Elies Gherbi
email: eliesgherbi@gmail.comelies.gherbi@irt-systemx.fr

Blaise Hanczar
email: blaise.hanczar@univ-evry.fr

Jean-Christophe Janodet
email: jeanchristophe.janodet@univ-evry.fr

Witold Klaudel
email: witold.klaudel@irt-systemx.fr

Wee Sun Lee

Taiji Suzuki

An Encoding Adversarial Network for Anomaly Detection

Keywords: Anomaly Detection, Deep Learning, Encoding Network, Adversarial Learning, Generative Adversarial Networks, Intrusion detection, week supervised learning, Unbalanced datasets

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Anomaly detection is a well-established topic in Machine Learning, with many applications in domains such as fraud detection, cybersecurity, video surveillance, and predictive maintenance [START_REF] Chandola | Anomaly detection: A survey[END_REF][START_REF] Ravi Kiran | An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos[END_REF][START_REF] Chalapathy | Deep learning for anomaly detection: A survey[END_REF]. Moreover, the recent advances in Artificial Intelligence bring insight into future applications, as autonomous transportation like self-driving cars. Many cyber-security threats can impact the usability of those systems. The problem of anomaly detection highlights many risks related to those threats and can help the standard security systems to face new threats.

We can formulate the anomaly detection problem as follows. Let D be a data set containing a large number of normal examples (the normal states of the system) X n , and a relatively small number of anomalous examples X a . A model M must learn the distribution function p X over the normal data during training. Then, given any test example x, it must determine whether x deviates from the learned distribution p X by using an anomaly score function a(x).

Following [START_REF] Chalapathy | Deep learning for anomaly detection: A survey[END_REF], there exist three settings for anomaly detection. The first is the unsupervised case, where an algorithm has to discover intrinsic properties of the data to detect the anomalies without any label guidance [START_REF] Ricardo | Hierarchical density estimates for data clustering, visualization, and outlier detection[END_REF]; The training set contains both normal and anomalous examples, but the labels are not available. The second is the supervised case, where an algorithm must usually face unbalanced datasets, with significant rates of normal data and few anomalous examples.

The third is the one-class classification, where the algorithm has access only to a large set of normal data. Unlike the unsupervised case, there are no anomalous examples in the training set. In this paper, we focus on both the supervised and one-class anomaly detection problems. Notice that even though few anomalous examples may exist in the data, supervised learning algorithms are still challenging, because the set of anomalies often does not form a homogeneous class, that is, a set of examples that shares some semantics.

A large number of papers propose machine learning-based anomaly detection models [START_REF] Chandola | Anomaly detection: A survey[END_REF][START_REF] Hodge | A survey of outlier detection methodologies[END_REF][START_REF] Marco | A review of novelty detection[END_REF]. The recent advances in the field of deep learning have made it possible to revise this problem [START_REF] Chalapathy | Deep learning for anomaly detection: A survey[END_REF][START_REF] Ravi Kiran | An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos[END_REF] and in many application domains like intrusion detection system [START_REF] Galinina | State of the Art Literature Review on Network Anomaly Detection with Deep Learning[END_REF]. In particular, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014a,b), that were proved very efficient in many application fields (Creswell et al., 2018), have also been adopted in recent works on anomaly detection [START_REF] Schlegl | Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[END_REF]Zenati et al., 2018;[START_REF] Akcay | Ganomaly: Semi-supervised anomaly detection via adversarial training[END_REF][START_REF] Golan | Deep anomaly detection using geometric transformations[END_REF][START_REF] Sabokrou | Adversarially learned one-class classifier for novelty detection[END_REF][START_REF] Deecke | Image anomaly detection with generative adversarial networks[END_REF].

In this article, we investigate several problems related to GAN-based anomaly detection methods. We propose a new method, called AnoEAN (Encoding Adversarial Network for Anomaly Detection). The principle of AnoEAN is to learn a function (Encoder) that projects the original dataset into a small dimension latent space so that the normal examples are projected in a restricted region of the latent space and the anomalies outside this region. This latent representation allows us to identify anomalies directly in the latent space by using a Mahalanobis distance on the distribution induced by the normal examples. We thus eliminate all the problems related to the reconstruction loss function. To do so, we develop a new approach that trains an encoder by adversarial learning. We assume that we have a large amount of normal data and a small number of anomalies, which is a common framework for anomaly detection. We finally conduct a series of experiments proving that AnoEAN performs better than conventional anomaly detection techniques, including those based on GANs, using both the MNIST base of handwritten digits [START_REF] Lecun | The MNIST database of handwritten digits[END_REF] and two standard network intrusion detection databases (KDD'99, NSL-KDD).

Related works

According to the taxonomy of [START_REF] Golan | Deep anomaly detection using geometric transformations[END_REF], there are two leading families of methods. The first category, called Representation learning, consists of learning a representation of the normal data, which is used to trigger an alarm when deviant behavior is detected. Many machine learning techniques have been used to construct such models, including one-class SVM (OCSVM) [START_REF] Schölkopf | Support vector method for novelty detection[END_REF]. The problem returns to find a hypersphere with a small radius that encloses the majority of the normal data and keeps anomalies outside. Contrary to the deep learning approaches, OCSVM and other classic machine learning techniques require a specific feature preprocessing. The kernel methods also suffer from quadratically scaling, and require the storage of the support vectors which can be restrictive for an embedded system. Notice that [START_REF] Ruff | Deep one-class classification[END_REF]; [START_REF] Chalapathy | Anomaly detection using one-class neural networks[END_REF] has proposed a deep learning adaptation of one-class classification that does not suffer from these limitations.

TThe second category is based on a Reconstruction loss anomaly score. The model constructs a compact representation of the characteristics of the normal examples and learns to reconstruct the examples from this representation. These methods are based on the assumption that it is more difficult to reconstruct an anomaly than normal examples. The autoencoders were the first to be developed in this framework [START_REF] Xia | Learning discriminative reconstructions for unsupervised outlier removal[END_REF][START_REF] Xu | Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in web applications[END_REF], but the adversarial learning techniques became more and more popular, and several GAN variants have been adapted to tackle anomaly detection problems [START_REF] Schlegl | Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[END_REF]Zenati et al., 2018;Zenati et al.;[START_REF] Akcay | Ganomaly: Semi-supervised anomaly detection via adversarial training[END_REF][START_REF] Golan | Deep anomaly detection using geometric transformations[END_REF][START_REF] Sabokrou | Adversarially learned one-class classifier for novelty detection[END_REF][START_REF] Deecke | Image anomaly detection with generative adversarial networks[END_REF].

A Generative Adversarial Network (GAN) is composed of two neural networks: a generator G, that transforms a vector z drawn from simple prior distribution (latent space) into an artificial data space (same dimension as a real data space), and a discriminator D whose role is to differentiate artificial data from real data. One drives such a system competitively: the generator must deceive the discriminator by implicitly learning to approximate the distribution of real data (Goodfellow et al., 2014a). In the context of anomaly detection, AnoGAN [START_REF] Schlegl | Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[END_REF] and its variants (Deecke et al.), learn a GAN from the normal data. Then, for a given test example x, the algorithm looks for a point z in the latent space such that G(z) ≈ x; if it fails, then the example x is considered as an anomaly. In other words, the GAN-based approaches work upon the inversion of the generator: AnoGAN tries to compute z = G -1 (x) under the assumption that G is invertible only for normal examples. Nevertheless, AnoGAN does not explicitly invert the generator: a reconstruction loss function is defined, typically L r = x -G(z) , and the techniques consist in finding the point z which minimizes L r withe respect to z. The process is very time-consuming because a gradient descent is performed for each test example. Notice that [START_REF] Creswell | Inverting the generator of A generative adversarial network (II)[END_REF] improved this idea by inverting many images at once. The GANs also suffer from the mode collapse [START_REF] Salimans | Improved techniques for training gans[END_REF]: The generator may have a limited diversity during the inference phase regardless of the input. In practice, it means that there exists a single point that the generator thinks as the most optimal point to generate, whatever the input. See Fig. 1c,1d.

In order to get around these problems, other algorithms like EGBAD and ALAD (Zenati et al., 2018;Zenati et al.) learn Bidirectional GANs (BiGANs) [START_REF] Donahue | Adversarial feature learning[END_REF][START_REF] Vincent Dumoulin | Adversarially learned inference[END_REF][START_REF] Li | ALICE: towards understanding adversarial learning for joint distribution matching[END_REF] rather than GANs. Their architectures are composed of three networks: a generator G and a discriminator D as before, and a third network called an encoder E, whose role is to project the data to the latent space with E = G -1 . The encoder is learned alongside the GAN. Moreover, in this setting, finding a point z such that G(z) ≈ x is immediate since we have z = E(x). However, training an additional encoder network may encourage over-fitting, resulting in poor reconstruction (Creswell and Bharath, (a) 2018). Moreover, in practice, the generator and the encoder are rarely exact inverses of each other: they are inverse from a theoretical standpoint, after convergence. Furthermore, the BiGANs may suffer from non-identifiability issues, as shown by [START_REF] Li | ALICE: towards understanding adversarial learning for joint distribution matching[END_REF]: a single instance z can potentially correspond to many possible values of x (see Fig. 1a,1b). To deal with this problem, ALICE [START_REF] Li | ALICE: towards understanding adversarial learning for joint distribution matching[END_REF] uses conditional entropies to control the uncertainty of a pair (z, x). More precisely, the authors bound the conditional entropy by using the criterion of cycle-consistency (Zhao et al.). Most of the GAN-based approaches work upon the assumption that the generator is invertible. The inverse of the generator is obtained either by driving another network which simulates the inverse of the generator or via an optimization process. However, it has been shown experimentally that in both cases, the approximated function is not the inverse of the generator everywhere (see Fig. 1a and1b). Thus, applying the generator again on the antecedent of a datum x generally fails to reconstruct x, even though datum x was a normal example. In practice, this phenomenon dramatically increases the rate of false alarms.

AnoEAN algorithm

Formulation

We consider a problem in which we monitor the data x ∈ R p describing the state of a system with p variables. Our goal is to trigger an alert when the data shows that the system is out of normal behavior. For this, we construct an anomaly score a(x) : R p → [0, +∞[measuring the degree of anomaly of an example x, the normal example must have a score close to 0. To learn this function, we have a training set containing N examples corresponding to a normal behavior {x

n i | i = 1..N } and M examples corresponding to anomalies {x a i | i = 1..M } with M N .
Notice that unlike normal data, the anomalies do not form a homogeneous class. Our method, named AnoEAN for Anormaly Detection by Encoding Adversarial Network, consists in projecting the examples x n and x a into a small space, called decision space, in which the distribution of normal examples is Gaussian. We call encoder, the neural network that projects the examples from the original space into the decision space E(x) : R p → R d with d p. Let p z be a Gaussian distribution N (0, I) in the decision space. The purpose of the encoder is to project the normal examples in p z and the anomalies outside p z . For this, in the same way as the GANs, we use a second network called discriminator D(z) : R d → R which receives as input a vector of the decision space and predicts if this vector comes from p z or from the encoder. D(z) returns the probability that the vector z comes from p z . The encoder must therefore both misleads the discriminator on the normal example projection E(x n) to make it believe that it comes from p z and help the discriminator differentiate p z from the projection of the anomalies E(x a). The architecture of our AnoEAN model is shown in Fig. 2. The discriminator and the encoder must respectively minimize the following L D and L E loss functions:

L D = -E z∼pz [log D(z)] -E xn∼px n [log(1 -D(E(x n)))] -E xa∼px a [log(1 -D(E(x a)))] (1) L E =E xn∼px n [log(1 -D(E(x n)))] + E xa∼px a [log(D(E(x a)))] (2)
In Eq. (1) and (2), the two first terms of loss function L D , and the first term of loss function L E are similar to the basic loss functions of a GAN. Instead of a noise vector in the input of the generator of the GAN, in AnoEAN a vector representing a normal example is in the input of the encoder. By maximizing D(z) and minimizing D(E(x n)), the decoder learns to differentiate vectors drawn from p z and projections of normal examples E(x n). By maximizing D(E(x n)) the encoder gets the distribution of the projections of normal examples E(x n) closer to p z . If we do not add the terms D(E(x a)) in L D and L E then there are no constraints on the projections of the anomalies, and the encoder tends to project both normal examples and anomalies on p z . The consequence is that we can not differentiate normal examples from anomalies in the decision space. On the contrary, by minimizing D(E(x a)), we get that (i) the decoder learns to differentiate vectors drawn from p z and projections of normal examples E(x a), and (ii) the encoder also minimizes the overlap between the distribution of projections of the anomalies E(x a) and p z . Once the model is trained, the prediction of the anomalies requires only the use of the encoder (Fig 4). The anomaly score for an example x is the distance between its projection in the decision space E(x) and the distribution of the projection of the normal examples. This distribution is supposed to tend to p z = N (0, I) during the learning of the model. We could therefore use the E(x) standard deviation as an anomaly score. However, because of the finite size of the training set, our experiments showed that the projection distribution of normal examples could diverge slightly from p z . Therefore, at the end of the learning, we represent this distribution by a Gaussian distribution N (µ, Σ) whose parameters are assessed with a validation base. The anomaly score is finally the Mahalanobis distance between E(x) and µ:

a(x) = (E(x) -µ) T Σ -1 (E(x) -µ)
(3)

Theoretical analysis

In this section, we develop the loss functions L D and L E (see Eq. (1) and (2)) in order to identify the optimal discriminator and encoder. We begin with the discriminator. The formulas of L D can be rewritten by introducing the integrals instead of the expectations:

L D = z -p z (z) log D(z)dz - x p xn (z) log(1 -D(E(x)))dx - x p xa (x) log(1 -D(E(x)))dx = z -p z (z) log D(z) -p zn (z) log(1 -D(z)) -p za (z) log(1 -D(z))dz
where p zn (resp. p za) is the distribution of the projection of normal (resp. anomalous) examples into the decision space. We can express the optimal discriminator D given the encoder E. Let f (D(z)) be the function in the integral above such that L D = z f (D(z))dz.

To find the discriminator that minimized L D , we set the derivative of f (D(z)) to 0 :

∂f (D(z)) ∂D(z) = - p z (z) D(z) + p n (z) 1 -D(z) + p a (z) 1 -D(z) = 0 ⇒ D(z) = p z (z) p z (z) + p zn (z) + p za (z) (4)
if p z (z) + p zn (z) + p za (z) = 0, we can compute the second derivative to check that this extremum is a minimum :

∂f (D(z)) ∂D(z) = p z (z) D(z) 2 + p n (z) (1 -D(z)) 2 + p a (z) (1 -D(z)) 2 > 0 (5)
Hence the optimal discriminator is D * (z) = pz(z) pz(z)+pz n (z)+pz a (z) . It corresponds to the Bayes classifier predicting if z comes from the distribution p z or from the encoder.

Let us see what the encoder does when the optimal discriminator is plugged into loss function L E . We have: implies that the encoder tends to the solution where the three distribution are equal p z = p zn = p za . By maximizing KL (p za ||p z), the encoder maximizes the divergence between p za and p z i.e. it tries to project the anomalies outside p z . To maximize KL p zn pz n +pz a 2

L E = z p zn (z) log(1 -D * (z)) + p za (z) log(D * (z))dz = z p zn (z
, the encoder has to maximize the divergence between p zn and p za , thus it aims at separating the projection of the normal examples from the projection of the anomalies. By optimizing all of these four divergences together the encoder tries to project the normal examples into p z and to project the anomalies outside p z and p xn .

Learning algorithm

In Algo. 1, we show the training procedure of our model. We take random examples x n and anomalies x a from the training set and project them into the decision space with the encoder (i.e., we calculate each E(x a) and E(x n)). We add random vectors from the p z distribution to these projected examples, and get the batch that is presented at the input of the discriminator. The discriminator is modified by a gradient descent to minimize L D (Eq 1); the encoder is frozen during this step. Then, it is the encoder's turn to be modified in order to minimize L E (Eq 2), the discriminator being frozen during this step. This procedure is iterated until convergence. Notice that to seed up the gradient descent, we modify the loss function of the encoder :

L E = -E xn∼px n [log(D(E(x n)))] - E xa∼px a [log(1 -D(E(x a)))
]. The minimization of this function is theoretically equivalent of the previous one, but it has larger gradient for bad encoders.

(i) n } mn ∼ P xn , {x (i) a } ma ∼ P xa , {z (i) } m ∼ N (µ, σ 2)). for k = 0, ..., n D do δ w ← ∇ w [-1 m m i=1 log D w (z (i)) -1 mn mn i=1 log(1 -D w (E θ (x (i) n))) -1 ma ma i=1 log(1 - D w (E θ (x (i) a)))] w D ← Adam(δ w , α, β) end for δ θ ← ∇ θ [-1 mn mn i=1 log D w (E θ (x (i) n)) -1 ma ma i=1 log(1 -D w (E θ (x (i) a)))] θ G ← Adam(δ θ , α, β) end for

Experimentations

In this section, we describe our experimental protocol, the algorithms used to compare our model, the datasets, and the implementation details of our technique. Our results demonstrate the efficiency of our model compared to state of the art.

Experimental setup

In our experiments, we used three datasets: MNIST, KDD99, and NSL-KDD.

MNIST [START_REF] Lecun | The MNIST database of handwritten digits[END_REF] is a database of handwritten digits that is commonly used for image classification problems. Despite that MNIST does not initially contain normal classes and anomalies, it is often used in anomaly detection to analyze the behavior of algorithms and visualize their predictions. In our experiments, we used this dataset in two ways: 1) 1 against all: we consider that a certain number represents the normal class and the remaining nine numbers represent the anomaly class. For the OCSVM, AnoGAN, ALAD, EGBAD methods, the training set consists of 5000 normal data; the test set includes 1700 examples of which 80% of normal data and 20% of anomalies randomly selected among the other nine classes. For AnoEAN and SVM, we additionally inject 10% anomalies into the learning set; these are chosen among four classes out of nine so that certain figures (anomalies) do not appear during the learning. 2) n against m: it is based on the same principle as the "1 against all", the only difference being that the normal class is composed of several digits. We group n classes of digits into one normal class and treat the remaining m digits as abnormal examples. We use the same sample apportionment in the learning and test sets as in "1 against all". The objective is to analyze the behavior of the algorithms in the case where the normal class is heterogeneous and can be separated into several subclasses.

The other datasets KDD99 and NSL-KDD are commonly used to evaluate the performance of anomaly detection algorithms, the objective being to detect intrusions into monitored networks. We use the same sample apportionment in the learning and test sets as before.

We compare our method with two kernel methods and three GAN-based methods. OCSVM. The One-Class Support Vector Machine (OCSVM) is a classical kernel-based technique for novelty detection. It is usually used with the RBF or linear kernel function [START_REF] Schölkopf | Support vector method for novelty detection[END_REF]. In our experiments, the RBF kernel gives the best results. The OCSVM learns a decision boundary around normal examples, containing most of the learning samples. Samples residing outside the borders are considered as abnormal. We implemented two tests, one where we feed OCSVM with normal data (fixing ν = 0.0001), the other where we inject 10% anomalous example in train data and a soft margin of 10% (that is, ν = 0.1). The latter did not bring any improvement to the results.

SVM. Althought the SVMs often produce efficient solutions for balanced data sets, they are sensitive to unbalanced data sets [START_REF] Veropoulos | Controlling the sensitivity of support vector machines[END_REF][START_REF] Wu | Adaptive feature-space conformal transformation for imbalanced-data learning[END_REF][START_REF] Akbani | Applying support vector machines to imbalanced datasets[END_REF]. The main reason is that the objective function assigns the same cost C for positive and negative classification errors in terms of penalty [START_REF] Veropoulos | Controlling the sensitivity of support vector machines[END_REF]. We used a cost-sensitive learning solution by adding a weight for each class that penalizes errors (giving a higher weight to the least frequent class corresponding to the class of the anomalies).

AnoGAN was the first published anomaly detection method based on GAN [START_REF] Schlegl | Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[END_REF]. The model learns a generator able to project random points from a lowdimensional multivariate Gaussian distribution (latent space) to the distribution of the training data set. The model adversarially learns a discriminator that must separate the generated data from the real data. After the training stage, for each element of the test set, we sample a latent space variable using a generator, followed by gradient descent on this latent variable, to estimate the inverse projection. The anomaly criterion is a combination of the reconstruction loss and the feature match loss (distance computd with the last hidden layer of the discriminator). For each test element, if the optimization cannot find a latent variable that minimizes the criterion, we obtain a high score.

EGBAD takes advantage of the BiGAN/ALI network structure. EGBAD has an encoder that projects the data into in the latent space [START_REF] Donahue | Adversarial feature learning[END_REF][START_REF] Vincent Dumoulin | Adversarially learned inference[END_REF]. The adversarial training process is driven through a discriminator that takes as an input the pair (data, latent variable) and must determine which pair constitutes a real pair consisting of a sample of real data and its coding (x, E(x)), or a false data sample and the corresponding latent space input of the generator (G(z), z). For a given test input x, EGBAD (Zenati et al., 2018) uses the encoder to infer the latent variable z = E(x) that will be used as input for the generator to reconstruct the test input G(E(x)). The anomaly criterion is the same as that of [START_REF] Schlegl | Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[END_REF].

ALAD is a bidirectional GAN, based on the ALICE architecture [START_REF] Li | ALICE: towards understanding adversarial learning for joint distribution matching[END_REF]. It directly infer the reconstruction of a data in the test phase using an encoder and the generator G(E(x)). In ALAD (Zenati et al.), the authors regularize the conditional distribution by adding another discriminant D xx (x, G(z)) to approximate a conditional entropy constraint. The aim is to enhance EGBAD by explicitly forcing the encoder and generator during the training so that both are the inverse of each other. The authors also apply the spectral normalization [START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF] to regularize the training. The anomaly score is the L 1 reconstruction error in the discriminant space G xx between the actual data and the sample generated using the discriminant hidden layer before the logit layer. In Fig. 7, we show the results on MNIST (n against m). We are interested in the problem of identifying anomalies in a dataset where the normal class is heterogeneous (composed of several digits). In this configuration, AnoEAN dramatically outperforms the state of the art, even if its performance deteriorates with the increasing heterogeneity of the normal class. Notice that the performances of reconstruction-based approaches (ALAD and EGBAD) collapse. Indeed, for them to work, the generator and the encoder must necessarily be inverse from one another, what is particularly difficult to guaranty when the normal class is heterogeneous. On the other hand, AnoEAN succeeds in encoding complex distributions because it does not need to calculate the inverse of the encoder. We present the results on NSL-KDD and KDD99 datasets in Tables 1 and2. We obtain these results by running the train and test with ten different seeds, for the initialization of the weights and shuffling before splitting data into train and test. The values represent the mean and standard deviation confidence intervals, to show a calibrated performance of the results. These tables show several measures of performances: the area under the precisionrecall curve (AUC), the F1-measure (F1), the ROC curve, and the accuracy. Since the number of anomalies is much lower than the normal examples, AUC represents our primary measure of interest. Notice that ANOEAN has a better AUC than state of the art and also a better score on the other metrics on NSL-KDD. On the KDD dataset, ANOEAN is competitive with SVM method on F1 score and accuracy. Notice that KDD dataset contains more than 400 000 single connection vectors and even with 10% of anomalies, it remains a large amount of data; This is why the SVM has good results in that case. In Fig. 8a, we reduce the amount of anomalies in the training set, and we verify that ANOEAN keeps on average the same performances, whereas those of the SVM decreases when the rate of anomalies decrease. At last, in the Fig. 8b, we check the impact of the latent space Z dimension on the AUC. Clearly, AnoEAN performs better than the other GANs based approach (EGBAD/ALAD) whichever the dimension of Z.

Conclusion and Perspectives

We presented a new anomaly detection method that uses a projection in a latent space of small dimension in which normal examples and anomalies are separated. For this, we train an encoder by adversarial learning. The cost function enforces the encoder learning to projects the normal data into a Gaussian distribution and the anomalies in the tail of this distribution. For the prediction, our method only needs the encoder weights. It is crucial to have a small model for applications in embedded systems where the memory is costly. We have shown that our model could discover non-encountered anomalies during the learning stage. Besides, our technique performs better than the state of the art when faced with a heterogeneous normal class. Finally, compared to state of the art, our technique triggers few false alarms. The limitation of our method is that it needs an amount of anomalous example to restrain the projection of normal examples. In future works, we will adapt our method to the case where no anomalies are available in the training set, to achieve this goal, the idea is to complete the architecture with a new generator of artificial anomalies, that should train against the encoder and the discriminator in an adversarial way.

 Figure 1: (a) and (b) shows the non-identifiability issue: the generator performs well in reconstruction, but the encoder has difficulties to retrieve the correct pairs between the data space and latent space. (c) and (d) shows the mode collapse issue: the generator is more likely to project every latent point to digit (6), which proves that the generator lacks from diversity.

Figure 2 :

 2 Figure 2: The training phase of AnoEAN: the Encoder and the Discriminator are adversarially learnt.

Figure 3 :

 3 Figure3: A sketch of the projection from the data space to the decision space that is performed by a well-trained Encoder.

Fig. 3

 3 Fig. 3 shows a toy dataset illustrating the objective of the encoder. The 2-dimension dataset (left panel) corresponds of 550 training examples; The normal examples are represented with 500 red points, which are drawn from a normal distribution; The remaining 50 blue points are drawn from multiple other Gaussian distributions and scattered around to simulate anomalous examples. The 1-dimension decision space is represented in the right panel, where the green, red and blue curves represent respectively the distribution of p z ,E(x n) and E(x a). The distribution of the E(x n) fits p z and the overlap between the distribution of the E(x a) and p z tends to 0. This clearly yields an efficient space in which the anomaly score can be computed.

Figure 4 :

 4 Figure 4: The inference (test) phase: only the Encoder is requested.

Algorithm 1

 1 AnoEAN. Adam hyper-parameters (α = 0.0002, β = 0.5), Learning rate 10 -3 Require: batch size m, discriminator step n D , m = m a + m n Initialize the discriminator parameters w D , the generator parameters θ G . for number of training iteration do sample batches of {x

Figure 6 :

 6 Figure 6: Model performance according to the AUC metric on each digit in the case of the MNIST problem (1 against all)

Figure 7 :

 7 Figure 7: Visualization of the performances on different methods with several degrees of complexity in the normal class (varying the heterogeneity of the normal class with several numbers).

 Figure 8: (a) shows the impact of reducing the percentage of anomalies in AnoEAN and SVM on NSL-KDD. (b) shows the impact of the latent space vector dimension Z on the AUC metric, concerning the Adversarial Network Based models (BIGAN/ALICE/AnoEAN).

Table 2 :

 2 KDD99

	AUC	F1	ROC	accuracy	Model
	81.3 ± 0.92 80.1±1.4 83.9±0.89 86.2±0.78 AnoGAN
	95.1 ± 0.74 89.6±1.5 97.9±0.31 95.9±0.51	EGBAD
	95.2 ± 0.77 90.2±0.81 98.0±0.39 96.1±0.28	ALAD
	81.1 ± 4.52 78.5±4.98 91.1±2.24 88.3±7.48	OCSVM
	97.9±0.26 95.2±0.63 98.8±0.28 98.3±0.25 AnoEAN
	94.8 ± 0.5	93.9±0.8 95.6±1.49 97.4±0.24	SVM
		Table 1: NSL-KDD	
	AUC	F1	ROC	accuracy	Model
	82.7±2.72 85.9±1.97 85.8±0.79 88.1±1.71 AnoGAN
	95.1±3.67 96.4±3.02 98.9±0.88 98.5±1.39	EGBAD
	95.6±1.51 96.8±0.72 99.1±0.37 98.7±0.28	ALAD
	86.6±3.86 84.4±5.36 95±2.02 92.5±3.21	OCSVM
	99.2±0.08 97.3±0.32 99.7±0.09 98.8±0.14 AnoEAN
	98.7±0	98.5±0	98.6±0	99.3±0	SVM

The performances of the algorithms are assessed with the area under the precisionrecall curves (AUC). We also calculate the optimal F 1 measure, as well as the receiver operating characteristic(ROC curve) and associated accuracy. For each model, we select the learning parameters that maximize the AUC calculated from the anomaly score a(x) Eq. (3) established with a validation set.

AnoEAN has two neural networks, the encoder and the discriminator. In the case of MNIST, the encoder is a convolutional network (4 * 2 * 32, 4 * 2 * 64, 4 * 2 * 128, d)(d is the dimension of latent space) and the discriminator is a multi-layer network (32, 16, 1). For the NSL-KDD and KDD99 bases, the encoder and the discriminator are multi-layer networks (128, 64, 32, d) and (32, 16, 1) respectively. The size of the batch is 200. The number of epochs is fixed by early stopping and the gradient descent is performed with Adam (lr = 10 -3).

Results

In Fig. 5a, we show the curves of the loss function L D . The green and blue curves show that the discriminator is confused through the learning steps: it cannot differentiate between the distributions over z and E(x n). Therefore, the encoder is getting better with respect to the approximation of P z . At the same time, we see that the orange loss curve keeps decreasing, which means that the distribution of anomalous examples E(x a) diverges from P z . In Fig. 5b, we can see that both the loss functions L E and L D are decreasing with the iterations until convergence.

In Fig. 6, we present our results on MNIST (1 against all): each digit is successively considered as the normal class, the others being seen as anomalies. AnoEAN outperforms all other methods in 5 out of 10 cases; its performances are comparable to the best methods on the remaining 5 digits. Notice that all the methods have poor performances on Classes 2, 3, 4 and 5 because these classes have similar visual characteristics as those of the anomalies. We