from the wall and free surface. The second
test is the construction of traveling-wave solutions of large amplitude. In the latter case,
the thermal regime is developed but differs from the Nusselt linear temperature profile
due to convective effects.

Let us first consider that the temperature distribution is never too far from its sta-

tionary (9, = 0) and uniform (9, = 0) distribution, i.e. a linear distribution given by:

1
Tne =1 —F —1])y.
v =1+ (g 1) 7 6

A regular expansion around Ty, with respect of the film parameter €, i.e. T = Tny(h) +
€Ty + €*Ty . .. is next obtained by solving in sequence the Fourier equation (2d) at each
order. The result can be found in e.g. [19], where the corrections T;, T5 and so on are
all functions of h and its derivatives. Within this framework, the temperature field is
thus entirely slaved to the kinematics of the film flow. However, it is well known that
this description of the temperature field is inaccurate whenever the advection of heat
by the flow is non-negligible, i.e. whenever the Peclet number is of order one or larger.
We, therefore revisit the gradient expansion by allowing some degrees of freedom to the
temperature distribution.

Our starting point is the linear relaxation of temperature for a uniform film flow.
Considering that the film thickness h and velocity field (u, v) are known (and constant),
linearization of the energy balance around the conductive equilibrium and decomposition
in normal modes can be done by writing T’ = Ty +1(7) exp (ikz + At), T < Tny, where

A is the eigenvalue, k a real wavenumber and again § = y/h.
3Peh*(\ — i ku)T = dgyT = LT with Tly—o =0 and 9;T|, +BihT|; =0 (6)

Solutions to (6) form discrete branches, as setting k to zero (very long-wave limit) yields
eigenfunctions UI(QO(Q) and eigenvalues )\,(an)o given by

w o - n H
”1(6:)0 = sin(l, 7), )‘l(c:)() = ~3pe (7a)
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where [,, are solutions to

lcotl+ Bih =0. (7b)

All eigenvalues A(™) have a negative real part. They correspond to relaxation modes
promoted by the diffusion of heat across the film. Two limits are worth investigating.
The first one is Bi = 0 which corresponds to an insulated free surface, in which case the
Tnu = 1 is constant and equal to its value at the wall. The second limit is Bi — oo, in
which case the free surface is at the constant temperature T = 0 (equal to the temperature
of the gas phase).

For Bi = 0,the discrete spectrum of £ for k =0 is

o= & 2T om
1*27 2*27 *23

3PeAl’y ~ —247,  3PeA® ~—2221,  3PeA? ~ —61.69.  (8D)

(8a)

For Bi — oo we have instead

ll = T, lg = 27T7 lg = 371', (9&)

3PeAl’, ~ 987,  3PeA® ~ 3948,  3PeA?) ~ —88.83.  (9b)

Considering long-time evolutions of the temperature, deviations from the linear temper-
ature distribution (5) are all damped by the relaxation eigenmodes. As a consequence,
the temperature field is slaved to the film thickness. At shorter time scales, only the
eigenmodes with sufficiently small eigenvalues are effective and the first eigenmodes (7)
should be taken into account, in which case the temperature field depends not only on h
but also on the amplitudes of some eigenmodes. Roberts [28] used the center manifold
approach to extend this idea in the case of non-uniform film thickness and large devia-
tions. Following Roberts, we shall assume that the time evolution of the temperature is
determined by the evolution on a manifold that is tangent to the first eigenmodes (7).

Let us thus decompose the temperature field into

T=Tng +TO +7W (10)

(2)

,il)o and v, ;. This idea is similar to

where T(© is aligned with the two first eigenmodes v;
the semi-analytical method for solving the problem of heating of a uniform film flow that

has been proposed by Aktershev and Bartashevich [1]. However, instead of projecting
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the temperature field on the sinus functions v,(QO, as proposed by Aktershev and Barta-

shevich, where [,, are not given explicitly but indirectly through the solution to (7b), it
is more convenient to use polynomial approximations.

Requiring that ©1(y) and 02(y) are polynomials of the lowest degrees in § and Bi
which verify

01(1) + Biho (1) = 0, 91(0) =0, (11a)
for Bih =0, 0(l) = 1, 01(1) =0, (11b)
for Bih > 1, 01(1) < Bih, 01(1) — 1 < Bih, (11c)

and
75(1) + Bihto(1) = 0, 2(0) =0, (12a)
for Bih =0, (1) = 1, 05(1) =0, 02(2/3) =0, (12b)
for Bih > 1, 72(1) < Bih, 05(1) — 1 < Bih,
92(1/2) < Bih, (12¢)
then gives
o = y(2-y)+Bihy(l-7), (13)

5y, = —12j (; - g) <i - g) + Bih 25(1 — §) (g - ;) . (14)

v1 and Uy are polynomial approximations to the relaxation eigenmodes v,(Cl:)O and UI(QO.

Obviously, these approximations are more accurate at low values of the Bi number than
at high values. Indeed, we anticipate that the most challenging phenomenon to capture is
the onset of thermal boundary layers in the vicinity of the hyperbolic stagnation points
appearing with the recirculation zones in large-amplitude solitary waves [37]. These
thermal boundary layers do not develop in the limit of large Bi numbers as the free surface
temperature becomes constant and we therefore focus on accuracy on low or moderate
values of Bi. We next introduce a linear combination of #;, 5 and two variables to
represent the departure of the temperature field from the linear temperature distribution.
The choice of these variables is particularly important. In order to fully capture the onset

of a thermal boundary layer close to the stagnation point at the front of the waves, we
10



chose variables which monitor the temperature distribution close to the free surface. The
free-surface temperature § = T'(y = h) is the most obvious choice. We complete it using
the derivative of lowest order which is independent to f. As the Newton law (2h) relates
the gradient of temperature to the free-surface temperature, we chose ¢ = h?9,,T(y = h)

such that ¢ has the dimension of a temperature. We thus introduce 0, and 05 :

o = P[3—3y+7*+Bih(2 - 375+ 7?)], (15a)

g(1-9)°. (15b)

01(1) = 1, 017(1) =0, (16a)

(1) = 0, w7(1)=1. (16b)

We first introduce the ansatz

1

© _g_ 5 (7 ; -1
T [0 — 00(h)]01(7) with 6o T B

(17)

so that 0 = (Txy + T@)(y = h). We emphasize that Tx, + T©)(y = h) defined by
(17) verifies the boundary conditions (2g) and (2h). Thus, according to our choice of

variables,; the decomposition (10) with (17) is set unique by the gauge condition
TO|,—n = 0. (18)
Inserting the decomposition (10), (17) in (2d) gives
Dyy TW = 3Pe (9, + udy + v9y) (Txw + TO) — 0pu(Trvw + T?) — 8, TV . (19a)

Here, the second-order corrections to the advection terms 3Pe (0; + 10y + v0y) T have
been dropped out while the diffusion terms have been retained. This is justified con-
sidering that (i) these corrections are small compared to the other advection terms,
(ii) all leading-order physical contributions have been retained in (19a). This proce-
dure is similar to the treatment of the momentum balance using the weighted residuals
technique, where second-order inertial terms are dropped from the averaged momentum
balance. See the discussion in Richard et al. [27]. Inclusion of these second-order inertial

terms is possible but at the expense of complicated formulations or limited ranges of
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applicability as performed in Scheid et al. [34] using a PadAl approximant technique
We note that solving (19a) is similar to looking for TM in terms of an expansion
7M1 = ng(l) +52T2(1) +. .. with respect to the film parameter where only the leading-order

contributions are retained. Equation (19a) is completed with the boundary conditions

T™W = 0 at y=0, (19b)

0,7 — arhé)z(TNu—kT(O))—Bi(TNu—s—T(O))%(azh)Q at y—h. (19)

Solving (19) gives the correction TM as a polynomial in y whose coefficients are
dependent on the variables h, ¢, 8, ¢ and their derivatives. The gauge condition (18)
then provides an evolution equation for the variables 6, namely
3(82 + 19Bih) q B 57Bih ﬂ@ n
7(27 4 TBih) h " 7(27 + 7Bih) h2 °
3[11 + (—11 + 38Bih)6)] } ~ 60(1 4 Bih) 6 — ()

3Pe0i = 3Pe{—

14(27 + 7Bih)h 27+ TBih 12
oo (SF3C2HTBINGY Ouh (64 6(~1+2Bih)0Y (@12
rr 27 + 7Bih h 27 + 7Bih h?
6(8 + 7Bih)6\ 0, h0,0
(8 + 7Bin) 7 (20)
27 + 7Bih h

referred hereinafter as the § model.
In essence, equation (20) is an averaged energy balance which must be contrasted to

the model derived by Ruyer-Quil et al. [30] using the method of weighted residuals:

_ _ 9O
3Ped;0 = 3Pe{—27q8 9—}—1(1 9)8mq}—30 i

20h " 40 h h?

2

The two energy balances are consistent with the long-wave expansion up to first-order

for the convection terms and second-order for the diffusion terms. In fact, (21) can be

obtained following our approach with the ansatz
TO = [0 —0y(h)]g sothat Tny +TP =1+ (0 —1)7 (22)

Considering the aforementioned first test consisting of the linear relaxation of the

temperature to the linear Nusselt distribution, (20) represents a significant improvement
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over the former formulation (21). Linearizing (20) considering a flat film (i.e. h = 1 and
g = 1) gives a damping rate

3Pe)p = 7% — k2 (23)
which is compared to the eigenvalue A(Y) in figure 2b. As expected, a much better
agreement is observed with the new formulation (20) than with (21).

We note that the projection approach followed by Thompson et al. [36] corresponds

to the ansatz (17) where 7 remains aligned with the Nusselt linear temperature dis-

tribution, i.e.
TO = [0 — 0g(h)]oyn  with Dy = Tiu/O0(R) (24)

so that 0y, (1) = 1 as required by the definition of 8. Following our approach, the resulting

evolution equation for the free-surface temperature then reads

3(25 + 7Bih 21Bih  ¢f
3Pedf = 3Pe {_ 2(0(3 ¥ Bih)) %aza ~ 20(3 + Bih) %Wb

N 27Bif q} _ 6(14Bih) § — 0

20(3 + Bih) " 3+Bih k2
o0+ < 3Biho ) Oy ( 3Biho ) (95h)?

3+Bih) h 3+Bih/) 2
6(1 + Bih)0\ 0,hd,0
< 3+ Bih > h (25)

Equation (25) represents a truncation of the model derived by Thompson et al. [36]
(equation 6.6 in this publication) by dropping second order convective terms proportional

to Pe?. The corresponding damping rate

6(1 + Bih
3PeA, — 7% 2 (26)

is again compared to the eigenvalue \; in figure 2a.

Our comparisons to previous attempts of one-variable modeling would not be com-
plete without mentioning the work by Trevelyan et al. [37]. These authors have con-
structed Galerkin projections of the temperature field which, in contrast to [30], verify
the boundary conditions (2g) and (2h). However, by following strictly the Galerkin ap-
proach, their one-variable model, referred to as GST|[1] in their work, is not consistent

with the long-wave expansion (consistency is however recovered when the number of
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variables is larger than three). Considering GST[1], Trevelyan’s choice of polynomial

projection is equivalent to
1
TO = [0 — 0g(h)]ome(y/h)  with  dre(f) = 30 (3-7*+Bir(1—9%) . (27)

This choice of polynomial profile stems from the requirement that 9,,7" = 0 at the wall,
as can be proved easily by writing the Fourier equation (2d). A consistent evolution
equation for 6 similar to (20) and (25) can easily be formed from the ansatz (27) following

the approach developed above. For the sake of brevity, we refrain from writing it.

2.2. Construction of traveling-wave solutions

A second validation of the modeling approach is offered by the construction of the
traveling-wave solutions to the models. Considering a stationary solution in a frame of
reference £ = = — ct, moving at constant speed c, the set of partial differential equa-
tions reduces to ordinary differential equations which is then recast into an autonomous
dynamical system [19]. This dynamical system of finite dimension is solved using a con-
tinuation method by Auto07p software [13]. We have focused on solitary-wave solutions
to (20) where the hydrodynamics of the film is modeled by the Saint-Venant equations

derived by Vila and coworkers

Oh = —0.q, (28a)

2 2
3Rediq = —3Red, (qh + 225h5) —h- 3% + Wedyauh. (28b)

In this section, we compare the solutions to the different one-variable models of heat
transfer to the solutions to the primary Fourier problem (2) that we have obtained using
a classical pseudo-spectral method (see section AppendixA for details).

Equation (21) has been shown to be limited to low Peclet values as its solutions present
nonphysical values of the free-surface temperature, i.e. 6 lies out of the admissible interval
[0,1]. We present therefore in figure 3 the evolution of the minimum of 6 as a function
of the Reynolds number Re. The film is vertical (8 = 90°) and the liquid properties
correspond to water (Ka = 3000).

Comparisons to the solutions to the Fourier equations (2) show that (20) achieves a

much better agreement to the reference than the former averaged energy equation (21).
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Figure 2: Real part of the eigenvalues corresponding to the modal response of the temperature field to

a perturbation of wavenumber k. Solutions Ag, A+, Agcheia to the models (20), (31), (21) and (25) are

compared to the solutions A(™) to (7b)
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Fourier —++= Thompson (trunc.) == 0
—++— Scheid ——— Thompson (full) == 0-9

1 .
00 25 50 75 100 12,5 150 0 2.5 5 7.5 10 125 15

Figure 3: Minimum of the free surface temperature # under a solitary wave as function of the Reynolds
number for a vertical water film (8 = 90° and Ka = 3000). Left: Pr = 30 and Bi = 0.1 ; right: Pr =7

and Bi = 10. The insert shows an enlargement of the main plot.

Aberrant values of # are almost unobserved with the new formulation. Solutions the
model by Thompson et al. [36] present a similar property , but only if the second-order
convective terms proportional to Pe? are dropped out leading to (25) . Considering that
(20), (21) and (25) present similar mathematical structures, the origin of the differences
in behavior of their solutions is not obvious. In particular, as is generally the case with
asymptotic expansions, the conservative structure of the basic Fourier equation is lost.
Yet, it can be noticed that among the ansatze for the temperature profile presented so
far, (17) and (24) verify the Newton law of cooling (2h), whereas (22) does not. In
fact, with (22), the reconstructed temperature field T = Ty + T + T verifies the
Fourier equation, the boundary condition (16a) at the wall, but complies with the New-
ton law (2h) at the free surface only in the asymptotic limit where 6 remains close to
0o(h), which is a more restrictive condition than ensuring that the second-order advection
terms 3Pe (9; + ud, +v9,) T remains small in comparison to first-order ones. How-
ever, starting with the temperature ansatz (27) corresponding to the work by Trevelyan
et al. [37], the obtained model does present occurrences of negative temperature even
though (27) verifies the boundary condition (2h). Therefore, we conclude that requiring

that the temperature profile verifies the boundary conditions is not sufficient to guarantee
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that @ remains within the physical range. To conclude this comparison of our approach
with previous attempts, we have added to figure 3 the curves corresponding to the model
by Thompson et al. [36] including second-order convective terms. Besides complicating
the problem to solve, inclusion of these second-order terms leads to non-physical values
of the temperature as the Peclet number is raised, which severely reduces the parameter
range for which this model may be useful.

Yet, a close examination of the distribution of 6 (figure 4) under a wave shows that
the model (20) overestimates the variations of temperature under the wave. The model
also fails to reproduce the jump of free-surface temperature at the front of the wave which
is promoted by the presence of a roll in the wave crest. This rapid variation signals the
development of a thermal boundary layer in the vicinity of a hyperbolic stagnation point
at the front of the crest (at h =~ 2.6 for the discussed solitary wave). The onset of a
thermal boundary layer cannot be captured by (21) as 6 tends to be a function of h in

that case whenever the Peclet number Pe is large as observed in figure 3.

Fourier —=- 0 -==0-9

0.7 —
0.6 4
>

0.5 4

0.4 —

0.3 1 T T T T 1 - T T T
100 110 120 130 140 150 1 2 3

X h

Figure 4: Distribution of the free surface temperature # under a solitary wave as a function of z (left)
and the fluid thickness h (right) for a vertical water film (8 = 90°, Ka = 3000, Re = 33, Pr = 30 and
Bi=0.1).
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2.8. A two-variable model of heat transfer

Overcoming the limitations of one-variable averaged heat equations demands to enrich
the modeling. We can do so by selecting another variable which reflects the complexity of
the temperature field in the vicinity of the free surface, we thus introduce ¢ = h?9,,T(y =
h) such that ¢ has the dimension of a temperature.

We then introduce a more complete ansatz
T =16 — 6o (h)]01(y) + pa(7) (29)
The decomposition (29) is made unique by adding
any(1)|y:h =0. (30)

to the gauge condition (18). Solving (19) then provides an expression of the correction
T that is consistent with the ansatz (29) and the long-wave expansion up to first-order
for the convective terms and second-order for the diffusion ones. The gauge conditions

(30) and (18) then yields coupled evolution equations for the variables 6 and ¢, namely

3Pe(0, + uly—n0,)0 = % + 2Bid,hd,0 + %(&Ch)2 + Bif0yoh + 9300 (31a)
with uly—, = 2¢/h, and
15 ¢ q 024 q0
1 . .
15 {=00(1 + Bih)(0 = o (h)) — (27 + TBih)p}
O.h)? 4 0rh0,0
g, Oh A ot I, Oy (31b)
h2 h h
referred hereinafter as the 6 - ¢ model, with
3(25 + 11Bih) 66 + 9 + 6(38Bih — 11)0 57,
E, = 2= 7 F,=— —2'p
v 14 ’ ¢ 28 » Ge=7Bib,
J, = 6—(25+ 7Bih)p + 6(2Bih — 1)0, L, =48 — 12Bih — 14(Bih)*.  (3lc)

The evolution equation (31a) is the trace of the Fourier equation taken at the interface.
As a consequence, it is exact and independent of the choice of the polynomials #; and

V3.
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Figure 5: Minimum value of a 6 under a solitary wave as function of the Prandtl number (Re = 15,

B =90° and Ka = 3000).

By construction, model (31) is consistent at order €. A study of the linear response
of the model to a sinusoidal perturbation of wavenumber k assuming a uniform film flow
(i.e. h =1 and g =1/3) yields the matrix

C= - ! (32)
—60 (1 +Bih) —(27+7Bih) — k?
whose eigenvalues Ay are compared to the two first eigenvalues (7) and to damping rate
(23) in figure 2b. Ay is a good approximation to A; whereas A_ is a poorer one to
Ao. Nevertheless, A, =~ \; shall guarantee that the diffusive relaxation to the linear
temperature distribution is correctly captured by the model.

Figure 5 compares the minimum values of the free surface temperature obtained
with the one-variable (20) and two-variable model (31) for two Biot number. A minor
improvement is observed using two variables for a high Biot number instead of the one-
variable model. For both models, min(f) presents nonphysical negative values. The two-
variable model remains closer to 0 than the 8 model. For both models, this nonphysical
behavior is limited compared to previous attempts.

Figure 4 has been completed with the results of the 6 - ¢ model (31). A very noticeable
improvement over the § model (20) can be observed as the sharp variation of the free
surface temperature at the hyperbolic stagnation point in the wave is precisely captured
by the 6 - ¢ model. This agreement has been obtained over a wide range of Bi and Pr
number.
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Figure 6: Film of water on a vertical wall at Re = 15, Bi = 10, Pr = 100 and f =8 Hz.

Figure 6 presents a comparison in the very demanding case of large values of Pr
and Bi numbers where the agreement to the Fourier solution is the least convincing.
Yet, the solution to the # model agrees again well with the Fourier solution in the wave
tail, where the film is close to the Nusselt solution (a flat film), but has some trouble
to remain accurate as the shape of the wave becomes more complex. It is especially
obvious when 6 is plotted according to h (fig. 6b). Adding a second variable, more
of the temperature surface distribution complexity is captured, 6(z) mimicking well the
reference solution. The simplest model is still advantageous : it shows a good accuracy to
capture the averaged properties along the wave where the 6 - ¢ model fail to predict the
surface temperature where the film is almost flat. This is a common behavior of complex
models: they improve accuracy and are able to capture more complex phenomena but are
less robust and fail when the case is more demanding and far away from the asymptotic
(here an order-one Peclet hypothesis). This can be observed for the long-wave Benney
equations which capture the hydrodynamics of the film at low values of the Reynolds
number. The second-order Benney equation, even if more accurate than the first-order
one, is unable to deal with moderate Reynolds numbers [15].

This is confirmed by the results displayed in figure 7, which presents the global Nusselt
number for traveling-wave solutions (computed as the average of the flux at the free

surface rescaled by its value for a flat film) according to the wave frequency. The flux
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Figure 7: Film of water on a vertical wall at Re = 15. The graphs show the global Nusselt number
(average of the flux at the free surface rescaled by its value for a flat film). Top Bi = 0.1, Bottom

Bi = 10. First column Pr = 7, second column Pr = 35, last column Pr = 100.

being averaged, the 6 - ¢ model main advantage (the ability to represent the complexity
of the heat transfer in a more complex hydrodynamic regime) recedes, and the 6 model
performs somewhat better, especially for high Prandtl number. However both models
capture accurately the global heat flux through wave in the thermally developed regime.
This is particularly true dealing with water (Pr = 7). Departures from the predictions
of the Fourier equation can be observed at high values of Prandtl number. Yet, both
models provide reasonable answers even at Pr = 100.

To conclude, the two models (20) and (31) have different advantages. The first one
is robust, and can lead to a better global accuracy. It also uses only one variable to
parametrize the thermal transfer, leading to cheaper resolution cost. The latter is able
to represent more complex behaviors at a cost of a somewhat lower robustness (and
global accuracy) and a higher computational cost (which is still far less expensive than
solving the full Fourier equation). According to the goal of the study, one or the other

may be used.
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3. Time dependent simulations

The proposed formulations for the averaged heat balance have been validated through
computations of the traveling-wave solutions, which implies a thermally and hydrody-
namically developed regime. However, describing accurately the entrance region of a film
flow developing on a plate is crucial for the optimization of a plate exchanger. Therefore,
we turn to time-dependent simulations of heat transfer across a 2D liquid falling film.
These simulations have been performed using the Saint-Venant hydrodynamic formula-

tion, proposed by Ruyer-Quil and Manneville [29], which reads as

ath: —0zq

° (33)
+2Re (99,7 —179,q) L — 20t d,h + We h dypnh
9

+340,h? — 2-0,h0,q — $20,5h + 50,44 .

The reason of this choice is the model’s capacity (33) to adequately capture the
nonlinear wavy regime of liquid falling films at low to moderate values of the Reynolds
number, as demonstrated by comparisons to direct numerical simulation (DNS) (see for
instance Ruyer-Quil et al. [31]). In section 1, the hydrodynamic model has been chosen
to make a comparison with the previous study by Chhay et al. [9]. The hydrodynamic
parameters are Re = 15, C't = 0 and We = 266 in each case. They correspond to a water
film flowing on a vertical plate. This relatively low value of the Reynolds number ensures
that the hydrodynamics of the film is adequately captured by the model.

In parallel to the models of heat transfers, we also solved the basic Fourier equation
(2d) to provide means of validations. To solve the Fourier equation, a change of coor-
dinates has been performed with § = y/h € [0, 1] instead of y € [0, h]. As a result, the
numerical domain is a fixed rectangle z € [0, L], § € [0, 1], removing the need of a moving

mesh.

3.1. Application case example

As an introduction to comparisons between models and their validation to the Fourier

basic equation, a typical case is presented here. It corresponds to a water falling film
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flowing on a vertical plate with an oscillation of its inlet fluid height, periodic in time. We
chose a moderate Reynolds number and a low Biot number (as seen in heat exchangers).
The parameter set is the following: Ct = 0, Re = 15, We = 266, Pe = 105, Bi = 0.1.
The plate is maintained at a hot constant temperature, whereas the fluid flows in contact
with a cold atmosphere.

As we can see in figure 8a, the inlet oscillations grow quickly, leading to a saturated
wavetrain. These waves consist of one main hump preceded by capillary waves. These
capillary waves are close to each other and have a smaller amplitude than the main
hump. Without inlet noise, these waves are evenly spaced and stable in time. Figure 8b
shows the temperature field across the film. With moderate-to-high Peclet numbers, we
can notice convective effects at the top of the main crest where the cold fluid near the

interface mixes slightly with the fluid in the bulk region of the film.

3.2. Comparison between models

Simulations have been first run for a low Peclet number, in order to check the coher-
ence with the Fourier equation. In the low Peclet limit assumption, where the long-wave
expansion holds, the temperature fields predicted by the model should agree with the
reference solution to the Fourier equation. As we can see in figure 9, in the limit case
Pe — 0, the models present the same behavior as the reference Fourier model, for both
moderate and high Biot numbers.

As we increase the Peclet number, we still observe a good agreement with the Fourier
equation, even if our models are built on a low Peclet hypothesis (cf. figure 10). As stated
previously, the 8 model is not complex enough to catch the detail of the temperature
field (especially in the crest, near the thermal boundary onset) where the 6 - ¢ models
are capable to exhibit a similar complexity. Considering the isotherms close to the wall,
the simplest model shows a better agreement with the Fourier equation than the more
complex one, where some spurious oscillations can be seen. This is not surprising, as the
model is parameterized with only one variable corresponding to the liquid-gas interfacial
temperature (where the temperature field presents the greatest complexity). In any case,
considering the fact that our derivation assumes order-one values of the Peclet number,

the two models show a good agreement with the Fourier equation.
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Figure 8: Example study, water flowing over a vertical plate. Ct = 0, Re = 15, We = 266, Pe = 105,

Bi = 0.1. Temperature field computed solving the Fourier equation.
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Figure 9: Comparison between the reference case and the different models at low Peclet (Pe = 1). Left,

Bi = 1 and right, Bi = 100. From top to bottom, we have the 8 model and the 6 - ¢ with polynomial

test functions.
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Figure 10: Comparisons between the reference case and the different models at moderate Biot (Bi = 1).

Left panel: high Peclet number Pe = 105 (coherent with water thermal properties). Right panel: very
high Peclet number Pe = 2000.
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In addition to the periodic-box simulation, simulations of the evolution of the film
in an open large domain, representative of an element of a plate exchanger, have been
performed. This is a critical case, as our previous attempts [7] were unable to capture
correctly the onset of the thermally developed regime at the inlet of the flow. The reason
for this inaccuracy lies in an incorrect representation of the diffusion relaxation modes
discussed in the previous section. The thermal entrance length increases with the Peclet
number and can exceed the exchanger length: this is an important factor for the heat
exchanger optimization. The same parameters as the periodic-box case have been chosen
(Re = 15, Ct = 0, We = 266). We modeled a L = 20 cm length exchanger plate. A

Dirichlet boundary condition has been used at the flow input such as

1.
hlo—o =1+ Asin2rt f) qlomo = ghd

with the amplitude A = 0.1 and the frequency f = 10.

The outlet is dealt with a no-flux boundary condition: it yields some numerical errors
that are convected outside the domain. We lose a small part of the simulation domain
length, and therefore extend the domain to L = 25 cm. We then crop a buffer zone to
obtain 20 cm of useful length for the simulation.

Figure 11 focuses on the first part of the plate, where the waves are growing. The
0 - ¢ model has the same behavior when the Biot number is low and shows a slightly
better agreement with the Fourier equation than the 6 model. Both over-estimate the
interfacial temperature.

To check the accuracy of the models for a relaxation process, some simulations have
been run for a flat case (without any film perturbation) and a hot film input (7'],—¢ =
1). For the interfacial flux, our two new models (6 and 6 — ¢) have very close behaviors
(see figure 12). We are not able to capture the very first part of the relaxation, where
the Fourier model goes from no flux at all to local maxima before relaxing. Our model
cannot capture such a sharp transition, as a polynomial projection of the temperature
field cannot represent a Dirac function. That explains the observed initial flux overshoot.
A previous attempt (referred as CFM2015 [32]) is unable to capture the relaxation of the
interfacial flux at all.

Similarly to Aktershev and Bartashevich [1], we have represented the temperature
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Figure 11: Simulation of a full exchanger plate, first part of the domain. Re = 15, C't = 0, We = 266.
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profile of the different models as well as the solution of the Fourier equation for a flat
film. This has been done at different positions on the plate, as shown in figure 13.
As stated previously, the polynomial projection of the temperature field, parametrized
with interfacial-based free variable, cannot capture a sharp transition. This led to an
unphysical representation near the plate (especially for the § model). Yet, the interfacial
temperature is correctly captured. The position where the linear temperature profile is
reached is predicted more accurately when the Biot number is low. This is a consequence
of our polynomial approximation which is linear with respect to the low Biot number
and can be improved by using more test functions and refining the projection. This

improvement will lead to higher model complexity.

3.8. Validation - periodic box

A series of simulations have been computed with fixed hydrodynamic parameters, the
only varying parameters being the Biot and the Peclet number. The different simulations
are compared to the Fourier reference case.

For very large Peclet numbers, this procedure is not sufficient to guarantee an accurate
representation of the temperature field, especially in the vicinity of the thermal boundary
layer. However, the obtained accuracy is adequate for the validation of the models.

The chosen sampler is a Latin Hypercube Sampler [22] generating samples following a
log-normal distribution. The log-normal shapes are chosen in order to fix the median for
both varying parameters. The samples are summed up in the figure 14a. The number of
samples (640) is large enough to provide a good overview of the behavior of the models
according to the two varying parameters.

The two models presented in the previous section are used to simulate a traveling wave
in a periodic box of length L/hx = 90. The long-time solution of the different models
is compared with the reference solution to the Fourier equation. Figure 15 compares the

different results. The norm #H; is defined as

2
Ly, (X) = / X2 4 %—f da. (34)

This norm has been chosen to evaluate both the amplitude and the shape of the heat flux

distributions at the interface as predicted by the models. We can observe that the two
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models exhibit a very good agreement with the reference solutions. For more than half
of the physical domain investigated, the error is below a 5% threshold, and never exceed
25%. The 6 - ¢ model presents a wider domain in the parameter space of applicability,
defined here by the 5% error threshold. In particular, the range of validity for the
Pe number has been extended up to Pe = 100, whatever the value of the Bi number,
which is a significant improvement over the § model. However, the § model presents less
pronounced maxima of deviation from the Fourier solutions (with a maximal error of
19% instead of 23%) but is not able to represent some important phenomena, such as

the developing thermal layers near the crest of the waves (as shown in figure 10).

8.4. Validation - full exchanger

The same set of parameters as the periodic-box case has been chosen for the validation
case. We have simulated a L = 20 cm length exchanger plate. The same boundary
conditions as in section 3.2 have been used. A regular forcing at the inlet is again
enforced with an amplitude equal to A = 0.1 and a frequency given by f = 10.

Such simulations being expensive in comparison with the periodic-box case, we limit
the sample number to 64. The samples can be seen in figure 14b: the parameter space is
well explored and the shape of the log-normal distribution has been chosen so that the
median is aligned with our reference case.

As observed in figure 16 (see (34) for the H; norm definition), the error of the transient
state is smaller than the error for a steady traveling wave, and we have seen that our
models relax well to the equilibrium state. The same remarks made for the periodic box
stay: the 6 model fails to represent the complexity of the temperature field (see figure
10). Yet, this simple model catches well the interfacial flux with an error below 15%,

which is a strong improvement compared to the previous attempts [6, 9].
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Figure 12: Interfacial heat flux along the flow length, flat film. Re = 15, Ct = 0, We = 266.
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Figure 13: Temperature field profile at different position for a flat film. Re = 15, Ct = 0, We = 266,
Pe = 105.
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Figure 14: Validation sampling: samples chosen with the latin hypercube sampling (LHS) method.
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Figure 15: Relative error (1 norm) on the wall and interface flux, for the different models. Minimum
and maximum error values are displayed at the top left of each plots, and the black border separates
the domain where the error is inferior to 5%. This border is determined by training a multi-layered

perceptron (MLP) classifier with our data.

CFM2015
102 o | 0-00 — 0.39

Bi

10°

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
relative error (L3, norm)

Figure 16: Relative error (H1 norm) on the wall and interface flux, for the different models. The
minimum and maximum error values are displayed at the top left of each plot, and the black border
separates the domain where the error is inferior to 5%. This border is determined by training a MLP

classifier with our data.
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Conclusion

A new asymptotic model, offered with two variants, has been developed as an alter-
native to the full resolution of the Fourier equation across a falling film. This leads to a
faster resolution at the cost of a reduced domain in the parameter space of applicability
(very high Pe numbers are still out of reach). This model overcomes the limitations of
previous attempts, which led to acceptable results for moderate Biot and Peclet numbers
only, and yielded non-physical behavior outside this range. Moreover, the diffusive re-
laxation towards the conductive equilibrium in the entrance region of the plate observed
with the Fourier equation is now correctly captured. This improves the models accuracy,
even outside the entrance regime. It also extends the physical space of applicability (see
figure 15, 16), even with only one free variable to represent the temperature distribution
(relative error less than 20% for Pe € [10',10°] and Bi € [1073,10?]).

The two variants, resp. # model and 8 - ¢ model, possess different advantages. The
simplest one (# model) is more robust and has a cheaper resolution cost. It is a good can-
didate for global studies (optimization for example), whereas the second one (6 - ¢ model)
is able to capture more complex thermal transfer behaviors. This complexity has a cost,
in terms of robustness and computation especially, at the crest of the waves (due to the
extra free variable and evolution equation). That computation cost is still much less ex-
pensive than the alternative, i.e. solving the Fourier equation. Hence, this model shows
itself to be a good candidate when the comprehension of the phenomena is important
but the cost of the Fourier equation cannot be afforded. This cost can be prohibitive
when it comes to transfers within a 3D falling film in a spatial domain representative of a
realistic plate exchanger. The latter is our next goal, within reach by coupling our model
with a computation-efficient shallow-water model developed recently by Bresch et al. [4].
Other perspectives include the introduction of coupling effects between hydrodynamic
and heat transfer via the Marangoni effect, or via other temperature dependencies of the
fluid properties [26] in the models. The introduction of such coupling is trivial and will
give access (with the extension to 3D of the models) to a proper comparison with the
experimental studies. Readers interested in how to extend such models in 3D or how to
account for the thermocapillarity can find details in Kalliadasis et al. [19].

This family of models constitutes a new tool which provides a costless evaluation
33



of thermal transfers across a falling film, making costly investigations in terms of num-
ber of simulations (optimization, sensitivity analysis, parameterized exploration of the

parameter space...) now accessible.

AppendixA. Construction of solutions to the Fourier equation

In this section, we present an approach to solve the Fourier equation (2d) in the case

of traveling wave solutions. We first project the temperature field as

Y
h(z,t)

T=1+Y 7i(z,t)¢i(X) and X =2
=1

1 (A1)

where ¢;(X) are linear combinations of Chebyshev polynomials of the first kind T; given

by

®1
$2i = Tpi(X)—1 and ¢gip1 =T (X) - X for i>1, (A.2)

1+ X,

so that ¢;(1) = ¢;(—1) = 0 for ¢ > 2 and ¢1(—1) = 0. The Dirichlet condition at wall
(2g) is thus verified by (A.1). Considering traveling waves, i.e. stationary solutions in
frame £ = x — ¢t moving at a constant speed ¢, and writing the Fourier equation (2d) on

the Gauss-Lobato points X; = — cos(wi/n) i > 1 gives formally n — 1 relations
Z ¢j(Xi)Deerj = Fi(75, DeTy) (A.3)
J

where Dg = d/d§. We next complete the Fourier equation (2d) by the boundary condition

105aT = 8,T — 0,hd,T + BIT\/1 + (0,h)2  at y=h. (A.4)
The Newton law of cooling (2h) is recovered in the limit 7 — 0. Substitution of (A.1)

into (A.4) completes the n — 1 relations (A.3) into a linear system of dimension 2n

A% = B(U). (A5)
with U = (73, D¢7;), 1 < @ < n. Inverting (A.5) leads to an autonomous dynamical
system of dimension 2n. This dynamical system is solved along with the dimension-three
dynamical system corresponding to (28) or (33) with the help of the software AUTO07p
[13] (see [19] for detail). The value of the constant n has been set to 107¢. We checked

the convergence with respect to n by dividing its value by 10.
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