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MULTIPLICITY-INDUCED-DOMINANCY IN PARAMETRIC SECOND-ORDER DELAY
DIFFERENTIAL EQUATIONS: ANALYSIS AND APPLICATION IN CONTROL DESIGN

ISLAM BOUSSAADA 1, SILVIU-IULIAN NICULESCU 2, ALI EL-ATI 3, REDAMY PÉREZ-RAMOS 4

AND KARIM TRABELSI 5

Abstract. This work revisits recent results on maximal multiplicity induced-dominancy for spectral values in
reduced-order time-delay Systems and extends it to the general class of second-order retarded differential equa-
tions. A parametric multiplicity-induced-dominancy property is characterized, allowing to a delayed stabilizing
design with reduced complexity. As a matter of fact, the approach is merely a delayed-output-feedback where the
candidates’ delays and gains result from the manifold defining the maximal multiplicity of a real spectral value,
then, the dominancy is shown using the argument principle. Sensitivity of the control design with respect to the pa-
rameters uncertainties/variation is discussed. Various reduced order examples illustrate the applicative perspectives
of the approach.

Résumé. Ce travail revisite les résultats récents sur la dominance induite par la multiplicité maximale des valeurs
spectrales dans les systèmes à retard d’ordre réduit et l’étend à la classe la plus générale générale des équations
différentielles de second ordre impliquant un retard. La propriété de dominance induite par la multiplicité est
paramétriquement caractérisée, permettant la conception de loi de commande retardée, stabilisante et à complexité
réduite. En effet, l’approche consiste simplement en un retour de sortie retardé dans lequel les retards et les
gains des candidats résultent de la variété définissant la multiplicité maximale d’une valeur spectrale réelle, puis la
dominance est montrée en utilisant le principe de l’argument. La sensibilité de la conception de la commande aux
paramètres incertains/variant est discutée. Divers exemples d’ordre réduit illustrent les perspectives applicatives de
l’approche.
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1. INTRODUCTION

It is commonly accepted that time-delay induces desynchronizing and/or destabilizing effects on the dynamics. How-
ever, new theoretical developments in the control of finite-dimensional dynamical systems suggest the use of delays in
the control laws for stabilization purposes. The idea of exploiting the delay effect in controllers design was first intro-
duced in [55] where it is shown that the conventional proportional controller equipped with an appropriate time-delay
performs an averaged derivative action and thus can replace the proportional-derivative controller. Furthermore, it was
stressed in [40] that time-delay has a stabilizing effect in the control design. Indeed, the closed-loop stability is guaran-
teed precisely by the existence of the delay. In the context of mechanical engineering problems, the effect of time-delay
was emphasized in [54] where concrete applications are studied, such as the machine tool vibrations and some particular
robotic systems.

This work focuses on the effect of multiplicity of spectral values on the exponential stability of the generic second-order
retarded differential equation. The investigation of conditions on the equation parameters that guarantee the exponential
stability of solutions is a question of ongoing interest, see for instance [19, 28]. An efficient way to study a solution’s
stability is the frequency domain approach since in the Laplace domain, where a number of effective methods have been
proposed, the stability analysis amounts to studying the distribution of the characteristic quasipolynomial function’s roots,
see for instance [3, 4, 17, 18, 20, 23, 34, 42, 53, 54, 58, 59].

It is worth noting that the rightmost root for a quasipolynomial function corresponding to stable time-delay systems
is actually the exponential decay rate of its time-domain solution, see for instance [37] for an estimate of the decay rate
for stable linear delay systems. To the best of the authors’ knowledge, the first time an analytical proof of the dominancy
of a spectral value for the scalar equation with a single delay was presented in [22]. The dominancy property is further
explored and analytically shown in scalar delay equations in [14], then in second-order systems controlled by a delayed
proportional is proposed in [11, 13] where its applicability in damping active vibrations for a piezo-actuated beam is
proved. An extension to the delayed proportional-derivative controller case is studied in [10, 12] where the dominancy
property is parametrically characterized and proven using the argument principle.

The strategy of using roots assignment for controller-design for time-delay systems is not new. As a matter of fact,
in [30] a feedback law yields a finite spectrum of the closed-loop system located at an arbitrarily preassigned set of
points in the complex plane. In the case of systems with delays in control only, a necessary and sufficient condition for
finite spectrum assignment is obtained. Notice that the resulting feedback law involves integrals over the past control.
In case of delays in state variables, a technique based on the finite Laplace transform leads to a constructive design
procedure. The resulting feedback consists of proportional and (finite interval) integral terms over present and past values
of state variables. In [27], a similar finite pole placement for time-delay systems with commensurate delays is proposed.
Feedback laws defined in terms of Volterra equations are obtained owing to the properties of the Bezout ring of operators
including derivatives, localized and distributed delays. Recently, in [2] it is shown that under appropriate conditions the
assignment of exactly PSB negative distinct poles guarantees the exponential stability of the solution. The dominancy of
the assigned poles is shown using a factorization technique. Other analytical/numerical placement methods for retarded
time-delay systems are proposed in [33, 36, 47], see also [62] for further insights on pole-placement methods for retarded
time-delay systems with proportional-integral-derivative controller-design.

In recent works, the characterization of multiple spectral values for time-delay systems of retarded type were estab-
lished using a Birkhoff/Vandermonde-based approach; see for instance [7–9, 14]. In particular, in [8], it is shown that the
admissible multiplicity of the zero spectral value is bounded by the generic Polya and Szegö bound denoted PSB , which
is merely the degree of the corresponding quasipolynomial 1, see for instance [46]. In [9], it is shown that a given crossing
imaginary root with a non vanishing frequency never reaches PSB and a sharper bound for its admissible multiplicities
is established. Moreover, in [14], the manifold corresponding to a multiple root for scalar time-delay equations defines a
stable manifold for the steady state. An example of a scalar retarded equation with two delays is studied in [9] where it
is shown that the multiplicity of real spectral values may reach the PSB . In addition, the corresponding system has some
further interesting properties: (i) it is asymptotically stable, (ii) its spectral abscissa (rightmost root) corresponds to this
maximal admissible multiple root located on the real axis. Such observations enhance the outlook of further exhibiting the

1The quasipolynomial degree is defined as the sum of degrees of the involved polynomials plus the corresponding number of delays
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existing links between the maximal admissible multiplicity of some negative spectral value reaching the quasipolynomial
degree and the stability of the trivial solution of the corresponding dynamical system. This dominancy property induced
by multiplicity appears also in optimization problems since such a multiple spectral value is indeed the rightmost root,
see also [56].

In order to better understand the problem discussed in the paper as well as the solution we are proposing, consider the
simple example of a scalar system controlled by a delayed output feedback which in the frequency domain reads as,Hyu(s) =

1

s− a
Cτ (s) = k e−τs

where Hyu and Cτ are respectively the open-loop plant and the controller. It is easy to see that the stability of the
closed-loop system is subordinate to the location of the characteristic roots of the following quasipolynomial function:

Q(s, τ) = s− a+ k e−sτ , (1)

which involves three parameters (a, k, τ) ∈ R2 × R+. The vanishing of the delay τ allows to assign the unique closed-
loop root using the gain k. However, if τ is non zero then the closed-loop admits an infinite number of roots, for which
the gain k can be set to assign the corresponding dominant characteristic root as proposed in [22] using the Lambert
W function properties, see also [61] for further insights on this special function. The extension of the rightmost root
assignment problem to second order plants is not straightforward, which is essentially due to the increase of both the
number of parameters (5 parameters) and the degree of the corresponding quasipolynomial.

The paper is organized as follows. Section 2 presents some prerequisites in complex analysis and states some technical
Lemmas on the behavior of parametric trigonometric polynomials encountered in the proof of the main results. Section 3
provides some motivating examples emphasizing the interest of better understanding the effect of multiple spectral values
on the stability of delay systems. The main results are presented in Section 4 where a discriminant-based parametric
analysis of MID is provided. Section 5 focuses on the sensitivity of the proposed design in presence of uncertainties.
Section 6 exhibits some applicative perspectives of the dominant-root assignment we propose. The problems of stabilizing
a double integrator via a delayed PD-controller and the stabilizing an inverted pendulum on cart as well as the regulation
of the Mach number in a wind tunnel are numerically investigated and discussed. Finally, Section 7 opens new leads for
future developments. Indeed, the investigation of MID for time-delay system of neutral type is still an open problem.

2. PROBLEM STATEMENT AND PREREQUISITES

Consider the generic time-delay system of retarded type with a single time delay:

ξ̇ = A0ξ(t) +A1ξ(t− τ), (2)

where ξ = (ξ1, . . . , ξn) ∈ Rn is the state-vector, under appropriate initial conditions, belonging to the Banach space of
continuous functions C([−τN , 0],Rn). Here, τ is a positive constant delay and Aj ∈ Mn(R) for j = 0 . . . 1 are real
valued matrices.

It is well known that the asymptotic behavior of the solutions of (2) is determined from the spectrum ℵ designating the
set of eigenvalues of the characteristic matrix function : C× R∗+ defined by:

M(s, τ) = s I −A0 −A1 e
−τs. (3)

Furthermore, these eigenvalues are the roots of the associated characteristic function which is a quasipolynomial Q :
C× R+ → C of the form:

Q(s, τ) = detM(s, τ). (4)
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In this paper, we restrict our analysis to n = 2 and so the considered class of quasipolynomial functions is given by:

Q(s, τ) = P0(s) + P1(s) e−τ s, (5)

with {
P0(s) = s2 + a1s+ a0,

P1(s) = α1 s+ α0.
(6)

Some generic result on the location of associated spectral values for arbitrary n can be found in [5]; see also [34], where,
in particular, the proof of the proposition below is given.

Proposition 1. If s is a characteristic root of system (2), then it satisfies

|s| ≤ ||A0 +A1 e
−τs||2. (7)

The above property combined with the triangular inequality provides a generic envelope curve around the characteristic
roots corresponding to system (2), see for instance [38] for further insights on spectral envelopes for retarded time-delay
systems with a single delay.

The goal of this work is twofold. First, it characterizes the admissible/maximal spectral values’ multiplicities and it
describes their effect on the stability of the trivial solution as well as the corresponding exponential decay rate, see for
instance [37]. Second, it emphasizes links between the location of the poles of the open-loop system and the rightmost
roots of the closed-loop system. It is worth mentioning that in the case of linear second-order systems of retarded type,
the corresponding 5 parameters generate complexity in the analysis. As a byproduct of the approach, the main steps of an
algorithmic procedure are proposed. We think that such an idea can be extended to more general quasipolynomials.

2.1. On integration contours for quasipolynomials corresponding to retarded systems

Cauchy’s argument principle is a basic complex analysis property widely used in the stability analysis of linear time-
invariant dynamical systems, see for instance [31,50]. Roughly speaking, the argument principle establishes a correspon-
dance between the number of zeros minus the number of poles of a meromorphic function f in a simply connected domain
D ⊂ C and a contour integral, on the boundary ∂D, of the function’s logarithmic derivative, which is also the winding
number of the curve ∂D. Several stability methods such as the Nyquist criterion and the Mikhaylov curve derive from the
argument principle, see for instance [35, 41] and [44, 45] for more contemporary applications of these methods.

Theorem 2.1 ( [1]). LetU be a simply connected region with boundary Γ (piecewise smooth and oriented anti-colockwise).
Let f be a meromorphic function in an open set containing the closure Ū with poles p1, . . . , pl and zeros s1, . . . , sm
counted according to their multiplicity, none of which belonging to the closed curve Γ. Then

1

2iπ

∮
Γ

f ′(s)

f(s)
ds = Z − P, (8)

where Z and P designate respectively the number of zeros and the number of poles of f enclosed by Γ.

In particular, note that if f is a holomorphic function (in our case a quasipolynomial function) and Γ is a closed
piecewise C1 curve then

1

2iπ

∮
Γ

f ′(s)

f(s)
ds = Z.

Moreover, standard contours like the modified Bromwich contour are often used to explore the asymptotic stability of
dynamical systems’ solutions, as it allows to count the zeros in <(s) > 0; see for instance Figure 1. Other contours can
be chosen based on the inherent properties of the considered characteristic function; see for instance Figure 2. Practically,
owing to Proposition 1, a generic supremum bound for the real and imaginary parts of the roots of function (4) is estab-
lished. Then, one may define an integration contour Γ = ∪lk=1gk which is not passing through zeros of Q and taken as a
counterclockwise closed curve. Hence, the contour integral over Γ is defined as the sum of the integrals over the directed
smooth curves that make up Γ, as illustrated in Figures 2 for instance.
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FIGURE 1. Generic contours for applying the argument principle to investigate qualitative properties
of a linear time-invariant dynamical system. The argument principle allows to count the difference
between the number of zeros and the number of poles of a given meromorphic function inside the blue
closed contour. (Left) The standard modified Bromwich contour usually used for asymptotic stability
investigation. (Right) A contour often used to investigate α−stability or the dominancy of a given root.

FIGURE 2. The simplified contour used in [10] for applying the argument principle in order to in-
vestigate the dominancy of the multiple root is the solid blue curve. The generic spectrum envelope
established in Proposition 1 is the dashed red curve for equation (12) under conditions (11) where
a0 = τ = 1.

2.2. Some properties of quasipolynomials

In order to apply the argument principle and count the number of zeros of a quasipolynomial in <(s) > 0, one begins
by exploring the corresponding imaginary roots as well as their respective multiplicities. Efficient methods for crossing
imaginary roots identification exist; for instance, one may use the Rekasius substitution [43, 48] or matrix pencil [34] to
mention only a few, see also [9] for investigating the multiplicity of such roots. Also, note that real and imaginary parts
of quasipolynomials consist in trigonometric polynomials having a parity property. In particular, in second-order delay
systems (4), one has {

<(Q(iω, τ)) = −ω2 + a0 + α0 cos (ω τ) + α1ω sin (ω τ) ,

=(Q(iω, τ)) = a1ω + α1ω cos (ω τ)− α0 sin (ω τ) ,

where the real and the imaginary parts are respectively even and odd with respect to ω, which is a useful property for
counting the quasipolynomial’s roots in the right-half plane; see [21].
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2.3. Technical lemmas

Hereafter, we state some lemmas pertaining to some properties of a particular class of parametric-trigonometric poly-
nomials encountered in the proof of the main results. The proofs of the lemmas are presented in the Appendix.

Lemma 1. Consider the transcendental function defined by:

F (ρ) = 6 cos (ρ) + 2 ρ sin (ρ) + ρ2 − 6,

admits a unique real solution ρ? which is located in the interval
]
π, 3π

2

[
.

Lemma 2. Let ζ be a real non-negative parameter and consider the transcendental functions defined by :{
F+(ρ) = ρ2 + (6− 2 ζ) (cos (ρ)− 1) + (2− ζ) ρ sin (ρ) ,

G+(ρ) = (2− ζ) ρ cos (ρ) + (2 ζ − 6) sin (ρ) + (4− ζ) ρ.
(9)

A positive real number ρ∗ is a root of F+ if, and only if, there exists ζ∗ > 0 such that

ζ∗ =
F (ρ∗)

2 (cos (ρ∗)− 1) + ρ∗ sin (ρ∗)

where F is the transcendental function studied in Lemma 1. Furthermore, the following assertions hold:

i) To every ζ∗ ∈]0, 1[ corresponds a unique ρ∗ > 0 root of F+ and one has G+(ρ∗) > 0.
ii) To every ζ∗ > 1 corresponds an even number nζ∗ (including zero and counting multiplicity) of roots of F+ for

which G+ is negative.

Lemma 3. Let ζ be a real non-negative parameter and consider the transcendental functions defined by :{
F−(ρ) = ρ2 + (2 ζ + 6) (cos (ρ)− 1) + (2 + ζ) ρ sin (ρ) ,

G−(ρ) = (2 + ζ) ρ cos (ρ)− (2 ζ + 6) sin (ρ) + (4 + ζ) ρ.

To every positive number ζ∗ corresponds an odd number of positive roots of F−. Furthermore, the first root belongs to
the interval ]0, 2π[.

3. COMPREHENSIVE MOTIVATING EXAMPLES

In this section, we focus on three case studies. The first one corresponds to the simplest delay differential model by
which one can exhibit and explain in a comprehensive way the stability induced when forcing some particular spectral
value to be multiple. The second, which in appearance illustrates the limitation of such a property, gives deep insights on
conditions for such a property to apply.

3.1. Exponential decay rate for a scalar equation with a single delay

The starting point of this work in progress and the first analytical proof of the multiplicity-induced dominancy was
proposed in [14]. Indeed, a simple scalar differential equation with one delay representing a biological model describing
the dynamics of a vector-borne disease was considered. In its linearized version, the infected host population ξ(t) is
governed by:

ξ̇(t) + a0 ξ(t) + a1 ξ(t− τ) = 0, (10)

where a1 > 0 designates the contact rate between infected and uninfected populations assuming that the infection of the
host recovery proceeds exponentially at a rate −a0 > 0, see for instance [16] and [49] for other time-delay models issued
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from system biology. It was shown in [14] that for a given positive delay, equation (10) admits a double spectral value at
s = s0 if, and only if,

s0 = −a0τ + 1

τ
and a1 =

es0 τ

τ
. (11)

In addition, it was emphasized that s0 is the rightmost root, and that if s0 < 0 then the zero solution of system (10) is
asymptotically stable; see [15] for general results on the stability of a scalar equation with a single delay.

Now, let us recall that s = s0 is a spectral value of (10) if, and only if, s0 is a root of the characteristic equation

Q(s, τ) = s+ a0 + a1 e
−sτ . (12)

The main ingredient of the dominancy proof of s0 is an integral equation which cannot be satisfied for any spectral value
s with <(s) > s0. Namely, it was shown that if a1 satisfies (11), then the characteristic function reads:

Q(s, τ) = (s− s0)

(
1−

∫ 1

0

e−τ(s−s0) t dt

)
. (13)

As a matter of fact, if s1 = ζ + j η 6= s0 is a root of (13) then s1 is a root of its second factor. Hence, we obtain

1 =

∫ 1

0

e−τ(ζ−s0) tdt. (14)

But, e−τ(ζ−s0) t < 1 for ζ − s0 > 0 and 0 < t < 1, thereby exhibiting the dominancy of s0.

FIGURE 3. (Left panel) The distribution of the spectrum corresponding to equation (12) and system
(11) for a0 = τ = 1 and a1 = e−2. The roots’ distribution is illustrated using QPmR toolbox from [57].
(Right panel) The rightmost root corresponding to equation (12) and system (11) as a function of the
delay τ for a0 = 1 and a1 = e−(τ+1)

τ .

Remark 1. The rightmost root s0 corresponding to equation (12), where system (11) is satisfied, varies in the interval
s0 ∈]−∞,−a0[. Figure 3 illustrates the behavior of the rightmost root with respect to the time-delay variation.

3.2. Multiple spectral values for time-delay systems are not necessarily dominant

The problem of stabilization of a chain of integrators is considered in [39] where a single integrator can be stabilized
by a single delay state-feedback. Indeed, a positive gain guarantees the closed-loop stability of the system free of delay,
and, by continuity, there exists a (sufficiently small) delay in the output preserving the stability of the closed-loop system.
However, the situation is completely different for a chain of integrators of order n when n > 1. For instance, consider the
time-delay system characterized by the following quasipolynomial function:

Q(s, τ) = s2 + α e−τ s. (15)
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FIGURE 4. Sparsity-induced loss of dominancy for the multiple spectral value. Each intersection be-
tween the solid blue/dashed red curves corresponds to a spectral value of function (17). For τ = 1,
the dominancy of s1 ≈ 0.557 with respect to the double root at s0 = −2 is illustrated. The roots’
distribution is illustrated using QPmR toolbox from [57].

It can be checked that the maximal admissible multiplicity is 2 and it can be attained if, and only if,

α = −4
e−2

τ2
, s = −2

τ
. (16)

However, the main result from [39] asserts that either n distinct delays or a proportional+delay compensator with n−1
distinct delays are sufficient to stabilize a chain including n integrators. In [24], a like assertion is shown to be also
necessary to stabilize the chain of n integrators. Hence, in our case, either 2 distinct delays or a proportional+delay are
necessary and sufficient to stabilize the double integrator. In conclusion, there exists at least a spectral value for (15) with
a positive real part. As a result, s0 = − 2

τ , while being a multiple root, it is not dominant. Indeed, consider (15)-(16) with
τ = 1, that is

Q(s, 1) = s2 − 4e−(s+2). (17)
As illustrated in Figure 4, the dominancy property is lost since s1 ≈ 0.557 is a root of function (17). This is justified by
the sparsity of (17).

3.3. Stabilizing an oscillator via a delayed output-feedback

Consider the stability of the trivial solution corresponding to the control system{
ξ̈(t) + a1ξ̇(t) + a0ξ(t) = u(t),

φ(t) = γ ξ(t),

where φ(t) is the system output and u(t) = β
γ ξ(t − τ) is the control law, which amounts to studying the roots of the

quasipolynomial function
Q(s, τ) = s2 + a1s+ a0 + β e−τ s. (18)

Using the standard linear change of variables s = a1 λ
2 , one obtains the normalized characteristic function

Q̃(λ, τ̃) = λ2 + 2λ+ a0 + α e−λτ̃ , where

α =
4

c21
β0, τ̃ =

c1
2
τ and a0 = 4

c0
c12

.
(19)

If α = 0, the spectral abscissa is minimized at a0 = 1 which corresponds to to the rightmost root located at λ0 = −1, see
for instance [25]. By exploiting the delay effect, the following proposition proved in [13] asserts that the solution’s decay
rate can be further improved by decreasing the corresponding rightmost root. Assume that a0 > 1, then the following
proposition holds.
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Theorem 3.1 ([13]).
i) The multiplicity of any given root of the quasipolynomial function (19) is bounded by 3.

ii) The quasipolynomial (19) admits a real spectral value at z0 = −1− 1
τ̃ with algebraic multiplicity 3 if, and only

if,

τ̃ =

√
1

a0 − 1
and α = −2 e−(1+τ̃)

τ̃2
. (20)

iii) If equations (20) are satisfied then z = z0 is the rightmost root of function (19).

Remark 2. If equalities (20) are satisfied then the trivial solution of the second-order equation ξ̈(t) + 2 ξ̇(t) + a0 ξ(t) =
α ξ(t− τ̃) is asymptotically stable with ξ(t) ≈ ez0t.

4. MAIN RESULT: PARAMETRIC MID FOR SECOND-ORDER SYSTEMS

Second-order linear systems capture the dynamic behavior of many natural phenomena and have found numerous
applications in a variety of fields, such as vibration and structural analysis. Stabilization of solutions to such a reduced
order model represents a standard test bench to approve of new paradigms and methodologies in control design.

The problem we consider is the characterization of the admissible multiplicities of spectral values and their effect on
stability of the time-delay system ξ̈(t) + a1ξ̇(t) + a0ξ(t) + α0 ξ(t − τ) + α1ξ̇(t − τ) = 0. It is worth mentioning
that such a system depicts several unexpected properties and in particular, for each choice of the coefficients, the delay
parameter induces a stabilizing/destabilizing behavior. In other words, increasing the delay value may be beneficial for
the system’s dynamics. Such a property does not hold for scalar systems with one delay, for which increasing the delay
leads to instability, see for instance [40, 58].

From a control theory viewpoint, the aim is to establish a delayed-state-feedback controller u(t) = −α0 ξ(t − τ) −
α1ξ̇(t− τ) able to stabilize solutions of the following control system:

ξ̈(t) + a1ξ̇(t) + a0ξ(t) = u(t). (21)

In the Laplace domain, the latter generic control problem yields the following characteristic quasipolynomial function.

Q(s, τ) = P0(s) + P1(s) e−τ s,

where P0(s) = s2 + a1s+ a0 and P1(s) = α1 s+ α0 as defined in (6).
From an algebraic geometry viewpoint, it is consistent to parametrize such a control problem via the discriminant of

the characteristic polynomial related to the open-loop (uncontrolled) equation. Namely, the complex/real nature of the
roots of the polynomial P0(s) has a strong effect on the characterization of the controller’s gains and delay enabling a
desired fast stabilization using the MID property. In the sequel, it shall be emphasized that ∆ = a2

1−4a0, the discriminant
of P0, defines an efficient and necessary criterion to exhibit the potential applicability and the limitations of the proposed
methodology. Indeed, a discriminant-based parametric delayed-output-feedback controller design is established. Our
analysis splits following the sign of the said discriminant.

4.1. Open-loop system with one oscillating mode

One oscillating mode as solution of the uncontrolled equation (two conjugate complex roots) corresponds, from a
purely algebraic viewpoint, to a characteristic polynomial with a strictly negative discriminant ∆. In such a case, the
following theorem gives a bound for quasipolynomial root’s multiplicity and provides the explicit MID-based controller’s
gains and delay.

Theorem 4.1. Considering equation (4), the following assertions hold.

i) The multiplicity of any given root of the quasipolynomial function (4) is bounded by 4, it can only be achieved on
the real axis and under negativity of ∆.
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FIGURE 5. Two complementary regions in the parametric space separated by the parabola a2
1−4a0 = 0.

Each point of the parabola corresponds to a double root. To each point of the blue region corresponds a
real-rooted quadratic polynomial. In the red region the corresponding P0 admits two conjugate complex
roots.

ii) The quasipolynomial (4) admits a real spectral value at s = s0 with algebraic multiplicity 4 if, and only if,

s0 = −a1 +
√
−2 ∆

2
, (22)

and the system parameters satisfy

τ = 2

√
− 2

∆
, α0 =

(
5 ∆− a1

√
−2 ∆

)
4

es0τ , α1 = −
√
−2 ∆

2
es0 τ . (23)

iii) If (23) is satisfied, then s = s0 is the spectral abscissa corresponding to (4).
iv) If (23) is satisfied then the trivial solution of the closed-loop equation (21) is asymptotically stable if, and only if,

either
(
a1 ≥ 0 and a0 >

a2
1

4

)
or
(
a1 < 0 and a0 >

3 a2
1

8

)
.

Proof.
i) and ii). Note that the degree of the quasipolynomial function is equal to 4 as seen in previous sections.

First, the vanishing of the quasipolynomial Q(s, τ) yields the elimination of the exponential term as a rational function
in s. As a matter of fact, setting Q(s, τ) = 0 yields

e−sτ =
−s2 − a1s− a0

α0 + α1s
. (24)

The substitution of the last result in the ideal generated by the first three derivatives< ∂sQ(s, τ), ∂2
sQ(s, τ), ∂3

sQ(s, τ) >
gives a system of algebraic equations in the variable s and parametrized by p = (τ, a0, a1, α0, α1) :

α1 τ s
3 + (α1 + τ a1α1 + τ α0) s2 + (τ a0α1 + 2α0 + τ a1α0) s

+ τ α0a0 + a1α0 − α1a0 = 0,

α1τ
2s3 +

(
τ2a1α1 − 2τα1 + τ2α0

)
s2 +

(
τ2a0α1 − 2τa1α1 − 2α1 + τ2a1α0

)
s

− 2α0 + τ2α0a0 − 2τa0α1 = 0,

α1 τ
3s3 +

(
τ3a1α1 + τ2 (τ α0 − 3α1)

)
s2 +

(
τ3a0α1 + τ2a1 (τ α0 − 3α1)

)
s

+ τ2a0 (τ α0 − 3α1) = 0.
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Using elimination, we deduce equality (22) and the values of the delay τ and the gain α0 both parametrized in α1 and the
open-loop parameters a0 and a1 as follows

τ = 2

√
− 2

∆
, α0 = α1

(
a1

2
− 5

4

√
−2∆

)
.

Hence, substituting the last equalities in (24), we get the value of the gain α1 given in (23). Obviously, (23) applies only
when ∆ < 0. Finally, under (23) one easily checks that ∂4

sQ(s0, τ) = −16/∆ 6= 0, which entails that the maximal
multiplicity is 4 and cannot be attained at any s 6= s0.

iii). Parametrization and scaling: Under (23), Equation (4) parametrized by the discriminant ∆ reads as

Q(s, τ) = s2 + a1s+ a0 +

(
5 ∆

4
− a1

√
−2 ∆

4
− s
√
−2 ∆

2

)
e−
−2 s
√
−2 ∆−a1

√
−2 ∆+2 ∆

∆ . (25)

Using the change of variables z = s− s0, the above expression reduces to

Q̃(z, τ) = z2 − 4 z

τ
+

6

τ2
−
(

6

τ2
+

2 z

τ

)
e−zτ . (26)

Accordingly, the zeros of (26) are exactly the scaled zeros of (25) so that sk − s0 = zk, where s0 is given in (22). Also,
recall that s0 is a root of (25) with multiplicity 4 which is equivalent to 0 being a root of (26) with multiplicity four.
Finally, proving the dominancy of s0 as a root of (25) is equivalent to proving the dominancy of 0 as a root of (26).

Characterizing imaginary roots of the scaled equation: In order to apply the argument principle on the standard modified
Bromwich contour, allowing to count the roots of the quasipolynomial (26) on the right half-plane, a deflation which
eliminates the roots on the imaginary axis is required. To do so, we first investigate nonzero imaginary roots of (26).
Assuming that there exists ω > 0 such that z = iω is a root of (26), we define R(ω) = <(i−2Q(iω)) and S(ω) =
=(i−2Q(iω)), so that 

R(ω) = 6
cos (ω τ)

τ2
+ 2

ω sin (ω τ)

τ
+ ω2 − 6

τ2
,

S(ω) = 2
ω cos (ω τ)

τ
− 6

sin (ω τ)

τ2
+ 4

ω

τ
.

(27)

In consequence, for any z = iω, root of (26), we have R(ω) = S(ω) = 0. Then, some algebraic manipulations allow to
eliminate the trigonometric functions as follows

cos (ω τ) = −1

2

7ω2τ2 − 18

ω2τ2 + 9
,

sin (ω τ) = −1

2

ω τ
(
ω2τ2 − 18

)
ω2τ2 + 9

Using the standard trigonometric identity cos2 (ω τ) + sin2 (ω τ) = 1, one obtains exclusively 0 and the non-vanishing
solutions ω = ± 3 i

τ , which are discarded since we are dealing with positive frequencies. Under Stepan-Hassard notations
(see Appendix), we have K = κ = 4 where K designates the number of imaginary roots of (26) and κ is the multiplicity
of 0. Hence, the deflated function which is integrated on the Bromwich contour B is given by

Q̂(z, τ) =
Q̃(z, τ)

z4
,

It has the same zeros encircled by B as the quasipolynomial Q̃. Also, recall that the number of such zeros is nothing but
the number of roots of Q in the right-half plane {s ∈ C, s.t. <(s) > s0}.
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Characterizing ωk the positive roots of R and exploring the sign(S(ωk)): Let us explore the positive roots ofR. If ω > 0
is a root of the first transcendental function of (27), then

6
cos (ω τ)

τ2
+ 2

ω sin (ω τ)

τ
+ ω2 − 6

τ2
= 0.

Multiplying the last equation by τ2 reduces the problem to the search of zeros of an univariate function:

F (ρ) = 6 cos (ρ) + 2 ρ sin (ρ) + ρ2 − 6 (ρ = ω τ) (28)

Now, Lemma 1 in Section 2, states that function F admits a unique solution ρ? ∈
]
π, 3π

2

[
which is equivalent to state that

for a given positive delay τ? there exists a unique frequency ω? ∈ R∗+ such that ρ? = ω? τ? andR(ω?) = 0.
Let us define G(ρ) = τ2 S(ω) in the same fashion. Then,

G(ρ) = 2 ρ(2 + cos (ρ))− 6 sin (ρ)

which is positive in the interval ]π, 2π[ since sin (ρ) < 0. In particular, one has G(ρ?) > 0 which means that S(ω?) > 0;
see Figure 6 for illustration.

Counting the number of roots dominating s0: We are able now to compute the number of unstable roots for (26) based
on the computation of the argument variation. As a matter of fact, combining all the above collected information on the
behavior of both the realR and the imaginary S parts of the quasipolynomial function (26), we apply the Stepan-Hassard
formula [21,54]; further details can be found in the Appendix. Namely, Z designates the number of roots dominating s0:

Z =
n−K

2
+

1

2
(−1)r signS(κ)(0) +

r∑
j=1

(−1)j−1 signS(ωj), (29)

where n is the order of the system, κ is the multiplicity of 0 as a root of (26), K is the total number of roots of (26)
on the imaginary axis and r is the number of positive real roots of R. In our case, n = 2, κ = K = 4, r = 1 and
S(4)(ω) = 2 sin (ω τ) τ2 + 2ω cos (ω τ) τ3 which vanishes at ω = 0. As a result, we easily obtain that Z = 0 owing to
formula (29). Hence, the dominancy of 0 as a root of (26), equivalently the dominancy of s0 as a root of (25), is proved.

iv). Condition a0 >
a2

1

4 guarantees the negativity of the discriminant ∆. One easily sees that a1 < 0 and a0 ∈]
a2

1

4 ,
3 a2

1

8 [
are inconsistent with s0 < 0. Since assertion iii) states the dominancy of s0, then, under (23), the spectrum corresponding
to (4) consists of complex values with negative real parts only, which proves the asymptotic stability of the trivial solution.

�

4.2. Open-loop system with non oscillating modes

In this section we consider the case where the uncontrolled equation admits two real spectral values. The previous
section showed that under such a configuration, the MID based-design cannot be applied by exploiting the maximal
multiplicity which is equal to 4, see Theorem 4.1. The following Theorem gives a bound for the quasipolynomial roots’
multiplicity for ∆ ≥ 0. In addition, it explicitly provides the MID-based controller’s gains and delay by exploiting a
lower multiplicity.

Theorem 4.2. Considering equation (4), the following assertions hold.
i) If the discriminant ∆ ≥ 0, then the multiplicity of any given root of the quasipolynomial function (4) is bounded

by 3.
ii) For an arbitrary positive delay τ , the quasipolynomial (4) admits a real spectral value at s = s± with algebraic

multiplicity 3 if, and only if,

s± =
−τ a1 − 4±

√
8 + τ2∆

2 τ
, (30)
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FIGURE 6. (Left) The existence of a unique solution of R given in (27) and parametrized by the neg-
ative left-free discriminant ∆ and in red the 3D plot of R and in yellow the identically vanishing hy-
perplan. (Right) The positivity of S(ρ?) given (27) parametrized by the negative left-free discriminant
∆. In blue the 3D plot of S and the red curve corresponds to the intersection of R with the identically
vanishing hyperplan in yellow.

and the system parameters satisfy:


α0 =

(
a1s± +

a1
2

2
− ∆

2
+

6 a1 + 10 s±
τ

+
6

τ2

)
es±τ ,

α1 =

(
2 s0 + a1 +

2

τ

)
es±τ .

(?±)

iii) If (?+) (respectively (?−)) is satisfied then s = s+ is the spectral abscissa corresponding to (4) (respectively s−
cannot be the spectral abscissa corresponding to (4)). Furthermore, for an arbitrary delay τ the multiple spectral
value at s− is always dominated by a single real root s0.

iv) If (?+) is satisfied then the trivial solution is asymptotically stable if, and only if, τ satisfies the following condi-
tions 

τ ∈]0, τ−[ when a0 < 0,

or

τ ∈]0, τ−[∪]τ+, ∞[ when a0 > 0 and a1 < 0,

(31)

where τ± = −a1±
√

∆+2 a0

a0
.

Remark 3. The second and third assertions of Theorem 4.2 hold for negative discriminant − 8
τ2 < ∆ < 0. Moreover,

when ∆ = − 8
τ2 the triple root at s± becomes the quadruple root prescribed in Theorem 4.1.

Proof.
i) and ii). As shown in assertion i) of Theorem 4.1, the degree of the quasipolynomial is equal to 4 which is an admissible
multiplicity for any complex root of Q(s, τ) since ∆ ≥ 0. So, we explore roots of multiplicity 3 of the quasipolynomial
Q(s, τ). Again, we use (24) to eliminate the exponential term by writing it down as a rational function in s. Next,
substituting (24) in the ideal generated by the first two derivatives < ∂sQ(s, τ), ∂2

sQ(s, τ) > gives a system of algebraic
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equations in the variable s and parametrized by (τ, a0, a1, α0, α1) as follows:
α1 τ s

3 + (α1 + τ a1α1 + τ α0) s2 + (τ a0α1 + 2α0 + τ a1α0) s

+ τ α0a0 + a1α0 − α1a0 = 0,

α1τ
2s3 +

(
τ2a1α1 − 2τα1 + τ2α0

)
s2 +

(
τ2a0α1 − 2τa1α1 − 2α1 + τ2a1α0

)
s

− 2α0 + τ2α0a0 − 2τa0α1 = 0.

Solving the latter system and taking into account that τ > 0, we identify the couple s± of admissible triple roots listed
in (30) parametrized in τ , a0 and a1 and the value of the gain α0 parametrized in τ , α1, a0, a1 where the latter can be
written in the following compact form:

α0 =
α1

((
τ2a1 + 10 τ

)
s± + 6 + 6 τ a1 + 2 τ2a0

)
τ (2 τ s± + τ a1 + 2)

.

Finally, using (24) once more, we obtain the value of the gain α1 then α0 as stated in (?±).
Now, under (?±) one easily checks that ∂3

sQ(s±, τ) = τ
√

8 + τ2 ∆ 6= 0 entailing that the maximal multiplicity is 3
and that it is not be attained by any s 6= s±.

iii) New parametrization and scaling: Under (?±), Equation (4) parametrized by ζ =
√

8 + τ2∆ reads as:

Q(s, τ) =

(
τ a1 − 14± 5 ζ + s±τ

2 a1 + 2 τ2a0

τ2
− (2∓ ζ) s

τ

)
e−τ (s−s±) + s2 + a1s+ a0, (32)

Using the change of variables z = s− s± allows to write the last quasipolynomial function as follows:

Q̃(z, τ) = z2 +
(±ζ − 4) z

τ
+

6∓ 2 ζ

τ2
+

(
(±ζ − 2) z

τ
+
±2 ζ − 6

τ2

)
e−zτ . (33)

Characterization of imaginary roots: In order to apply the argument principle on the Bromwich-like contour, to count the
roots of the quasipolynomial (33) on the right half-plane, we first introduce a deflation that eliminates the roots on the
imaginary axis, as priorly done in the proof item iii) of Theorem 4.1. To do so, we start by investigating nonzero imaginary
roots for (33). Assuming that there exists ω > 0 such that z = iω is a root of (33), we define R(ω) = <(i−2Q(iω)) and
S(ω) = =(i−2Q(iω)) which yields :

R(ω) =
(6∓ 2 ζ) cos (ω τ)

τ2
+

(2∓ ζ)ω sin (ω τ)

τ
+ ω2 − 6∓ 2 ζ

τ2
,

S(ω) =
(2∓ ζ)ω cos (ω τ)

τ
− (6∓ 2 ζ) sin (ω τ)

τ2
+

(4∓ ζ)ω

τ
.

(34)

In consequence, for any z = iω, root of (33), we have R(ω) = S(ω) = 0. Then, some algebraic manipulations allow to
eliminate the trigonometric functions as follows:

cos (ω τ) = −
(
14∓ 8 ζ + ζ2

)
τ2ω2 − 36± 24 ζ − 4 ζ2

(4∓ 4 ζ + ζ2) τ2ω2 + 36∓ 24 ζ + 4 ζ2
,

sin (ω τ) =
− (2∓ ζ)ω3τ3 +

(
36∓ 24 ζ + 4 ζ2

)
ω τ

(4∓ 4 ζ + ζ2) τ2ω2 + 36∓ 24 ζ + 4 ζ2
.

Using the standard trigonometric identity cos2 (ω τ) + sin2 (ω τ) = 1, we show that no positive solution exists for both
cases (?±). As a result, under Stepan-Hassard notations (see Appendix), we obtain K = κ = 3.
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Positive real roots ωk of R and the associated sign(S(ωk)) : Let us explore the positive roots of R. Let ω > 0 be a root
of the first transcendental function of (34), that is

(6∓ 2 ζ) cos (ω τ)

τ2
+

(2∓ ζ)ω sin (ω τ)

τ
+ ω2 − 6∓ 2 ζ

τ2
= 0.

Multiplying the last equation by τ2 reduces the problem to the search of zeros of an univariate function in the variable
ρ = ω τ , i.e., F±(ρ) = ρ2 + (6∓ 2 ζ) (cos (ρ)− 1) + (2∓ ζ) ρ sin (ρ) . In the same fashion, we easily transform the
function S into the function G±(ρ) = (2∓ ζ) ρ cos (ρ) − (6∓ 2 ζ) sin (ρ) + ρ (4∓ ζ) . Hence, the vanishing of F±
enables the substitution of ζ as a function of ρ:

ζ = ± F (ρ)

2 (cos (ρ)− 1) + ρ sin (ρ)
, (35)

where F is the function established in (28) and studied in Lemma 1.
In the case where (?+) is satisfied and using Lemma 2, we assert that the only intervals of interest for the product

ωτ = ρ are I0 =]0, ρ?[ and Ik =]2kπ, νk[ (k ∈ N∗). More precisely, for a given ζ∗ ∈]0, ζ
0
[ corresponds a unique delay

τ∗ > 0 and a unique frequency ω∗ ∈]0, ρ
?

τ∗ [ such that R(ω∗) = 0 and S(ω∗) > 0. Furthermore, for a given ζ ∈]ζ
0
, ζ

1
[,

equationR(ω) = 0 has no solution. Finally, for every ζ∗ ∈]ζ
k
, ζ

k+1
[ (k ≥ 1) corresponds a unique τ∗ and a unique pair

of solutions ωl,∗ and ωl,∗ in every interval ] 2lπ
τ∗ ,

νl
τ∗ [ (1 ≤ l ≤ k) such that R(ωl,∗) = R(ωl,∗) = 0, S(ωl,∗) < 0 and

S(ωl,∗) < 0.
In the case where (?−) is satisfied and using Lemma 3 and its proof, we assert that the only intervals of interest for

the product ωτ = ρ are J0 =]ρ?, 2π[ and Jk =]νk, 2(k + 1)π[ (k ∈ N∗) where νk is introduced in the proof of
Lemma 2. Namely, for a given ζ∗ ∈ R∗+ there exists a unique delay τ∗ > 0 and a unique frequency ω0 ∈] ρ

?

τ∗ ,
2π
τ∗ [

satisfying S(ω0) > 0, and a unique pair of solutions ωl,∗ and ωl,∗ in every interval ] νlτ∗ ,
2(l+1)π
τ∗ [ (1 ≤ l ≤ k) such that

R(ωl,∗) = R(ωl,∗) = 0, S(ωl,∗) > 0 and S(ωl,∗) > 0.

Counting the number of roots dominating s+: We apply formula (29) to deduce the number of unstable roots for (33) (see
Appendix) with n = 2 and K = κ = 3, where n is the order of the system, κ is the multiplicity of 0 as a root of (33), K
is the total number of roots of (33) on the imaginary axis, r is the number of positive real roots of R which is specified
hereafter with respect to the two cases (?±).

(?+) In this case, S(3)(0) = ζτ > 0 and three different configurations are possible for r. Namely, r ∈ {0, 1, 2k}
(k ∈ N∗). In all cases formula (29) allows to conclude that Z = 0, showing the dominancy of 0 as a root of (33)
which is equivalent to the dominancy of s+ as a root of (32);

(?−) In this case, S(3)(0) = −ζτ < 0 and r is an odd number. Formula (29) allows to conclude that Z = 1, entailing
that 0 as a root of (33) is dominated by a single root, which is equivalent to s− as a root of (32) being dominated
by a single, necessarily real, root s0 (the roots of quasipolynomials with real coefficients are complex conjugates).

iv). The triple root at s+ is negative if, and only if,
√

8 + τ2(a2
1 − 4 a0) < τ a1 + 4, which reduces to τ2a0 + 2 τ a1 +

2 > 0. The sign of a quadratic polynomial is related to its roots τ± = −a1±
√

∆+2 a0

a0
=
−a1±

√
a2

1−2 a0

a0
. Two cases are of

interest here:
• If a0 < 0, then τ+ > 0 and admissible delays τ lie in ]0, τ−[;
• If a0 > 0, then a1 has to be negative and admissible delays τ ∈]0, τ−[∪]τ+, ∞[.

�

5. ON SENSITIVITY OF THE DESIGN TO PARAMETERS VARIATION

In the presence of parameter uncertainties, the following result from [32] emphasizes the behavior of the spectral
abscissa, which is in our case a multiple root of the characteristic quasipolynomial function, with respect to parame-
ters’ variation. Accordingly, the characteristic matrix (3) is perturbed through some parameter ε yielding the following
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characteristic equation :

detM(s, τ, ε) = 0. (36)

Notice that, when ε = 0 one has M(s, τ, 0) = M(s, τ). Here, we focus on perturbations of a multiple eigenvalue s0 of (3)
with algebraic multiplicity m and geometric multiplicity one. Define the vectors H0, . . . Hm−1 satisfying

H0 6= 0,

l∑
k=0

1

k!

∂kM
∂sk

(s0, τ) Hl−k = 0, l = 0, . . . ,m− 1, (37)

thereby forming the corresponding Jordan chain. In what follows we use subscripts for partial derivatives (Ms :=
∂M
∂s , Mε =: ∂M∂ε ), and to simplify the notation, we omit the argument (s0, τ) when it is clear from the context.

Theorem 5.1 ( [32]). Let s0 be a spectral value of the quasipolynomial (4) for ε = 0, with algebraic multiplicity equal
to m and geometric multiplicity one, with Jordan chain (H0, . . . ,Hm−1). Let U0 be the corresponding left eigenvector.
Assume that condition

U∗0MεH0 6= 0 (38)

holds. Then, around ε = 0, the eigenvalues in the vicinity of s0 can be expanded as the branches of the Puieseux series

s(ε) = s0 +

∞∑
i=1

ε
i
m si, (39)

where

sm1 = − U∗0MεH0

U∗0
(

1
1!MsHm−1 + 1

2!Ms2Hm−2 + · · ·+ 1
m!MsmH0

) . (40)

A numerical example based on the above result is provided in the next illustrative section.

6. ILLUSTRATIVE EXAMPLES

In this section we exhibit the use of the MID property in control design. Indeed, results from Theorems 4.1-4.2 are
exploited in tuning stabilizing controllers parameters. Discussions and interpretations follow each case study.

6.1. Stabilizing the Double Integrator via a Delayed-Feedback controller

Let us revisit again the problem of stabilization of the double integrator pointed out in section 3.2. Conforming
with the presented approach, we consider the control problem ξ̈(t) = u(t) where the controller structure is given by
u(t) = −α0 ξ(t− τ)− α1 ξ̇(t− τ). So that, the characteristic equation corresponding to the closed-loop system is:

Q(s, τ) = s2 + (α1 s+ α0) e−τ s = 0.

Note that the inclusion of the gain α1 6= 0 in the control structure increases the degree of the resulting quasipolynomial to
4. Applying the result of Theorem 4.2 from Section 4, we assign a dominant negative spectral value with multiplicity 3 at
s+ = −2+

√
2

τ (corresponding to the dominant decay rate of the solution) when α0 and α1 are chosen such that:

α0 = 2

(
−7 + 5

√
2
)

e−2+
√

2

τ2
and α1 = 2

(√
2− 1

)
e−2+

√
2

τ
.

Observe that decreasing the delay value improves the exponential decay rate of the time-domain solution.
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FIGURE 7. Inverted Pendulum on a cart

6.2. Stabilization of an Inverted Pendulum on a Cart

In the sequel we consider the friction free model presented in [51] by adopting the same notations. Denote the mass
of the cart M , the mass of the pendulum m and let the relative mass be ε = m/(m+M). In the dimensionless form, by
neglecting the frictions, the dynamics of the inverted pendulum on a cart in Figure 7 are governed by the following ODE
(see also [6, 26, 52]): (

1− 3ε

4
cos2(θ)

)
θ̈ +

3ε

8
θ̇2 sin(2θ)− sin(θ) + Ucos(θ) = 0, (41)

where U represents the horizontal driving force exerted by the control law which is designed as a delayed state-feedback:

U(t) = (1− 3

4
ε)
(
α0 θ(t− τ) + α1 θ̇(t− τ)

)
.

Hence, equation (41) can be written in closed-loop as a Delay-Differential Equation (DDE) of the form:

ξ̇ = f(ξ(t), ξ(t− τ)), (42)

where ξ = (ξ1, ξ2)
T

=
(
θ(t), θ̇(t)

)T
. The right hand side f : R2 × R2 → R2 reads as:

f1(ξ, ς) = ξ2 and f2(ξ, ς) =
− 3

8 ε sin(2 ξ1)ξ2
2 + sin(ξ1)− cos(ξ1)(1− 3

4ε) (α0 ς1 + α1 ς2)

1− 3
4 ε cos2(ξ1)

, (43)

where ς(t) = ξ(t− τ). The phase space of (42)-(43) is the space of continuous functions over the delay interval [−τ, 0]
with values in R2. The linearization of f with respect to its two arguments ξ and ς at the origin is given by:

∂1f(0, 0) =

[
0 1

−a0 0

]
and ∂2f(0, 0) =

[
0 0

−α0 −α1

]
,

where a0 = 1
3
4 ε−1

. Thus, the characteristic function is given by Q(s, τ) = s2 + a0 + (α0 + α1 s) e−s τ . Next, Theorem
4.2 enables the tuning of the controller gains as follows:

α0 = 2

(
−7 + 5

√
2− τ2a0 + τ2a0

)
e−2+

√
2−τ2a0

τ2
and α1 = 2

(
−1 +

√
2− τ2a0

)
e−2+

√
2−τ2a0

τ

to assign the rightmost root (a triple root) at: s =

(
−2+

√
2
√

3 ε−4−2 τ2

3 ε−4

)
τ . Finally, the left-free delay is to be chosen

τ ∈]0, τ−[ where τ− is defined in (31).
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6.3. A third-order Mach number regulation in a wind tunnel model

Transonic flows analysis is still a challenging problem in compressible fluid dynamics. In a stationary transonic
flow, subsonic and supersonic regions often coexist and are respectively governed by elliptical and hyperbolic equa-
tions. Whatismore, these two types of partial differential equations require completely different approaches, a fact that
usually precludes admissible solutions in the entire region. In particular, the Mach number regulation in a wind tunnel is
based on the Navier-Stokes equations for unsteady flow and regulated by control laws acting on temperature and pressure.

The following simplified model of Mach number regulation described in [29] consists of a system of three state equa-
tions with a delay in one of the state variables. It is stressed that in steady-state operating conditions, the dynamic response
of the Mach number perturbations ξ1 to small perturbations in the guide vane angle actuator ξ2 are governed by the system
of equations: 

ξ̇1(t) = −aξ1(t) + k a ξ2(t− τ),

ξ̇2(t) = ξ3(t),

ξ̇3(t) = −ω2 ξ2(t)− 2ηωξ3(t) + ω2u(t),

(44)

where a, ω, η, k and τ are positive parameters depending on the operating point and presumed constant when the pertur-
bations ξi are small.

In [29], a feedback consisting of a linear combination of state variables and weighted integrals of some of the state
variables over a period equal to the time delay is proposed, by which the spectrum of the closed-loop system becomes
finite and arbitrarily assigned (a spectrum consisting of three negative eigenvalues). That said, our method does not render
the closed-loop system finite dimensional but only involves controlling its rightmost root. Furthermore, the objective of
this study is to generate reduced complexity controllers assigning an admissible decay rate of the time-domain trivial
solution.

Let us consider the control law:

u(t) = − γ

ω2
ξ2(t)− α0

ω2
ξ2(t− τ)− α1

ω2
ξ3(t− τ). (45)

Accordingly, the quasipolynomial function corresponding to the closed-loop system is given by:

∆(s, τ) = (s+ a)
(
(sα1 + α0) e−sτ + s2 + 2 s η ω + ω2 + γ

)
. (46)

Since a is a positive parameter, our aim is to determine conditions on the remaining parameters of the system assigning
a negative rightmost root of the second factor of (46). Moreover, since the controller action does not affect the spectral
value at s = −a, it suffices to assign the multiple root of the second factor to the left of s = −a to minimize the spectral
abscissa. By setting ω2 + γ = a0 and 2 η ω = a1, the second factor of (46) takes the form (4). Therefore, one can either
use Theorem 4.1 to assign a quadruple rightmost root at s = s0 or use Theorem 4.2 to assign a triple rightmost root at
s = s+.

Keeping in mind that the delay is imposed by the model and that the discriminant is ∆ = 4
(
ω2(η2 − 1)− γ

)
, formula

(23) from Theorem 4.1 requires the discriminant to satisfy ∆ = −2/τ2. Thus, one should tune γ = ω2(η2 − 1) + 2/τ2

insuring the negativity of the discriminant ∆ since γ > ω2(η2 − 1). Lastly, the gains α0 and α1 are tuned according to
formula (23).

Alternatively, for an applicative reason it may be more appropriate to design a stabilizing controller according to
Theorem 4.2 assigning a triple negative rightmost root at s+ presented in formula (?+). Since a1 > 0 (ω > 0 and η > 0),
we first set γ so that s+ < 0, i.e., one has to set a0 < 0 and τ ∈]0, τ−[ as emphasized in formula (31). Once γ is chosen,
we apply (?+) to tune the gains α0 and α1.

Let us illustrate the sensitivity analysis proposed in Section 5 of the above design (45) where the gains are tuned follow-
ing Theorem 4.1. Namely, we assume that the damping factor η is subject to uncertainties. The perturbed characteristic
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matrix corresponding to the closed-loop system (44) is given by

M(s, τ ; ε) =

 s+ a −e−sτka 0

0 s −1

0 ω2 + γ + e−sτα0 s+ 2ω (η + ε) + α1e−sτ

 . (47)

For ε = 0, a quadruple real root s0 = − 2+τ η ω
τ (described in Theorem 4.1) occurs when the gains α0 and α1 satisfy:

α0 =
−10− 2 τ η ω

τ2e2+τ η ω
, and α1 =

−2

τe2+τ η ω
.

By setting the parameters τ, ω and the nominal damping factor η according to the following table:
Parameter ω η τ

Value 2 1/2 1

which guarantees s = −3 as a spectral abscissa of the closed-loop system, the perturbation of the damping term splits
the spectral abscissa into four distinct spectral values. More precisely, if ε > 0 then it splits into two pairs of conjugate
complex roots. However, if ε < 0 then s = −3 splits into a pair of complex roots and two other roots evolve on the real
axis, see Figure 8. In addition, the first destabilizing crossing occurs at a frequency ω∗ ≈ 1.9 for the damping perturbation
ε∗ ≈ −0.5826.

FIGURE 8. Migration of the quadruple non-semisimple spectral abscissa on the real axis, in blue the
progress of s(ε) for ε < 0 and in red the progress of the spectral values for ε > 0. The curves are
drawn for ε ∈] − ε̄, ε̄[, with a step size ς = 10−2 where ε̄ represents 40% of the nominal damping
factor η. Notice that the perturbation ε∗ has to reach 120% of the nominal value of the damping factor
η to destabilize the trivial solution. Moreover, the effect of such a perturbation is relatively insignificant
on the first oscillating mode. Representative bifurcation diagram has been computed using QPmR
package [57].

7. CONCLUDING REMARKS

The Multiplicity-Induced-Dominancy is deeply investigated for second-order retarded differential equations. It seems
that the sign of the discriminant of the second-order polynomial corresponding to the finite-dimensional part of the equa-
tion is involved in such a property’s validity. The latter property enables a controller-design based on the trivial solution’s
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decay rate assignment. Finally, to demonstrate its applicability, several case studies are numerically explored and com-
mented.

It is worth mentioning that the inclusion of information on the delayed acceleration in the control loop yields a time-
delay system of neutral type

ξ̈(t) + α2ξ̈(t− τ) + a1ξ̇(t) + α1ξ̇(t− τ) + a0ξ(t) + α0ξ(t− τ) = 0. (48)

characterized by the following quasipolynomial function of degree 5:

∆(s, τ) = s2 + a1s+ a0 + (α0 + sα1 + s2α2) e−τ s. (49)

A necessary condition for the asymptotic stability of the trivial solution of equation (48) is |α2| < 1, which guarantees the
stability of the corresponding difference operator, see for instance [20]. More precisely, if one assumes that−1 < α2 < 0

then function (49) admits a negative root at s0 = ln(−α2)
τ with multiplicity 5 if, and only if, the function parameters

satisfy: 

α0 =
α2

(
12− 6 ln (−α2) + (ln (−α2))

2
)

τ2
,

α1 = 2
α2 (3− ln (−α2))

τ
,

a0 =
6 ln (−α2) + (ln (−α2))

2
+ 12

τ2
,

a1 = 2
−3− ln (−α2)

τ
.

Furthermore, the spectrum distribution of function (49) consists of a chain of roots with real parts close to s0. However, the
analytical dominancy proof of multiple spectral values for time-delay systems of neutral type remains an open question.
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8. APPENDIX

8.1. Proofs of the technical Lemmas

This subsection is dedicated to the proofs of Lemmas 1-3 presented in Section 2.

Proof of Lemma 1. Consider the transcendental function defined by:

F (ρ) = 6 cos (ρ) + 2 ρ sin (ρ) + ρ2 − 6, (50)

where ρ = ω τ . By continuity of F , one easily shows that F (ρ) = 0 admits at least a positive root in the interval
ρ? ∈

]
π, 3π

2

[
since F (π)F ( 3π

2 ) < 0.
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To show the uniqueness of such a solution, we first deal with the interval [0, π[. We compute the first three successive
derivatives of F with respect to ρ: 

F ′(ρ) = −4 sin (ρ) + 2 ρ cos (ρ) + 2 ρ,

F ′′(ρ) = −2 cos (ρ)− 2 ρ sin (ρ) + 2,

F (3)(ρ) = −2 ρ cos (ρ) .

(51)

Obviously, F (3) vanishes only for ρ ∈ {0, π2 }, it is negative for ρ ∈
]
0, π2

[
and positive for ρ ∈

]
π
2 , π

[
, thereby entailing

that F ′′ is decreasing on
]
0, π2

[
and increasing on

]
π
2 , π

[
. Then, there exists ρ0 ∈

]
π
2 , π

[
such that F ′′(ρ0) = 0 since

F ′′(π)F ′′(π/2) < 0. Now, for ρ ∈ [0, ρ0[ we have F ′′(ρ) < 0 and for ρ ∈ ]ρ0, π[ we have F ′′(ρ) > 0, so that F ′ is
decreasing on ]0, ρ0[ and increasing on ]ρ0, π[. In consequence, F ′ is negative on ]0, π[ since F ′(0) = F ′(π) = 0. Finally,
we conclude that F is negative and decreasing for ρ ∈ ]0, π[.

Next, for ρ ∈ [π, 2π] we have F ′(ρ) > 0 so that F is strictly increasing and since F (π)F ( 3π
2 ) < 0 function F admits

a unique zero in
]
π, 3π

2

[
.

Consider now ρ ∈ [2k π, (2k + 1)π] (k ∈ N∗), then the following lower-bound holds for all k ∈ N∗ :

ρ2 − 6(1− cos (ρ)) + 2 ρ sin (ρ) ≥ 4π2 − 6(1− cos (ρ)) + 2 ρ sin (ρ) > 0,

and proves thatF has no roots in [2k π, (2k + 1)π], as illustrated by Figure 9. Finally, consider ρ ∈ [(2k + 1)π, 2(k + 1)π],

FIGURE 9. Uniqueness of the positive root of F given by (50)

where F ′(ρ) = −4 sin (ρ) + 2 ρ(1 + cos (ρ)) is positive since sin (ρ) < 0. Thus, F (ρ) is increasing on all intervals
ρ ∈ [(2k + 1)π, (2k + 2)π].

In conclusion, equation (50) admits a unique solution ρ? ∈
]
π, 3π

2

[
. �

Proof of Lemma 2.
Analysis of F+: The expression of F+ is linear in ζ, so the vanishing of F+ allows to explicitly express ζ as a univariate
function in ρ:

ζ(ρ) =
F (ρ)

2 (cos (ρ)− 1) + ρ sin (ρ)
(52)

where F is studied in Lemma 1; see Figure 10 illustrating the behavior of the function ζ(ρ). The analysis of the above
function requires the investigation of the behavior of D(ρ) = 2 (cos (ρ)− 1) + ρ sin (ρ).
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First, we easily check that D′′(ρ) = −ρ sin (ρ) = 0 if, and only if, ρ = kπ (k ∈ N). In consequence, D′′(ρ) has
an alternating sign on successive intervals ]2kπ, (2k + 1)π[, it is negative on ]0, π[ then positive on ]π, 2π[ and so on.
Thereby, D′(ρ) = ρ cos (ρ) − sin (ρ) is monotonic on each such interval. Moreover, one easily shows that D′(ρ) < 0
on the interval ]0, π[ and vanishes at a unique µk on intervals of length π, i.e., µk ∈]kπ, (k + 1)π[ and µk are nothing
but the fixed points of the function tan(ρ) indexed in increasing order. In turn, D′(ρ) is negative on ]0, µ1[ and has an
alternating sign on successive intervals ]µk, µk+1[. As a result, D(ρ) has an alternating monotonicity; it is decreasing on
]0, µ1[, then increasing on ]µ1, µ2[ and so on. Finally, D(2kπ) = D(νk) = 0 for some νk ∈]µ2k, (2k + 1)π[ (k ≥ 1)
which are nothing but the fixed points of the function Φ : ρ 7→ 2 (1− cos(ρ)) / sin(ρ); see the vertical red asymptotes in
Figure 10.

Combining the variation of F (studied in Lemma 1) with the behavior of D explored above, we deduce that ζ(ρ)
is strictly decreasing on ]0, 2π[ and that for each given ζ∗ ∈]0, 1[ there exists a unique ρ∗, root of F+, in ]0, ρ?[; the
behavior of F+ is depicted in Figure 10 . Since ζ has to be positive, a first conclusion is that the only intervals of interest
are ]0, ρ?[ and ρ ∈]2kπ, νk[ (k ∈ N∗). In addition, since D(ρ) > 0 on ]2kπ, νk[ (k ∈ N∗) and ζ can be written as

ζ(ρ) = 2 +
ρ2 + 2 (cos(ρ)− 1)

D(ρ)
> 2,

we deduce that ζ defines a bijection between ]0, ρ?[ and ]0, 1[. Now, regarding intervals ∈ [2kπ, νk], we know that ζ is
positive and has two vertical asymptotes at ρ = 2kπ and ρ = νk. So each horizontal line intersects the curve ζ(ρ) at an
even number of points ρ ∈]2kπ, νk[ (including zero and counting multiplicity). More precisely, in order to determine the
exact number of roots of F+ in such intervals, an investigation of the local minima of ζ is required. To do so, we explore
the zeros of ζ ′. In other words, we explore the double roots of F+ in such an interval, that is

ζ =
6 cos (ρ) + 2 ρ sin (ρ) + ρ2 − 6

2 cos (ρ) + ρ sin (ρ)− 2
,

ζ =
−2 ρ+ 4 sin (ρ)− 2 ρ cos (ρ)

sin (ρ)− ρ cos (ρ)
.

(53)

Next, the elimination of the trigonometric functions from the last system of equations produces the following algebraic
equation

(−2 + ζ)
2
ρ2 − 48 + 12 ζ3 − ζ4 − 51 ζ2 + 88 ζ = 0,

representing a necessary condition for a root of F+ to be double and from which the unique admissible positive solution
for the argument of the minimum of ζ is obtained:

ρ(ζ) =

√
(ζ − 1) (ζ − 3) (ζ − 4)

ζ − 2
. (54)

Combining the last condition (54) with (52) yields that ζ is the fixed point of the function: Ψ : ζ 7→ F+ (ρ(ζ)) /D (ρ(ζ)).
Equivalently, we draw the algebraic expression of ζ as a function of ρ,

ζ (ρ) =
1

6

√√√√√

(
−3 (h (ρ))

2
+ (36 + 12 ρ2)h (ρ)− 27 + 18 ρ2 − 3 ρ4

)
h (ρ)

+
36
√

3 (ρ− 1) (ρ+ 1)

l (ρ)


+ 3 +

√
3

6
l (ρ) where

l (ρ) =

√
6h (ρ) + 2 ρ2h (ρ) + (h (ρ))

2
+ r (ρ)

3
√
q (ρ) + 12 p (ρ)

, h (ρ) = 3
√
q (ρ) + 12 p (ρ),

p (ρ) =
√

3 ρ8 − 27 ρ6 + 405 ρ4 − 81 ρ2, q (ρ) = −ρ6 + 9 ρ4 − 243 ρ2 + 27, r (ρ) = ρ4 − 6 ρ2 + 9.

(55)
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In each interval Ik =]2kπ, νk[ the function ζ is analytic, owing to its proven positivity and its behavior with respect to
variations of ρ as it describes a convex parabola between the two vertical asymptotes at ρ = 2kπ and ρ = νk; see Figure
10 for further insights. As a matter of fact, function ζ(ρ) has a unique ζ

k
minimum on each interval Ik (k ∈ N∗) whose

argument is a unique ρk ∈]2kπ, νk[. Therefore, each ζ > ζ
k

yields two positive numbers ρ
k
< ρk in Ik satisfying

F+(ρ
k
) = F+(ρk) = 0.

Analysis of G+: Since we are dealing with the sign of G+ at a given root ρ∗ of F+and the corresponding positive

FIGURE 10. (Left panel) The dashed red curves represent the value of ζ with respect to ρ such that
F+ ≡ 0, the solid black curves represent the variation of ζ with respect to ρ resulting from F ′+ ≡ 0 and
given by (53). (Right panel) The dashed red curves represent the value of ζ with respect to ρ such that
F+ ≡ 0, the dash-dot blue curves correspond to G+|F+(ρ)=0

, the vertical lines represent the asymptotes

of both functions and the dotted black curve represents another characterization the minimum of ζ(ρ)
in the intervals Ik =]2kπ, νk[ obtained from (55).

parameter ζ∗, we can substitute the expression of ζ given by (52) in the expression of G+ given by (9). So that, one gets:

G+(ρ)|F+(ρ)=0
=
Ĥ(ρ)ρ

sin (ρ)
where Ĥ(ρ) = 2 sin (ρ)− (cos (ρ) + 1) ρ. (56)

Let us first explore the behavior of the function Ĥ for positive ρ. Since Ĥ ′′(ρ) = ρ cos(ρ), Ĥ ′′ vanishes at (2k + 1) π2
(k ∈ N∗). Hence, Ĥ ′′ is positive on ]0, π2 [ then it has an alternating sign on successive intervals of length π; it is
negative on ]π2 ,

3π
2 [ then positive on ] 3π

2 ,
5π
2 [ and so on. Accordingly, Ĥ ′ has an alternating monotonicity and there exists

χk ∈]π2 + 2(k − 1)π, (2k − 1)π[ (k ∈ N∗) such that Ĥ ′ is strictly positive on ]2(k − 1)π, χk[ and strictly negative on
]χk, 2 k π[ (k ∈ N∗). As a result, Ĥ exhibits an alternating monotonicity, it is strictly increasing on ρ ∈]2(k − 1)π, χk[

and strictly decreasing on ρ ∈]χk, 2 k π[. Moreover, Ĥ vanishes exclusively on the set {0, (2k + 1)π, νk}k∈N∗ where νk
are the zeros of D and equivalently the fixed points of function Φ defined above. Recall that νk ∈]µ2k, (2k + 1)π[ and
µk ∈]kπ, (k+ 1)π[ (k ∈ N∗) so that νk is not a multiple of π. In conclusion, Ĥ is of alternating sign, it is strictly positive
on ]0, π[, strictly negative on ](2k − 1)π, νk[ and strictly positive on ]νk, (2k + 1)π[. As such, G+|F+=0 > 0 on ]0, ρ?[
which completes item i).

Furthermore, we have shown that G+|F+=0 is increasing and negative on ]2kπ, νk[ (it has roots at νk and vertical
asymptotes at 2kπ) and that F+ admits an even number of roots (including zero and counting multiplicity) which con-
cludes item ii).
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To summarize, for a given ζ∗ ∈]0, ζ
0
[ (ζ

0
= 1) there exists a unique root ρ∗ ∈]0, ρ?[ such that F+(ρ∗) = 0 and

G+(ρ∗) > 0. Next, if ζ∗ ∈]ζ
0
, ζ

1
[ no solution exists for F+(ρ) = 0. Finally, for any given ζ∗ ∈]ζ

k
, ∞[ (k ∈ N∗) there

exists an even number of roots in each interval ]2kπ, νk[ at which points G+ is negative. �

Proof of Lemma 3. The proof follows the same steps and arguments as Lemma 2. Observe that the expression of F− is
also linear in ζ, so the vanishing of F− allows again to write down explicitly ζ as a univariate function in ρ:

ζ(ρ) = − F (ρ)

2 (cos (ρ)− 1) + ρ sin (ρ)
(57)

where F is studied in Lemma 1. Furthermore, one easily checks that G−|F−(ρ)=0
(ρ) = G+|F+(ρ)=0

(ρ) which, based on
the analysis carried out in the proof of Lemma 2, ends the proof; see Figure 11 for further insights.

FIGURE 11. (Left panel) The dashed red curves represent the value of ζ with respect to ρ given in (57)
such that F− ≡ 0 and the solid black curves represent the variation of ζ with respect to ρ resulting
from F ′− ≡ 0. (Right panel) The dashed red curves represent the value of ζ with respect to ρ such that
F− ≡ 0, the dash-dot blue curves represent G−|F−(ρ)=0

, the vertical lines represent the asymptotes of

both functions and the dotted black curve represents another characterization of the minimum of ζ(ρ)
in the intervals Jk =]νk, 2(k + 1)π[ obtained from (55).

�

8.2. The Argument principle applied to the dominancy proof

Here, we use the the argument principle to show the dominancy of the root s0 of Q of multiplicity 4 such that with
s0 ≡ x0 ∈ R. The proof is straightforward for the root of multiplicity 3. Let s = x+ iω.

Following the approach of [21, 54], we shall first establish the asymptotic properties of Q(s, τ) and the corresponding
logarithmic derivative ∂sQ(s, τ)/Q(s, τ). Secondly, we deflate Q(s, τ) to remove s0 from the path x0 + iω running
parallel to the left of the Fourier axis. Third, we apply the argument principle to count the number of zeros (if any) in
the plane <(s) > s0 of the deflated function Q̃(s) and work out the asymptotic behavior of the logarithmic residue as the
chosen contour is increased. In the end, the number of zeros of the deflated function in <(s) > s0 coincides with that of
the original characteristic function Q(s, τ) written in (4).
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Asymptotic behavior of Q(s, τ ) and ∂sQ(s, τ )/Q(s, τ ): For convenience, the characteristic function defined by (4)
can be rewritten in the form

Q(s, τ) = s2 + d1(s, τ)s+ d2(s, τ) (58)

where d1(s, τ) = a1 + α1e
−sτ and d2(s, τ) = a0 + α0e

−sτ . The derivative of (58) reads

∂sQ(s, τ) = [2 + ∂sd1(s, τ)]s+ d1(s, τ) + ∂sd2(s, τ), (59)

where ∂sd1(s, τ) = −α1τe
−sτ and d1(s, τ) + ∂sd2(s, τ) = O(1) as |s| → ∞ in <(s) > s0. Then,

∂sQ(s, τ) = [2 + ∂sd1(s, τ)]s+O(1)

and
∂sQ(s, τ)

Q(s, τ)
= s−1[2 + ∂sd1(s, τ)] +O(|s|−2) (60)

as |s| → ∞ in <(s) > s0.

Deflation: Since s0 is the rightmost root of multiplicity 4 of the original quasipolynomial function defined by (4), we set

P (s) = (s− s0)4 and Q̃(s, τ) =
Q(s, τ)

P (s)
, (61)

Q̃ being the deflated function corresponding to Q in <(s) > s0. Then, Q̃(s, τ) is holomorphic and is non zero on the path
s0 + iω parallel to the imaginary axis. The last statement justifies, in particular, the applicability of the argument principle
in the following.

Integration contour: Let CR be the contour g1 ∪ g2 ∪ g3 ∪ g4 displayed in Figure 1 (right) for any R ∈ R such that

g1 =
{
s = Reiθ, θ ∈

[
−π

2
,
π

2

]}
,

g2 = {s = −x+ iR, x ∈ [0,−s0]} ,
g3 = {s = s0 + iω, ω ∈ [−R,R]} ,
g4 = {s = x− iR, x ∈ [s0, 0]} .

For R → ∞, all zeros of Q(s, τ) in <(s) > s0 are inside CR. By the argument principle, the number of these zeros,
counted by multiplicity is

Z =
1

2πi

∮
CR

∂sQ̃(s, τ)

Q̃(s, τ)
ds, (62)

which can be explicitly rewritten over the Bromwich-like contour as

Z =
1

2πi

∫
g1

∂sQ̃(s, τ)

Q̃(s, τ)
ds+

1

2πi

∫
g2∪g4

∂sQ̃(s, τ)

Q̃(s, τ)
ds+

1

2πi

∫
g3

∂sQ̃(s, τ)

Q̃(s, τ)
ds. (63)

In the following, we evaluate the three integrals involved in (63).

Integral over g1 and its limit asR → ∞: For R� 1, Q(s, τ) and P (s) are nonzero for z on g1, and

1

2πi

∫
g1

∂sQ̃(s, τ)

Q̃(s, τ)
ds =

1

2πi

∫
g1

∂sQ(s, τ)

Q(s, τ)
ds− 1

2πi

∫
g1

P ′(s)

P (s)
ds. (64)
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Using the asymptotic behavior (60) as |s| → ∞ in <(s) > s0, the first integral in the r.h.s. of (64) can be rewritten as

1

2πi

∫
g1

∂sQ(s, τ)

Q(s, τ)
ds =

1

2π

∫ π
2

−π2

[
2 + ∂sd1

(
Reiθ, τ

)]
dθ +O

(
R−1

)
.

In the r.h.s. integral, |∂sd1(Reiθ, τ)| ≤ α1τe
−Rτ cos θ is bounded and integrable and limR→∞ ∂sd1

(
Reiθ, τ

)
= 0 for

τ > 0 and θ ∈
(
−π2 ,

π
2

)
. Hence, by Lebesgue’s Theorem we get

lim
R→∞

1

2πi

∫
g1

∂sQ(s, τ)

Q(s, τ)
ds = 1. (65)

Under the same setup, the second integral in (64) reads

1

2πi

∫
g1

P ′(s)

P (s)
ds =

2

π

∫ π
2

−π2

dθ

1− s0

R
e−iθ

= 2 +O(R−1).

Thus, for R� |s0|, we get

lim
R→∞

1

2πi

∫
g1

P ′(s)

P (s)
ds = lim

R→∞

2

π

∫ π
2

−π2

dθ

1− s0

R
e−iθ

= 2 (66)

and therefore,

lim
R→∞

1

2πi

∫
g1

∂sQ̃(s, τ)

Q̃(s, τ)
ds = −1. (67)

Following the same steps of [21], in the case of a quasipolynomial function having deg(P0) = n ∈ N, it can be checked
that the integral (65) reads,

lim
R→∞

1

2πi

∫
g1

∂sQ(s, τ)

Q(s, τ)
ds =

n−K
2

,

where K = κ+ 2p, κ represents the multiplicity of s0 and p the number of pairs of roots s0 ± iω running parallel to the
imaginary axis. According to the proof of theorem 4.1, p = 0 and

lim
R→∞

1

2πi

∫
g1

∂sQ(s, τ)

Q(s, τ)
ds =

n− κ
2

.

For n = 2 and κ = 4, the result of the integral (67) is recovered.

Integral over g2 ∪ g4 and its limit asR → ∞: Once again, for R� 1, we have

1

2πi

∫
g2∪g4

∂sQ̃(s, τ)

Q̃(s, τ)
ds =

1

2πi

∫
g2

∂sQ̃(s, τ)

Q̃(s, τ)
ds+

1

2πi

∫
g4

∂sQ̃(s, τ)

Q̃(s, τ)
ds. (68)

First, we consider the first term on the r.h.s. wherein we insert the asymptotic behavior given in (60) as follows

1

2πi

∫
g2

∂sQ̃(s, τ)

Q̃(s, τ)
ds =

1

2πi

∫
g2

∂sQ(s, τ)

Q(s, τ)
ds− 1

2πi

∫
g2

P ′(s)

P (s)
ds

=
1

2πi

∫ x0

0

2 + ∂sd1(x+ iR)

x+ iR
dx− 1

2πi

∫ x0

0

4dx

x− x0 + iR
. (69)
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Since ∣∣∣∣∣∂sd1(x+ iR)

x+ iR

∣∣∣∣∣ ≤ α1τe
−xτ

√
x2 +R2

and lim
R→∞

α1τe
−xτ

√
x2 +R2

= 0,

the integral term over ∂sd1(x+ iR) vanishes asymptotically such that,

lim
R→∞

1

2πi

∫
g2

∂sQ̃(s, τ)

Q̃(s, τ)
ds = lim

R→∞

1

πi
ln
(

1− ix0

R

)
+ lim
R→∞

2

πi
ln
(

1 + i
x0

R

)
= 0.

Accordingly the integral over g4 is the opposite, so that

1

2πi

∫
g2∪g4

∂sQ̃(s, τ)

Q̃(s, τ)
ds = 0. (70)

Integral over g3 asR → ∞ : We first determine the real and imaginary parts of the characteristic function Q̃(s, τ) given
in (58) and make use of the polar representation of an entire function. Setting s = x0 + iω, we introduce the real
and imaginary parts of (58) as R(ω) = <

[
i−2Q(x0 + iω, τ)

]
and S(ω) = =

[
i−2Q(x0 + iω, τ)

]
so that the original

quasipolynomial defined by (4) is rewritten as Q(s, τ) = R(ω) + iS(ω). According to (61),

Q̃(s, τ) =
Q(s, τ)

(s− s0)4
,

which leads to

M(ω) + iN(ω) =
R(ω) + iS(ω)

ω4

where M(ω) = <
[
i2Q̃(x0 + iω, τ)

]
and N(ω) = =

[
i2Q̃(x0 + iω, τ)

]
. More precisely, one gets


M(ω) =

1

ω4

{
ω2 − (α0 + x0α1) e−x0τ cos(τω)− α1e

−x0τω sin(τω)− x2
0 − a1x0 − a0

}
,

N(ω) =
1

ω4

{
−(a1 + 2x0)ω − α1e

−x0τω cos(τω) + (α0 + x0α1)e−x0τ sin(τω)
}
.

(71)

Note that function M is even and function N is odd, hence the polar representation M(ω) + iN(ω) = A(ω)eiφ(ω,τ),
where

A(ω) =
√
M2(ω) +N2(ω) and φ(ω) = arctan

N(ω)

M(ω)
.

which enables us to rewrite the logarithmic derivative of Q̃(s, τ) in this fashion

∂sQ̃(s, τ)

Q̃(s, τ)
= −i∂sA(ω)

A(ω)
+ ∂sφ(ω),

and accordingly
1

2πi

∫
g3

∂sQ̃(s, τ)

Q̃(s, τ)
ds =

1

2πi

∫ −R
R

[
∂sA(ω)

A(ω)
+ i∂sφ(ω)

]
dω. (72)

Since A(ω) is even, ∂sA(ω) is odd and ∂sA(ω)/A(ω) is odd thereby. As a result

1

2πi

∫
g3

∂sQ̃(s, τ)

Q̃(s, τ)
ds =

1

π
[φ(0)− φ(R)] .
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From (71), for ω � 1 we have N(ω)
M(ω) ∼

1
ω such that limR→∞ φ(R) = 0 and

lim
R→∞

1

2πi

∫
g3

∂sQ̃(s, τ)

Q̃(s, τ)
ds =

φ(0)

π
.

Determination of φ(0): Taking into account that φ(ω) = arctan N(ω)
M(ω) , we should first assess M(0) and N(0). Since the

original deflated Q̃(s, τ) 6= 0 inside CR and N(ω) is odd, N(0) = 0 and the sign of M(0) is to be investigated. Using
the following relations

x2
0 + a1x0 + a0 = −3

4
δ, a1 + 2x0 = −

√
−2δ, α1e

−x0τ = −1

2

√
−2δ, (α0 + α1x0)e−x0τ =

3

4
δ

where δ = a2
1 − 4a0, we rewrite (71) in the compact form

M(ω) =
1

ω4

[
ω2 − 3

4
δ cos(τω) +

1

2

√
−2δω sin(τω) +

3

4
δ

]
N(ω) =

1

ω4

[√
−2δω +

1

2

√
−2δω cos(τω)− 3

4
δ sin(τω)

]
.

Both functions present the indermination 0/0 in the limit ω → 0. L’Hospital’s rule for the given multiplicity then yields
M(0) = lim

ω→0

1

4!

[
1

2

√
−2δτ3 (ω sin(τω)− 4 cos(τω))− 3

4
δτ4 cos(τω)

]
=

2

3δ
< 0

N(0) = lim
ω→0

1

4!

[
1

2

√
−2δτ3 (4 sin(τω) + τω cos(τω))− 3

4
δτ4 sin(τω)

]
= 0,

which shows that S(4)(0) = 0 and that Q̃(ω, τ) is continuous for ω = 0 as expected. Hence, limω→0 φ(ω) = π and
finally,

lim
R→∞

1

2πi

∫
g3

∂sQ̃(s, τ)

Q̃(s, τ)
ds = 1. (73)

Though this result may be right at first glance, one should investigate whether the quasipolynomial M(ω) has other zeros
beyond x0 for different values of τ .

According to the proof of theorem 4.1, M(ω) has an only one positive zero ρ? = τ∗ω∗ ∈
]
π, 3π

2

[
. The curve

M(ω) + iN(ω) for 0 ≤ ω ≤ ω∗ starts at M(0) = 2
3∆ < 0 satisfying the condition d) of [21] (i.e. page 228) and evolves

on a path in the halfplane N(ω) > 0. Furthermore, the curve is constrained not to intersect the origin (0; 0) but to wing
around it. This statement follows from the fact that Q̃(0, τ) = M(0) + iN(0) 6= 0 at the origin. In this case, the change
in φ(ω) on [0, ω∗] is given by

φ(ω∗)− φ(0) =
π

2
sgnN(ω∗) sgnM

(
ω∗

2

)
, (74)

where the choice ω∗/2 on the argument of M(ω∗/2) is based on the intermediate value theorem. Now we evaluate the
change in φ(ω) on [ω∗,∞). The function M(ω) + iN(ω) starts at iN(ω∗) and remains for ω > ω∗ in the halfplane
M > 0. Hence,

0− φ(ω∗) = −π
2

sgnN(ω∗) (75)

such that, resuming (74) and (75), the full change of φ(ω) in the interval [0,∞) = [0, ω1] ∪ [ω1,∞) reads,

0− φ(ω) + φ(ω)− φ(0) = 0− φ(0) =
π

2
sgnN(ω∗) sgnM

(
ω∗

2

)
− π

2
sgnN(ω∗).
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and
φ(0)

π
=

1

2
sgnN(ω∗)− 1

2
sgnN(ω∗) sgnM

(
ω∗

2

)
. (76)

According to the proof of theorem 4.1, in the last formula, sgnM (ω∗/2) = −1 and sgnN(ω∗) = 1 for ω ∈
[
π
τ∗ ,

3π
2τ∗

]
such that φ(0)

π = 1
2 · 1−

1
2 (1) · (−1) = 1.

A consistency cross-check: As a consistency cross-check, we make use of the formula given in [21, 54], see also (29):

φ(0)

π
=

1

2
(−1)r sgnS(4)(0) +

r∑
i=1

(−1)i−1 sgnS(ωi). (77)

where, {ω1 . . . ωr} is the set of roots of the original quasipolynomial Q(ω, τ), such that x0 < ωr ≤ . . . ≤ ω1 with
r = m+ p. Here, m corresponds to the total number of positive zeros of the original functionR(ω) = M(ω)ω4 counted
by multiplicity and p represents the number of pairs of roots {s0 ± iη1, . . . s0 ± iηp} of Q(s, τ) which are parallel to the
imaginary axis. According to the same proof 4.1, sgnS(4)(0) = 0, p = 0 and the sum (77) reads, φ(0)

π = sgnS(ω1) =

sgnS(ω∗) = 1, which accounts for the only positive root in the interval ω ∈
]
π
τ∗ ,

3π
2τ∗

[
. Note that in [21, 54] the contour

is taken in the right halfplane (i.e. x0 ≡ 0), which does not affect our result since integrals over g2 and g4 are vanishing.
Hence,

lim
R→∞

1

2πi

∫
g3

∂sQ̃(s, τ)

Q̃(s, τ)
ds = 1,

which is in agreement with (73) and (76).

Final step: In conclusion,

lim
R→∞

1

2πi

∮
CR

∂sQ̃(s, τ)

Q̃(s, τ)
ds = 0.

The last step concerns the value of the original (un-deflated) :

lim
R→∞

1

2πi

∮
CR

∂sQ(s, τ)

Q(s, τ)
ds = lim

R→∞

1

2πi

∮
CR

P ′(s)

P (s)
ds,

where,
1

2πi

∮
CR

P ′(s)

P (s)
ds =

1

2πi

∫
g1

P ′(s)

P (s)
ds+

1

2πi

∫
g2∪g4

P ′(s)

P (s)
ds+

1

2πi

∫
g3

P (s)

P (s)
ds. (78)

The first integral in the r.h.s. of (78) equals to 2 according to (66), the second integral equals 0 according to (70) and
finally, the third integral over g3 should be performed over the contour displayed in figure 12

1

2πi

∫
g3

P ′(s)

P (s)
ds =

2

πi

∫ ε

R

dω

ω
+

2

π

∫ −π2
π
2

dθ +
2

πi

∫ −R
−ε

dω

ω
(79)

=
2

πi
(ln ε− lnR)− 2 +

2

πi
(ln(−R)− ln(−ε)) = −2. (80)

Therefore,

lim
R→∞

1

2πi

∮
CR

P ′(s)

P (s)
ds = lim

R→∞

1

2πi

∮
CR

∂sQ(s, τ)

Q(s, τ)
ds = 0.

The last result states that the deflation procedure of [21, 54] is equivalent to evaluating the integral over the small half-
circle of radius ε in figure 12. For an effective implementation in complex integral computations we refer the reader
to [60].
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FIGURE 12. Part of the integration contour.
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