
HAL Id: hal-02421353
https://hal.science/hal-02421353

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Features to Automatically Identified
Object-Oriented Variability Implementations - The case

of ArgoUML-SPL
Johann Mortara, Xhevahire Tërnava, Philippe Collet

To cite this version:
Johann Mortara, Xhevahire Tërnava, Philippe Collet. Mapping Features to Automatically Identified
Object-Oriented Variability Implementations - The case of ArgoUML-SPL. 14th International Working
Conference on Variability Modelling of Software-Intensive Systems (VaMoS ’20), Feb 2020, Magdeburg,
Germany. �10.1145/3377024.3377037�. �hal-02421353�

https://hal.science/hal-02421353
https://hal.archives-ouvertes.fr

Mapping Features to Automatically Identified Object-Oriented
Variability Implementations

The case of ArgoUML-SPL

Johann Mortara
johann.mortara@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S,

France

Xhevahire Tërnava
xhevahire.ternava@lip6.fr
Sorbonne Université, LIP6,

Paris, France

Philippe Collet
philippe.collet@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S,

France

ABSTRACT
In Software Product Line (SPL) engineering, mapping domain fea-
tures to existing code assets is essential for variability management.
When variability is already implemented through Object-Oriented
(OO) techniques, it is too costly and error-prone to refactor assets
in terms of features or to use feature annotations. In this work, we
delve into the possible usage of automatically identified variation
points with variants in an OO code base to enable feature map-
ping from the domain level. We report on an experiment conducted
over ArgoUML-SPL, using its code as input for automatic detec-
tion through the symfinder toolchain, and the previously devised
domain features as a ground truth. We analyse the relevance of
the identified variation points with variants w.r.t. domain features,
adapting precision and recall measures. This shows that the ap-
proach is feasible, that an automatic mapping can be envisaged,
and also that the symfinder visualization is adapted to this process
with some slight additions.

CCS CONCEPTS
• Software and its engineering→ Software product lines.

KEYWORDS
Variability traceability, automatic identification of variation points,
understanding software variability, software product lines

1 INTRODUCTION
SPL engineering aims at providing a framework to manage variabil-
ity within a family of software products [6, 15]. By selecting domain
features, multiple code assets corresponding to these features are
assembled to derive a custom product. A proper and consistent
mapping between domain features and the corresponding variabil-
ity implementation places in code assets is of prime importance
for the architecture of any SPL [2, 5]. Within the SPL paradigm,
variabilities at the domain and implementation levels are captured
separately [6, 15]. Commonly a feature model is used at the domain
level whereas many different implementation techniques can be
found at the code level, from preprocessor directives, to feature
modules, specific annotations, or more classic object-oriented (OO)
techniques and patterns [27].

However many variability-rich software systems do not follow
a complete SPL approach. It is then needed to extract or refactor
the existing implementations to map the domain features to the
appropriate places in the code assets. When it is done through
feature modules [3] or when conditional compilation directives

are used [12, 19], the mapping is facilitated, but currently, no tech-
nique supports the identification and mapping of OO variability
implementation techniques to domain features. In our previous
work [30], we defined an approach to identify the implementation
of different kinds of variation points (vp-s) and variants 1 by relying
on the concept of symmetry in OO structures [32, 33].

We also provided a tooled support with symfinder , a toolchain
that automates this identification in a single Java code-base and
generates a web-based visualization [24]. While it has been success-
fully applied to several realistic systems, it has not been explored
yet whether the automatically identified vp-s with variants are
relevant for the mapping of domain features to code assets, and
how to facilitate this process. In this context, the mapping is not
trivial at all, as different kinds of vp-s are to be considered, and the
mapping itself can be N to M, namely a feature can be implemented
by several vp-s and a vp can be mapped to several domain features.
In order to validate the relevance of our automatic identification
approach by symfinder , we need to evaluate whether a mapping
between domain features and our identified vp-s of a targeted sys-
tem is feasible, being it manual for now. Then, to what degree it
can be automated.

In this paper, we thus explore the possibility of using the vp-s
with variants automatically identified by the symfinder toolchain as
input for amanualmapping process to domain features that preexist.
To do so, we study the case of ArgoUML-SPL [8], an SPL version
of ArgoUML. ArgoUML is an editor for UML diagrams, which is
implemented in Java and thus uses extensively OO mechanisms.
The ArgoUML-SPL [8] itself is an SPL created on top of its code by
using annotations for conditional compilation to directly delimit
feature code. This SPL has already been used by the community
as a case study and we take for our study its ground truth [22],
which contains a set of trace links for its domain features obtained
by analysing these annotations (Section 2). We run symfinder on
the source code of the ArgoUML-SPL to automatically extract vp-s
with variants. In order to evaluate the relevance of the symmetry-
based automatic identification we adapt the precision and recall
measures and analyse the results of a manual mapping on the case
study (Section 3). We then discuss observations on feature tangling
and scattering, as well as on feature naming to envisage a possible
automation of the mapping. We also discuss some improvements
made on the symfinder visualization while analysing the case study
(Section 4). Finally, we discuss related work (Section 5) and conclude
the paper by evoking future work (Section 6).

1Their definition is given in Section 2.2

Johann Mortara, Xhevahire Tërnava, and Philippe Collet

2 BACKGROUND
In the following is introduced the ArgoUML-SPL case study with
its ground truth that we use to conduct the feature mapping exper-
iment. Then, we present the symfinder toolchain and the obtained
results of its application on the ArgoUML-SPL’s code assets.

2.1 ArgoUML-SPL ground truth
ArgoUML 2 is an open source UML modeling tool implemented in
Java language. In the software product line community it is used as a
realistic case study for demonstrating the basic challenges for refac-
toring a single code base systemwith variability into an SPL [8]. The
extracted ArgoUML-SPL, with its ground truth, was also recently
proposed [22] and used [9, 23] as a benchmark for evaluating the
feature location techniques. The considered ArgoUML-SPL ground
truth [22] consists of a feature model (FM) and traces of its optional
features to the annotated reusable code assets.

The extracted ArgoUML-SPL uses a form of conditional compila-
tions, based on the javapp preprocessor, to modularize and delimit
a given feature’s code [8]. It consists of 11 features, given in the
feature model (FM) in Figure 1. The abstract feature ArgoUML-SPL
represents conceptually the SPL domain, which has 2 mandatory
features, Diagrams and Class, and 8 optional features, State,
Activity, Use Case, Collaboration, Deployment, Sequence,
Cognitive Support, and Logging.

The original, non-SPL based, ArgoUML 3 consists of 120,348
LoC. The 8 extracted optional features with their combinations and
negations are traced to 31% of its LoC, whereas the other 69% are the
core assets of the extracted SPL. These core assets contain also other
features that are not extracted, such as the features for rendering
diagrams in the screen, for persistence, internationalization, code
generation, or reverse engineering [8].

The ArgoUML-SPL benchmark provides a ground truth of traces
for the 8 optional features to their respective conditional compila-
tions in code assets. These traces appear as links of a given feature
to a complete class, class refinement (i.e., referencing statements
within a single class), complete method, or method refinement (i.e.,
referencing statements within a single method) [22]4. The bench-
mark distinguishes the traces of the 8 individual optional features,
their 14 feature combinations, with two and three features, and 2
negated individual features. In Table 1 is given a summary of the
ArgoUML-SPL ground truth for the 24 features, including their com-
binations and negations, with their respective number of classes
where they are traced to. These traces have a normalized granularity,
as explained in Section 3.2. For simplification, feature combinations
and negations in Table 1 are presented by numbers, showing which
optional features are combined or negated. For instance, the entry
[2 − 8] indicates that there is a feature combination between [2]
Activity and [8] Logging. This Activity_and_Logging feature
combination has traces to 3 classes in code assets. Similarly, for
feature negation, the ¬[8] entry indicates that 4 classes in code
assets are needed when feature [8] Logging is not present.

2https://www.openhub.net/p/argouml
3https://github.com/argouml-tigris-org/argouml/tree/master/src/argouml-app
4While the term trace links is used in the ground truth, we will distinguish from this
term in our mapping experiment by usingmapping links for vp-s and variants mapped
to features, although both of them have the same meaning.

Figure 1: Feature model of ArgoUML-SPL, adapted from [8]

Table 1: ArgoUML-SPL ground truth [22]. Eight optional fea-
tures, their fourteen feature combinations, and two single
feature negations, with their respective number of traces

ID Feature #traces ID #traces ID #traces

[1] State 98 [2 − 8] 3 [5−8] 4
[2] Activity 94 [2 − 1] 7 [5−3] 1
[3] Use Case 52 [7 − 5] 15 [8−6] 16
[4] Collaboration 48 [7 − 8] 15 [8−1] 4
[5] Deployment 32 [7 − 6] 3 [8−3] 4
[6] Sequence 79 [4 − 8] 3 [6−1] 1
[7] Cognitive 236 [4−8−6] 2 ¬[7] 1
[8] Logging 214 [4 − 6] 5 ¬[8] 4

{
"nodes": [
{
"types": [
"CLASS", "ABSTRACT", "STRATEGY", "DECORATOR",
"VP", "METHOD_LEVEL_VP", "VARIANT"

],
"constructorVPs": 1,
"methodVariants": 5,
"classVariants": 18,
"methodVPs": 2,
"constructorVariants": 3,
"name": "org.argouml.uml.diagram.ui.FigNodeModelElement"

},...
],
"links": [
{
"type": "EXTENDS",
"source": "org.argouml.uml.diagram.ui.FigNodeModelElement",
"target": "org.argouml.uml.diagram.use_case.ui.FigActor"

},...
]

}

Listing 1: Excerpt of the JSON file of ArgoUML-SPL

2.2 Automatic identification and visualization
of implemented variability

The symfinder toolchain. By definition, a variation point (vp)
with its variants represent the unchanged and changed parts in
software design, are realized by an implementation technique, and
abstract the structure (a.k.a., design) and the functionality of the
implemented variability [30]. Their uniform identification is desir-
able as diverse object-oriented techniques can be used within an
SPL [29]. Towards understanding the implemented variability of
an SPL realized with such techniques within a single code base,

https://www.openhub.net/p/argouml
https://github.com/argouml-tigris-org/argouml/tree/master/src/argouml-app

Mapping Features to Automatically Identified Object-Oriented Variability Implementations

we provided in a previous work [24, 30] an approach for identi-
fying and visualizing vp-s with variants of an SPL in a uniform
way. The different kinds of vp-s with variants are interpreted in
terms of local symmetry [32], as a common property among the
traditional variability implementation techniques and can then
be automatically detected. The associated toolchain, symfinder ,
was used to automate and validate the approach on eight realistic
and open-source variability-rich systems, including ArgoUML-SPL.
Specifically, symfinder parses its code base and identifies vp-s with
variants by simply detecting symmetry in up to seven variability
implementation techniques at class and method level [30], namely
the symmetry in class as type, class subtyping, method overloading,
factory pattern, strategy pattern, template pattern, and decorator
pattern. The identified vp-s with variants data are stored with other
extracted information into a Neo4j database, and a JSON file can be
produced for reuse, such as in a web-based visualization [24].

Application of symfinder to ArgoUML-SPL. For this studywe run
symfinder on the same src/argouml-app package of ArgoUML-
SPL 5 as for the ground truth, by using the commit ID given in Ta-
ble 2. The identified vp-s with variants and their visualization
for the ArgoUML-SPL are publicly available 6. An excerpt from
the resulting JSON file is shown in Listing 1. It contains an ar-
ray of nodes and an array of links. Each node represents a class
being a vp or a variant and possesses multiple attributes. For in-
stance, org.argouml.uml.diagram.ui.FigNodeModelElement is
the vp’s name which has 18 class variants, 1 vp with 3 variants at
constructor level, and 2 other vp-s with 5 variants at method level.
The types attribute characterizes properties of the class that the
node represents, such as its class or interface nature, the presence of
a vp or variant, or the presence of design patterns. Whereas, a type
in the links represents the relation of this vpwith its variants, such
as with the org.argouml.uml.diagram.ui.FigActor variant. In
general, each link represents a superclass inheritance or an inter-
face implementation relationship, with its source being the super-
class/interface and its target being the subclass/implementation.

Figure 2 shows an excerpt from the resulting visualization for
the analysed ArgoUML-SPL. As an example, it contains the same
illustrative vp given in Listing 1, ui.FigNodeModelElement, sur-
rounded by its class level variants, such as the ui.FigActor variant.
Different node types represent the used technique to implement
the vp-s, as explained in the caption of Figure 2, and can be shown
through the ’Show legend’ menu. Contrary to a feature model
that has a tree-like structure (cf. Figure 1), it can be noted that the
identified vp-s with variants have a forest-like structure. As shown
in Figure 2, some class level vp-s are solitary, without class level
variants, or are part of a larger tree, with class level variants.

Resulted vp-s with variants in ArgoUML-SPL. In this work, we
use the JSON file of ArgoUML-SPL to calculate its identified number
of class and method level vp-s with variants, given in Table 2. It
shows that in ArgoUML-SPL 1,560 vp-s with variants are identified
at class level, some of which have vp-s with variants at method
level. However only those at class level have a name attribute, for
instance, the vp ui.FigNodeModelElement in Listing 1. From the

5https://github.com/marcusvnac/argouml-spl
6https://deathstar3.github.io/symfinder-demo/vamos2020/

Table 2: The resulting #vp-s and #variants, at class and
method level, for the analysed commit ID of ArgoUML-SPL
by using the symfinder tool

Analysed package: src/argouml-app
Commit ID: bcae37308b13b7ee62da0867a77d21a0141a0f18

Class level: #variation points (#vp-s) 200
#vp-s / #variants 258
#nodes with method level vp-s 107
#variants 995

#vp-s/#variants: Solitary: 154 Tree: 1,406
Class level total: 1,560

Method level: #variation points (#vp-s) 631
#variants 1,551

Method level total: 2,182

Total: #vp-s: 1,089 #variants: 2,653

Table 3: The mapping of an identified vp with its eight vari-
ants at class level to features, visualized also in Figure 2

A vp with variants Feature

vp: ui.FigNodeModelElement Cognitive, Logging

use_case.ui.FigActor Use Case
sequence.ui.FigClassifierRole Sequence
static_structure.ui.FigComment Logging
collaboration.ui.FigClassifierRole Collaboration
activity.ui.FigObjectFlowState Activity
ui.FigEdgePort -
deployment.ui.FigObject Deployment
activity.ui.FigPartition Activity

1,560 vp-s and variants at class level, 154 are solitary vp-s whereas
the rest 1,406 are part of a larger tree. All of them in Table 2 are
potential vp-s with variants, meaning that they may implement
domain features. To evaluate their potential of being variability
places in code assets, wemanuallymap them to features and observe
the results in the next sections, including the potential to automate
and to use visualization for this mapping in the future.

3 EVALUATING THE RELEVANCE OF vp-s
WITH variants

In order to evaluate the relevance of the vp-s with variants identi-
fied by the symfinder approach, we undertake two steps. First, we
manually map the identified vp-s with variants of ArgoUML-SPL to
its domain features. Then, we evaluate their relevance by adapting
two well-known measures, namely precision and recall.

3.1 Data normalization
Before themapping process, we normalized the granularity of traces
for the domain features with the granularity of the identified vp-s
with variants, so they all become of a common class level gran-
ularity. Specifically, whenever a feature in the ground truth had

https://github.com/marcusvnac/argouml-spl
https://deathstar3.github.io/symfinder-demo/vamos2020/

Johann Mortara, Xhevahire Tërnava, and Philippe Collet

Figure 2: Excerpt of the visualization of identified vp-s in ArgoUML generated by symfinder. Annotations in blue show po-
tential vp-s names that are displayed when hovering a node. Legend: - Class as type (vp or variant), - Class variant with
inner vp-s, - Abstract class (vp), - Interface (vp), - Constructor overloading (vp), - Method overloading (vp), Node
with ’F’, ’S’, ’T’, ’D’ symbol - Factory, Strategy, Template, or Decorator pattern, −→ Inheritance relationship

one of its traces to a class refinement, complete method, or method
refinement, we simplified that trace to the whole class. For instance,
the feature State in the ground truth had one of the trace links to
org.argouml.ui.cmd.GenericArgoMenuBar initMenuCreate()
Refinement 7, which is a trace at the statement level within the
method initMenuCreate(). In such a case, we truncated the trace
to the whole class org.argouml.ui.cmd.GenericArgoMenuBar.
This means that we consider all features’ traces, but we only change
their granularity to class level. Then, from the identified vp-s with
variants, we considered only those at the class level, specified in Ta-
ble 2, but these include also all method level vp-s with variants.
This normalization is necessary for two reasons. First, symfinder
records the names only for class level vp-s and variants, whereas
for those at method level it records only their total number (cf. List-
ing 1). The second reason is that vp-s with variants are related only
to the structural elements in code, such as classes or methods for
now, whereas features in the ground truth have traces mostly to
their refinements, where about 73% of them are at statement level.

3.2 Mapping of variabilities
After aligning their granularity, we can process with the mapping
of vp-s with variants to features by using their traces. We have 712
traces (without replication) for the 8 optional features, including 14
of their combinations, and 2 of their negations (cf. Table 1). Toward
simplifying the mapping process we first exported features with
their trace links and vp-s with variants into an Excel file. Then,
for each feature, each of its trace links is looked up if it is a vp or
variant, by using the VLOOKUP function in Excel. Whenever a vp or
variant is associated with a feature’s trace link, it is marked as a
relevant vp or variant. The whole mapping process is conducted
by one person, then it is double-checked with a second person. In
this way, we use these traces to map features manually to the 458
vp-s, 107 classes with method level vp-s, and 995 variants at the

7https://github.com/but4reuse/argouml-spl-benchmark/blob/master/
ArgoUMLSPLBenchmark/groundTruth/STATEDIAGRAM.txt

class level (cf. Table 2). For instance, in Table 3 is given the mapping
of the illustrative vp ui.FigNodeModelElement and eight from
its eighteen class variants (cf. Listing 1 and Figure 2). The vp it-
self maps to two features, Cognitive and Logging, and the eight
shown variants map to six features. Seven of the shown variants are
mapped to one feature, two of which map to the same Activity
feature, whereas one variant, ui.FigEdgePort, is without a map-
ping, meaning that this variant does not appear as a trace link in
any of the features in the ArgoUML-SPL’s ground truth.

To summarize, Figure 3 shows the number of vp-s and variants
mapped to 8 optional features, whereas Figure 4 shows the range
of vp-s and variants mapped to their 14 feature combinations and
2 feature negations. In total there are 163 vp-s and 613 variants, or
593 of them without duplication among features, which we refer to
as relevant vp-s and variants.

By simply analysing these data, we notice that about 89% of the
relevant vp-s and variants are mapped to the 8 features, whereas
11% of them are mapped to the 14 feature combinations and 2
feature negations. Then, from Figure 4, the majority of feature
combinations and negations are mapped only to variants, about
90% of nodes involved in this mapping being variants.

3.3 Mapping measures
As expected from a non-trivial mapping, several of the identified
vp-s and variants are without a mapping to features in the ground
truth, and conversely. Specifically, from the 1,560 class level vp-s
and variants that are identified in ArgoUML-SPL (cf. Table 2), 593
of them have a mapping to at least one feature. This means that
there are 967 vp-s and/or variants that are without a mapping to
features. Then, from all 712 features’ traces in the ground truth,
119 of them are not used for the mapping of vp-s or variants. At
the feature level, there is only the not_Cognitive feature negation
that has a single trace and is without a mapping to vp-s or variants.

Therefore, in order to evaluate more accurately the relevance
of the identified vp-s and variants for feature mapping, we define
precision and recall measures in our specific context.

https://github.com/but4reuse/argouml-spl-benchmark/blob/master/ArgoUMLSPLBenchmark/groundTruth/STATEDIAGRAM.txt
https://github.com/but4reuse/argouml-spl-benchmark/blob/master/ArgoUMLSPLBenchmark/groundTruth/STATEDIAGRAM.txt

Mapping Features to Automatically Identified Object-Oriented Variability Implementations

Stat
e
Acti

vity
Use

Case

Coll
abor

atio
n

Dep
loym

ent
Sequ

ence
Cog

nitiv
e
Logg

ing

0

50

100

150

17 17 5 6 6 9
35

5967
53 41 32 21

52

173

97

#v
p-
so

r#
va
ria

nt
sa

tc
la
ss

le
ve
l

vp-s variants

Figure 3: The #vp-s and #variants mapped to eight features

Precision. Let be 𝑇𝑔𝑡 the set of traces for all features given in the
ground truth and 𝐼𝑣𝑝−𝑣 the set of all identified vp-s and variants
by symfinder . We use precision to measure the percentage of the
identified vp-s and variants that are relevant for the feature map-
ping. Thus, for the current mapping in ArgoUML-SPL, the vp-s and
variants that are mapped to the features in the ground truth are
true positives (TP), referred as relevant vp-s and variants, whereas
the vp-s and variants without a mapping are false positives (FP),
or irrelevant vp-s and variants. Therefore,

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
=

|𝑇𝑔𝑡 ∩ 𝐼𝑣𝑝−𝑣 |
|𝐼𝑣𝑝−𝑣 |

=
593
1560

= 0.3801

This means that about 38% of our identified vp-s and variants are
relevant for the feature mapping, whereas the rest, 62% of them, are
irrelevant. Such a low precision was expected for two main reasons.
First, the eight optional features used to extract an ArgoUML-SPL
are coarse grain features and are selected by authors based on the
ArgoUML domain knowledge [8]. Thus, their study certainly misses
some information regarding how complete is the list of ArgoUML-
SPL features. This means that the ground truth may be incomplete,
which explains the vp-s and variants without a mapping. Then,
it is likely that not all of our identified places with a symmetry
in code are variability related, such is the case with the usage of
preprocessor directives in C/C++. Specifically, Zhang et al. [31] state
that "from our experience most #ifdef blocks (e.g., 87.6% in the Danfoss
SPL) are actually not variability related, but for other purposes such
as include guards or macro substitution". This implies that in OO
variability-rich systems, in addition to implementing variability,
the technique of inheritance is mostly used for other reasons too
(e.g., in 62% of cases in the ArgoUML-SPL). Still, the high number
of false positive vp-s and variants has especially an impact on the
time spent to establish the mapping.

Recall. Through recall we measure the percentage of features’
traces in the ground truth that are used for the mapping of vp-s and
variants to features. Thus, the traces that are used for the mapping
are true positives (TP), whereas those that are not used are false
negatives (FN). Therefore,

Figure 4: The overall range of vp-s and variants mapped
to the fourteen feature combinations and two feature nega-
tions given in Table 1

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

|𝑇𝑔𝑡 ∩ 𝐼𝑣𝑝−𝑣 |
|𝑇𝑔𝑡 |

=
593
712

= 0.8329

This means that about 83% of features’ traces in the ground
truth are used for the vp-s and variants mapping to features. Ac-
tually, we measured recall also for each feature. As a result, the
8 optional features have lower recall values compared with their
feature combinations which have, except one, a 100% recall value.

By a deeper analysis, we noticed that the 17% of the unused
features’ traces usually refer to the statements within the initial-
ization classes, such as Main classes, or use other external libraries.
This clearly explains why they are not used for the mapping, as
the initialization classes are not categorized as vp-s or variants by
symfinder , and vp-s and variants coming from external libraries
are also filtered out by it.

Summary. These two measures indicate that the identified vp-s
with variants have a lower precision but are highly robust. This
means that less than half of the identified vp-s with variants are
relevant (38%), but they implement a high percentage (83%) of
all given domain features. Those without a mapping are certainly
because the available features are of a coarse grain, the ground truth
may be incomplete with features, or some of the vp-s and variants
are not variability related. Still, the high recall indicates the high
relevance of the identified vp-s with variants in a variability-rich
system, thus showing the feasibility of our approach by symfinder .

4 ADDITIONAL RESULTS
We further analysed the resulted relevant vp-s with variants and
their mapping to features in ArgoUML-SPL. Our focus was to anal-
yse (i) what are the main challenges for an automated mapping
approach in this context, and (ii) whether the current visualization
options by symfinder support well the mapping, being it automatic
or not. These observations are given in the following.

4.1 Towards an automatic approach
Considering that the variability of ArgoUML-SPL is implemented
using object-oriented traditional techniques where the main separa-
tion of concerns are not features, it is expected that domain features
do not align well with the identified vp-s and variants, thus com-
plexifying the mapping process. To confirm this, we analysed the

Johann Mortara, Xhevahire Tërnava, and Philippe Collet

Table 4: The scattering degree of features: the number of vp-
s and variants (#vp&v) used to implement a given feature

ID Feature #vp&v ID #vp&v ID #vp&v

[1] State 84 [2 − 8] 3 [5 − 8] 4
[2] Activity 70 [2 − 1] 7 [5 − 3] 1
[3] Use Case 46 [7 − 5] 15 [8 − 6] 15
[4] Collaboration 38 [7 − 8] 15 [8 − 1] 4
[5] Deployment 27 [7 − 6] 3 [8 − 3] 4
[6] Sequence 61 [4 − 8] 3 [6 − 1] 1
[7] Cognitive 208 [4 − 8 − 6] 2 ¬[7] 0
[8] Logging 156 [4 − 6] 5 ¬[8] 4

1-f 2-f 3-f 4-f 5-f 6-f 7-f 8-f

0 %

20%

40%

60%

80% 77.91 %

17.54 %
2.53 % 1.18 % 0.34 % 0% 0.17 % 0.34 %

#
vp

-s
or

#
va
ria

nt
si
n
%

Figure 5: The #vp-s and #variants in % with a mapping from
one feature (1-f) up to eight features (8-f), including to their
combinations and negations

multiplicity of their mapping links by studying the crosscutting
nature of optional features, including their combinations and nega-
tions. We measured the scattering and tangling degrees [10] of a
given feature implemented by vp-s and/or variants. Then, we anal-
ysed whether vp-s and variants of a given feature share a part of
their names, as it is extensively used as a first easy step towards an
automatic mapping when conditional compilations [18] and feature
modules [3] are used.

Crosscutting nature of features. The scattering degree is used to
measure the number of vp-s and variants that are used to imple-
ment a given feature, — when a feature is scattered in code, finding
automatically all places that implement it in an OO software sys-
tem is more difficult —. In Table 4 is given the number of vp-s
and variants used to implement the 8 optional features, their 14
combinations, and their 2 negations in ArgoUML-SPL. It shows
that most of the features are implemented by more than one vp
and/or variant, whereas two feature combinations are implemented
by exactly one vp or variant, and one feature negation (¬[7] -
not_Cognitive) is implemented by none of the identified vp-s or
variants. This indicates that a feature can have zero, one, or more
mapping links to vp-s and variants, thus their mapping is 1 to M.

The tangling degree is used to measure the number of features
that are partially8 implemented by a given vp or variant — when-
ever a vp or variant is used to implement more than one feature,
finding all features that it addresses in an OO software system is

8We use partially as vp-s with variants are mostly a refinement of domain features [14].

Stat
e

Act
ivit

y

Use
Cas

e

Col
labo

rati
on

Dep
loym

ent

Seq
uen

ce

Cog
niti

ve
Log

gin
g

Act
ivit

y&L
ogg

ing

Act
ivit

y&S
tate

Log
gin

g&S
equ

enc
e

0 %

50%

100%
82%

26%

78% 71% 70% 67%

86%

0%

33%

71%

93%

#
vp

-s
or

#
va
ria

nt
si
n
%

Figure 6: The relevant #vp-s and #variants in % that share a
part of their name with features that they implement

also more difficult —. As there is a large number of vp-s and vari-
ants, we summarized the resulted tangling degree as in Figure 5. It
shows that almost 78% of vp-s and/or variants are used to imple-
ment one of the features, or one of their combinations, or negations.
Then, almost 18% of them implement two of the features, whereas
those that implement between three and eight features in maximum
are under 3%. Specifically, the highest tangling have exactly the 8
optional features, which have in common two vp-s and/or variants,
or 0.34% of them. This indicates that different features are partially
implemented by a given vp or variant 9. Therefore, features have
an N to 1 mapping in code assets.

Based on the scattering and tangling degree of features in Table 4
and Figure 5, the mapping between features and vp-s with variants
is N toM. This observation confirms that multiple mapping links are
required for a complete mapping, thus challenging the implementa-
tion of an automatic approach. Features highly crosscut also when,
for instance, preprocessors in C/C++ are used. However, using sim-
ilar names between features and preprocessor directives is known
to simplify mapping automation [18]. This multiple mapping is
also the main reason for feature modularization into modules with
similar names with domain features [7].

Automatic mapping through name matching. Despite the mul-
tiple mapping links, we also analysed to what degree a given fea-
ture can be mapped automatically to their vp-s and variants by
simply using their names. For name matching we used the pat-
tern search algorithm [26] by using Search function in Excel. It is
case-insensitive and searches a given pattern substring within a
longer string and returns its location. For example, in the last vari-
ant activity.ui.FigPartition in Table 3 we searched for the
Activity feature and the function returns a location, meaning that
their names share the ’activity’ word. In Figure 6 we show the
percentages of the relevant vp-s and variants that share a part of
their name with the features that they implement in ArgoUML-SPL.

These results show that most of the vp-s with variants could be
mapped automatically to features, for instance, 82% of vp-s and
variants that implement State feature use the ’state’ text in their
name. In a lower percentage are vp-s and variants for the Activity
features, whereas for the Logging feature there is no vp or variant
9Here are considered only the relevant vp-s and variants.

Mapping Features to Automatically Identified Object-Oriented Variability Implementations

Figure 7: The range of solitary vp-s with variants and those
within a tree used to implement the eight optional features,
their fourteen combinations, and two negations

that uses the text ’logging’ in their name. In addition to the figures
for the 8 optional features, we show in Figure 6 the percentages
for only 3 feature combinations as the other combinations share
their names with 100% of their vp-s and variants. Regarding feature
negations, they are omitted from Figure 6 as they do not share their
name with any of their vp-s or variants. In general, 74.12% of the
relevant vp-s with variants share their names with the features
that they implement. These results mean that, in this specific case,
the mapping of vp-s with variants to features can be automated to
some extent by simply relying on their naming convention.

4.2 A visualization that supports mapping
In some previous work [30] and Figure 2, we showed that the
implemented variability of a variability-rich system has a forest-
like structure. Usually, there are trees of different sizes of vp-s with
variants, but there are also several solitary vp-s at class level. In [30],
we relied on the center’s theory [1] to assume that the density of
vp-s with variants is a means for locating and describing the most
intense places with variability in reusable code assets. This density
can be discerned directly from the visualization that symfinder
provides, such as the visualized tree of vp-s in ArgoUML-SPL with
the ui.FigNodeModelElement vp and its variants in Figure 2. The
visualization in symfinder has thus the option to filter out solitary
vp-s, as places with the lowest density of variability. Moreover,
to easily discern the zones of interest w.r.t. variability, symfinder
visualizes all vp-s with variants at class level except those variants
without method level variability.

In the ArgoUML-SPL case study, we analysed whether filtering
out solitary vp-s and hiding class level variants without method
variability from the visualization help to keep in focus those vp-s
and variants that are relevant for the mapping. In which case, these
two visualization options would support the feature mapping as
the visualized information would be enough to help an expert in
pinpointing the right vp-s and variants during a semiautomatic
mapping process.

On filtering out solitary vp-s. In Table 2 are given the total iden-
tified number of solitary vp-s and the number of vp-s and variants
that are part of a tree in ArgoUML-SPL. However, as stated in Sec-
tion 3.3, only 593 of vp-s and variants, or 38% of them, are relevant
for the mapping to features. We expect that these relevant vp-s and
variants are not filtered out by symfinder .

To reason about whether filtering out solitary vp-s is hampering
the mapping process, we anaysed how many of the relevant vp-s
and variants are solitary and part of a larger tree. In Figure 7 are
shown their resulted ranges 10. It shows that most of the relevant
vp-s and variants (92.53%) are part of a larger tree, whereas only
a small number of them (7.47%) are solitary vp-s. Based on these
results, we observed that places with a higher density in the visual-
ization contain most of the relevant vp-s and variants. Therefore,
filtering out solitary vp-s can be done without prejudicing a map-
ping process, as a small number of them have a contribution in
implementing features.

However, during the analysis of the tangling degree of features,
we noticed that one of the two vp-s that are used to partially imple-
ment all 8 optional features (cf. Figure 5) is a solitary vp. This means
that, despite the small number of relevant solitary vp-s, they can be
of a higher importance. Therefore, removing the filter for solitary
vp-s is also needed — this option is available in symfinder—.

Displaying all variants. The current version of symfinder visual-
izes all identified vp-s, and only their variants that have a method
level variability. Therefore, for the ArgoUML-SPL’s feature map-
ping we extracted into a second JSON file all identified vp-s with
variants, including those variants without method level variability.

To reason about whether symfinder should visualize these omit-
ted variants in the future, we analysed how many of the class
variants without method level variability are relevant for the map-
ping in ArgoUML-SPL. It resulted that there are 107 such variants,
and only 32 of them are relevant for the mapping. Compared with
the overall number, they represent 5.40% of the relevant vp-s and
variants. Although the number of the relevant class variants with-
out method level variability seems to be small, we consider that
symfinder should contain in the visualization 100% of the relevant
vp-s and variants. Surprisingly, we noticed that the second vp or
variant that is used to partially implement all 8 optional features
(cf. Figure 5) is a variant without method level variability. There-
fore, in the last version of symfinder we improved its capabilities
by adding a ’Display variants’ option (cf. Figure 2), which vi-
sualizes vp-s with all their variants.

4.3 Threats to validity
As we consider from the start a single case study, it is obvious that
we cannot draw conclusions on the generalization of the results. The
threats to validity we mainly face are then related to the normalized
data and the observed results.

A first threat concerns the normalized granularity of features’
traces with the granularity of vp-s and variants. Specifically, all
features’ traces in the ground truth are considered, but whenever a
trace was at statement level we considered only its class. Then, al-
though symfinder identifies and visualizes 3,742 vp-s with variants
(cf. Table 2), we consider for mapping only the 1,560 of them that
are at class level. But, almost all excluded method level vp-s with
variants are within the considered class level vp-s with variants.
Additionally, in case that a class has only method level variability,
we also considered it (the 107 #nodes with method level vp-s in Ta-
ble 2 are such classes). This normalization of data might have an

10The negative values are because violin plots rely on a kernel density estimation.

Johann Mortara, Xhevahire Tërnava, and Philippe Collet

impact on how we interpret the feature mapping results and the
relevant vp-s with variants, but we do not have indications that
the number of the relevant vp-s and variants may change. Towards
eliminating this data normalization, the method vp-s and variants
names should be recorded by symfinder into the JSON file, which
will be done in the near future.

A second threat to validity regards the presentation of differ-
ent aspects of the results. For instance, we give the percentage of
relevant vp-s and variants that could be automatically mapped
to features by using their names. We kept out of analysis the 49
features’ trace links (41.18%) that are not used for vp-s and variants
mapping but they use feature names too. Then, in the current visu-
alization, we display only names of vp-s and variants at class level.
In case that we consider also those at method level, we need to come
up with a way for displaying their names too, and to analyse how
filtering out solitary vp-s with variants at class level impacts those
that can be relevant at method level. Nevertheless, we believe the
presented results are relevant enough to show that the symfinder
variability identification and visualization approach is expressive
enough to be used for a proper feature mapping process on the case
study. Besides the complete raw and analysed data are available
online 11, so they can be used and extended by the community.

5 RELATEDWORK
To manage variability in SPLs, most of the existing approaches
propose to modularize features into physically separate modules [3]
or use conditional compilations, such as preprocessors in C/C++ [13,
18, 19, 28], or a form of annotations [8, 12]. In these cases, features
have a straightforward mapping in code assets using their naming
conventions. However, extensive manual effort is required to add
annotations in code assets or refactor them into feature modules.
With symfinder we provide an automatic approach for identifying
variability places in OO code assets. The results of the manual
feature mapping conducted in ArgoUML-SPL case study show that
these automatically identified places are highly relevant and indeed
implement domain features. Similarly to other approaches, this
mapping is likely to be automated, although not completely, by
simply using the features and vp-s naming.

Since Couto et al. [8] extracted the ArgoUML-SPL, it has been
proposed [22] and extensively used [9, 21, 23] as a benchmark
for reverse engineering variability and evaluating feature location
techniques [4, 25]. In contrast, our variability identification and
visualization approach is more a tool support for understanding im-
plemented variability in forward engineering [30]. Thus, in addition
to its usage in reverse engineering, we show that ArgoUML-SPL
can also be used as an interesting study in another context.

Besides a recent mapping study shows that there are several
approaches for information visualization in SPL engineering [20].
Only a few of them visualize the variability at code level. From
them, the approach for a virtual separation of concerns [11, 16,
17] is mostly related to our visualization approach. Similarly, it is
used for variability management and relies on a different color per
feature to manually map them to code assets. In contrast, we use a
graphical visualization of variability by using more visualization
parameters, namely position, size, shape, value (lightness), color

11https://deathstar3.github.io/symfinder-demo/vamos2020.html

hue, orientation, and texture. We also automatically visualize the
variability and keep it separate from code assets.

6 CONCLUSION
Many realistic variability-rich software systems are implemented
using object-oriented techniques and do not follow a complete soft-
ware product line approach. Towards managing their variability,
we have previously proposed a tooled approach, symfinder , that
automatically identifies and visualizes the variation points (vp-s)
with variants in their code assets. While symfinder has been suc-
cessfully applied to several systems, the mapping of vp-s with
variants to domain features was not explored yet. In this paper
we measured the relevance of the automatically identified vp-s
and variants by observing their manual mapping to the domain
features in ArgoUML-SPL. For experimentation we used the preex-
isting ArgoUML-SPL’s ground truth on domain features and adapt
the precision and recall measures to evaluate the relevance of the
identified vp-s and variants. It resulted that less than half of the
identified vp-s and variants are relevant (38%), but they implement
a high percentage (83%) of all domain features. As the used ground
truth is partial and our automatic identification does not cover all
implementation techniques, this shows that the approach must be
improved but is powerful enough to enable a successful mapping
of features.

As a starting point for future works, we already provided the first
observations towards an automatic mapping approach, using nam-
ing conventions, and did some first improvements in the symfinder
visualization to support a mapping process. Moreover, symfinder
is available 12 and can be used on other software systems, with a
ground truth, to further improve the precision of our identifica-
tion approach. For this, we plan to extend symfinder so that it also
records the vp-s with variants at method level, which could then
be considered within a mapping process. We also plan to improve
the visualization in order to provide users with a more intuitive
way to visualize the organization of variability implementations.

REFERENCES
[1] Christopher Alexander. 2002. The nature of order: an essay on the art of build-

ing and the nature of the universe. Book 1, The phenomenon of life. Center for
Environmental Structure.

[2] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira, Jean-Claude Royer,
Andreas Rummler, andAndré Sousa. 2010. Amodel-driven traceability framework
for software product lines. Software & Systems Modeling 9, 4 (2010), 427–451.

[3] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[4] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering 22,
6 (2017), 2972–3016.

[5] Kathrin Berg, Judith Bishop, and Dirk Muthig. 2005. Tracing software product
line variability: from problem to solution space. In Proceedings of the 2005 an-
nual research conference of the South African institute of computer scientists and
information technologists on IT research in developing countries. South African
Institute for Computer Scientists and Information Technologists, 182–191.

[6] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and software
variability management. Concepts Tools and Experiences (2013).

[7] José M Conejero and Juan Hernández. 2008. Analysis of crosscutting features in
software product lines. In Proceedings of the 13th international workshop on Early
Aspects. ACM, 3–10.

[8] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. 2011.
Extracting software product lines: A case study using conditional compilation. In

12https://github.com/DeathStar3/symfinder/tree/vamos2020

https://deathstar3.github.io/symfinder-demo/vamos2020.html
https://github.com/DeathStar3/symfinder/tree/vamos2020

Mapping Features to Automatically Identified Object-Oriented Variability Implementations

2011 15th European Conference on Software Maintenance and Reengineering. IEEE,
191–200.

[9] Daniel Cruz, Eduardo Figueiredo, and Jabier Martinez. 2019. A Literature Review
and Comparison of Three Feature Location Techniques using ArgoUML-SPL.
In Proceedings of the 13th International Workshop on Variability Modelling of
Software-Intensive Systems. ACM, 16.

[10] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2019. Metrics
for analyzing variability and its implementation in software product lines: A
systematic literature review. Information and Software Technology 106 (2019),
1–30.

[11] Janet Feigenspan, Michael Schulze, Maria Papendieck, Christian Kästner,
Raimund Dachselt, Veit Köppen, and Mathias Frisch. 2011. Using background
colors to support program comprehension in software product lines. In 15th
Annual Conference on Evaluation & Assessment in Software Engineering (EASE
2011). IET, 66–75.

[12] Patrick Heymans, Quentin Boucher, Andreas Classen, Arnaud Bourdoux, and
Laurent Demonceau. 2012. A code tagging approach to software product line
development. International Journal on Software Tools for Technology Transfer 14,
5 (2012), 553–566.

[13] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich,
Martin Becker, and Sven Apel. 2016. Preprocessor-based variability in open-
source and industrial software systems: An empirical study. Empirical Software
Engineering 21, 2 (2016), 449–482.

[14] John M Hunt and John D McGregor. 2006. 9 Implementing a Variation Point: A
Pattern Language. Variability Management–Working with Variability Mechanisms
(2006), 83.

[15] Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moonhang
Huh. 1998. FORM: A feature-; oriented reuse method with domain-; specific
reference architectures. Annals of Software Engineering 5, 1 (1998), 143.

[16] Christian Kästner. 2010. Virtual separation of concerns-toward preprocessors
2.0/von Christian Kästner. (2010).

[17] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code. In SPLC (2). 303–312.

[18] Duc Minh Le, Hyesun Lee, Kyo Chul Kang, and Lee Keun. 2013. Validating
consistency between a feature model and its implementation. In International
Conference on Software Reuse. Springer, 1–16.

[19] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An analysis of the variability in forty preprocessor-based software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 105–114.

[20] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
systematic mapping study of information visualization for software product line
engineering. Journal of Software: Evolution and Process 30, 2 (2018), e1912.

[21] Jabier Martinez, Wesley KG Assunção, and Tewfik Ziadi. 2017. ESPLA: A catalog
of Extractive SPL Adoption case studies. In Proceedings of the 21st International
Systems and Software Product Line Conference-Volume B. ACM, 38–41.

[22] Jabier Martinez, Nicolas Ordoñez, Xhevahire Tërnava, Tewfik Ziadi, Jairo Aponte,
Eduardo Figueiredo, and Marco Tulio Valente. 2018. Feature location benchmark
with argoUML SPL. In Proceeedings of the 22nd International Conference on Systems
and Software Product Line-Volume 1. ACM, 257–263.

[23] Gabriela Karoline Michelon, Lukas Linsbauer, Wesley KG Assunção, and Alexan-
der Egyed. 2019. Comparison-based feature location in ArgoUML vari-
ants:[challenge solution]. In Proceedings of the 23rd International Systems and
Software Product Line Conference-Volume A. ACM, 17.

[24] Johann Mortara, Xhevahire Tërnava, and Philippe Collet. 2019. symfinder: a
toolchain for the identification and visualization of object-oriented variability
implementations. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B. ACM, 56.

[25] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering. Springer, 29–58.

[26] Graham A Stephen. 1994. String searching algorithms. World Scientific.
[27] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. 2005. A taxonomy of variability

realization techniques. Software: Practice and Experience 35, 8 (2005), 705–754.
[28] Reinhard Tartler, Julio Sincero, Christian Dietrich, Wolfgang Schröder-Preikschat,

and Daniel Lohmann. 2012. Revealing and repairing configuration inconsisten-
cies in large-scale system software. International Journal on Software Tools for
Technology Transfer 14, 5 (2012), 531–551.

[29] Xhevahire Tërnava and Philippe Collet. 2017. On the diversity of capturing
variability at the implementation level. In Proceedings of the 21st International
Systems and Software Product Line Conference-Volume B. ACM, 81–88.

[30] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
visualizing variability in object-oriented variability-rich systems. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume A.
ACM, 32.

[31] Bo Zhang, Martin Becker, Thomas Patzke, Krzysztof Sierszecki, and Juha Erik
Savolainen. 2013. Variability evolution and erosion in industrial product lines: a
case study. In Proceedings of the 17th International Software Product Line Confer-
ence. ACM, 168–177.

[32] Liping Zhao and James Coplien. 2003. Understanding symmetry in object-
oriented languages. Journal of Object Technology 2, 5 (2003), 123–134.

[33] Liping Zhao and James O Coplien. 2002. Symmetry in class and type hierarchy.
In Proceedings of the Fortieth International Conference on Tools Pacific: Objects for
internet, mobile and embedded applications. Australian Computer Society, Inc.,
181–189.

	Abstract
	1 Introduction
	2 Background
	2.1 ArgoUML-SPL ground truth
	2.2 Automatic identification and visualization of implemented variability

	3 Evaluating the Relevance of vp-s with variants
	3.1 Data normalization
	3.2 Mapping of variabilities
	3.3 Mapping measures

	4 Additional Results
	4.1 Towards an automatic approach
	4.2 A visualization that supports mapping
	4.3 Threats to validity

	5 Related Work
	6 Conclusion
	References

