Siamese network based feature learning for improved intrusion detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Siamese network based feature learning for improved intrusion detection

Résumé

Intrusion detection is a critical Cyber Security subject. Different Machine Learning (ML) approaches have been proposed for Intrusion Detection Systems (IDS). However, their application to real-life scenarios remains challenging due to high data dimensionality. Representation learning (RL) allows discriminative feature representation in a low dimensionality space. The application of this technique in IDS requires more investigation. This paper examines and discusses the contribution of Siamese network based representation learning in improving the IDS performance. Extensive experimental results under different evaluation scenarios show different improvement rates depending on the scenario.
Fichier non déposé

Dates et versions

hal-02421070 , version 1 (20-12-2019)

Identifiants

Citer

Houda Jmila, Mohamed Ibn Khedher, Gregory Blanc, Mounim El Yacoubi. Siamese network based feature learning for improved intrusion detection. ICONIP 2019: International Conference on Neural Information Processing, Dec 2019, Sydney, Australia. pp.377-389, ⟨10.1007/978-3-030-36708-4_31⟩. ⟨hal-02421070⟩
171 Consultations
0 Téléchargements

Altmetric

Partager

More