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HOLOMORPHIC QUANTUM HALL STATES

IN HIGHER LANDAU LEVELS

NICOLAS ROUGERIE AND JAKOB YNGVASON

Abstract. Eigenstates of the planar magnetic Laplacian with homogeneous magnetic
field form degenerate energy bands, the Landau levels. We discuss the unitary correspon-
dence between states in higher Landau levels and those in the lowest Landau level, where
wave functions are holomorphic. We apply this correspondence to many-body systems,
in particular we represent effective Hamiltonians and particle densities in higher Landau
levels by corresponding quantities in the lowest Landau level.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Projected Hamiltonians and densities in quantum Hall physics . . . . . . . . . . . . . . . . . 3
2.1. Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Hamiltonians in the LLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3. Hamiltonians in higher Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. The Landau Hamiltonian and the two oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1. The cyclotron oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. Complex notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3. The guiding center oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4. Expressions of the inter-level unitary maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1. With coherent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2. With integral kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3. With ladder operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4. Recap of the different expressions for the unitary maps. . . . . . . . . . . . . . . . . . . . . 13

5. Particle densities and the nLL Hamiltonian, proofs of the Theorems. . . . . . . . . . . . 13
5.1. Many body states and particle densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2. Projected Hamiltonian and guiding center coordinates . . . . . . . . . . . . . . . . . . . . . 15

6. Laughlin states in higher Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1. Density estimates on mesoscopic scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2. Rigidity estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Date: April 23, 2020.

1



2 NICOLAS ROUGERIE AND JAKOB YNGVASON

1. Introduction

The state space of a charged particle moving in a homogeneous magnetic field in a plane
orthogonal to the field decomposes into Landau levels, differing in energy by integral multi-
ples of the magnetic field strength. When the position coordinates are expressed as complex
numbers in the symmetric gauge the states in the lowest Landau level form a Bargmann
space of holomorphic functions while wave functions in higher Landau levels involve also
powers of the complex conjugate position variables in the standard representation.

As noted by many people since long, and emphasized in particular in [11, 12, 5], a
holomorphic representation of states is not limited to the lowest Landau level, where it has
proved to be important for deriving some basic properties, e.g. [20, 21, 24, 25, 29]. In
fact, there is a natural unitary correspondence between states in different Landau levels, in
particular between higher levels and the lowest one.

In this expository paper we discuss several ways to arrive at the holomorphic representa-
tions and derive explicit formulas for particle densities and effective Hamiltonians in higher
Landau levels, expressed in terms of corresponding quantities in the lowest Landau level.
The methods have appeared in various disguises in the literature before but our aim is to
present them in a coherent fashion that, we hope, will be found useful for students and
researchers in quantum Hall physics.

A physically appealing starting point is the decomposition of the position variables into
guiding center variables and variables associated with the cyclotron motion of the particle
around the guiding centers. While the components of the position operator commute, the
other two sets of variables are non-commutative and satisfy canonical commutation rela-
tions. They can be represented in terms of creation and annihilation operators for two
distinct and mutually commuting harmonic oscillators. One way of arriving at a holomor-
phic representation of states is an expansion in terms of coherent states for the harmonic
oscillator of the guiding center variables [12, 5]. (These are the same as the “vortex eigen-
states”in [2, 4, 3]). The transformation between position coordinates and the coherent
state variables can also be expressed in terms of an integral operator with a kernel that is
a modification of the reproducing kernel of a Bargmann space [2].

A formally simpler and more direct approach is to use the creation and annihilation
operators of the cyclotron oscillator to define unitary mappings between different Landau
levels1. This gives explicit formulas for particle densities of many-body states in one Lan-
dau level in terms of polynomials in the Laplacian applied to corresponding densities in
the lowest Landau level. The same formulas can alternatively be obtained by a Fourier
transformation, exploiting the factorization of the exponential factor in the guiding center
and cyclotron variables respectively.

The main application of these considerations is in quantum Hall physics [8, 13, 17, 32, 33].
In this context, an electron gas is confined to two spatial dimensions and submitted to a
magnetic field large enough to set the main energy scale. The quantization of the kinetic
energy levels then becomes the salient feature. In the full plane, each level is infinitely
degenerate, but for a finite area the degeneracy is proportional to the area times the field
strength. For extremely large values of the latter, the lowest Landau level is degenerate
enough to accommodate all electrons without violating the Pauli principle. For smaller
values of the field several Landau levels can be completely filled with electrons and become

1This approach appears already in [22] where it is attributed to Laughlin.
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inert in first approximation. The physics then boils down to the motion of the electrons in
the last, partially filled, Landau level.

In both cases only one Landau level has to be taken into account, and an effective
model of widespread use in the literature is given in terms of a Hamiltonian acting on
holomorphic functions. We review this first, before describing in more details the unitary
mappings between Landau levels. The remarkable fact is that the dependence of the effective
Hamiltonian on the Landau level it corresponds to is quite simple and transparent. An
intuitive explanation (albeit not the most direct one from a computational point of view)
is that the good variables to use are not the position variables but rather those of the
guiding centers. The Landau level index, which fixes the energy of the cyclotron motion, is
encoded in a form factor in Fourier space that modifies external and interaction potentials
via a differential operator. In particular, the unitary mappings between Landau levels map
multiplication by potentials to operators of the same kind.

One salient feature of the effective operators acting on holomorphic functions is that they
naturally suggest variational ansätze for their ground states, which become exact for certain
truncated models. The Laughlin state [15, 16] is the most emblematic of those, and much of
our understanding of the fractional quantum Hall effect rests on its remarkable properties.
In Sec. VI we apply our formulas to Laughlin states in an arbitrary Landau level, computing
their density profiles and extending rigidity results from [20, 21, 29, 24].

2. Projected Hamiltonians and densities in quantum Hall physics

Let us start from the many-body Hamiltonian (in symmetric gauge) for interacting 2D
electrons in a constant perpendicular external magnetic field B and a one-body potential V

H =

N∑

j=1

(
−i∇rj +

B

2
r⊥j

)2

−NB + V (rj) +
∑

i<j

w(ri − rj). (2.1)

Here w is the radial repulsive pair interaction potential, modeling 3D Coulomb interactions2

in quantum Hall (QH) physics, but more general choices are also of interest. The one-body
potential V incorporates trapping in a finite size sample, plus the electrostatic potential
generated by impurities. Mathematical conditions on the potentials V and w will be stated
below. For convenience we have subtracted NB from the kinetic part of the energy so that
its lowest value is 0. In the sequel vectors r = (x, y) ∈ R

2 will very often be identified with
complex numbers z = x+ iy ∈ C.

As appropriate for electrons we consider the action of H on the fermionic antisymmetric
space

L2
asym(R

2N ) =

N⊗

asym

L2(R2). (2.2)

For bosons one considers the symmetric tensor product instead; this is relevant for rotating
cold atomic gases, where the rotation frequency takes over the role of the magnetic field.

2Although electrons are confined to a 2D interface, they retain their interactions via the 3D Coulomb
kernel.
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In fractional quantum Hall (FQH) physics, the energy scales are set, by order of im-
portance: first by the magnetic field, second by the repulsive interactions, third by the
one-body potential. Our discussion in the sequel will reflect this.

2.1. Landau levels. For large B it is relevant to restrict particles to live in an eigenspace

of
(
−i∇r +

B
2 r

⊥)2 . Denote by

nLL :=

{
ψ ∈ L2(R2),

(
−i∇r +

B
2 r

⊥
)2
ψ = 2B

(
n+ 1

2

)
ψ

}
(2.3)

the n-th Landau level. The lowest level (n = 0) will be denoted by LLL; it is made of
analytic × gaussian functions:

LLL =
{
ψ(r) = f(x+ iy)e−

B
4
|r|2 ∈ L2, f analytic

}
. (2.4)

The corresponding fermionic spaces for N particles will be denoted by nLLN and LLLN :

LLLN =

N⊗

asym

LLL, nLLN =

N⊗

asym

nLL. (2.5)

2.2. Hamiltonians in the LLL. Consider projecting (2.1) to the LLL. The first term is
just a constant, the others can be expressed using the canonical basis

ϕm(z) = (πm!)−1/2zme−
B
4
|z|2. (2.6)

Projecting (2.1) to the LLL leads formally to

HLLL
w,V =

N∑

j=1

∑

m,ℓ≥0

〈ϕm|V |ϕℓ〉 |ϕm〉 〈ϕℓ|j +
∑

i<j

∑

m≥0

〈ϕm|w|ϕm〉 (|ϕm〉〈ϕm|)ij (2.7)

where (|ϕm〉〈ϕm|)ij projects3 the relative coordinate ri − rj on the state ϕm. Similarly
|ϕm〉 〈ϕℓ|j is the operator mapping ϕℓ to ϕm, acting on the j variable only.

We assume that the potentials are measurable functions and that the “moments”

〈ϕm| |V | |ϕm〉 = 1

πm!

∫

R2

|V (r)|r2me−Br2d2r, 〈ϕm| |w| |ϕm〉 = 1

πm!

∫

R2

|w(r)|r2me−Br2d2r

(2.8)
are finite for all m. Then (2.7) is well defined as a quadratic form on a dense subspace of
LLLN . Finiteness for m = 0 means in particular that the potentials are in L1(R2)loc so
derivatives of the potentials are well defined in the sense of distributions. If the moments
are uniformly bounded in m and the potentials rotationnally symmetric (which implies the
absence of terms m 6= ℓ in (2.7)), then the corresponding operators are bounded and defined
on the whole space.

Usually in FQH physics one focuses attention on the interaction term in (2.7) (i.e., one
sets V ≡ 0). There are no off-diagonal terms in it because w is assumed to be radially
symmetric. The coefficients 〈ϕm|w|ϕm〉 are often called “Haldane pseudo-potentials”, cf.
[10]. If w decreases rapidly at infinity then they also decrease rapidly with increasing m

3Note that fermionic wave-functions do not see the even m terms of (2.7).



HOLOMORPHIC QUANTUM HALL STATES IN HIGHER LANDAU LEVELS 5

and a basic observation in the theory of the fractional quantum Hall effect (FQHE) is that,
if one truncates the sum (2.7) at m = ℓ− 1, then the Laughlin state

Ψ
(ℓ)
Lau(z1, . . . , zN ) = c

(ℓ)
Lau

∏

i<j

(zi − zj)
ℓe−

B
4

∑N
j=1 |zj |2 (2.9)

is an exact ground state (L2-normalized by the constant in front). One can then argue, and
prove to some extent [20, 21, 29, 24], that such functions and natural variants are extremely
robust, in particular to the addition of the external potential V .

Remark: For very strong interaction potentials of range much smaller than the magnetic
length ∼ B−1/2, in particular if there is a hard core, an expansion in terms of moments as in
(2.7) is not adequate. This situation is analysed in [30] which generalizes the paper [19]. It
is shown that in an appropriate scaling limit the pseudo-potential operators |ϕm〉〈ϕm| also
emerge, but with renormalized pre-factors involving the scattering lengths of the interaction
potentials in the different angular momentum channels, rather than expectation values as
in (2.7).

2.3. Hamiltonians in higher Landau levels. Consider now a situation where n − 1
Landau levels are filled, so that additional electrons must sit in the higher ones, because of
the Pauli principle. It is a common procedure in the FQH physics community [13, 9, 33]
to model this situation using lowest Landau level (LLL) functions again. The basis for
this reduction is the following statement, contained in one form or another in a number of
sources, in particular [12, 5, 33, 13, 23, 6].

Theorem 2.1 (Effective Hamiltonian in the n-th Landau level).
Let H be given by (2.1) and define

HnLL = PnLLHPnLL (2.10)

where PnLL orthogonally projects all particles into the nLL, i.e. it is the orthogonal projector
from L2

asym(R
2N ) to nLLN .

Then, for any n there exists an effective external potential Vn and an effective (radial)
interaction potential wn, depending only on V,w and n such that

HnLL − n · 2BN (2.11)

is unitarily equivalent to the LLL Hamiltonian HLLL
Vn,wn

, defined as in (2.7), and acting on
LLLN .

The effective n-th level potentials are as follows:

Vn(r) = Ln

(
−1

4∆
)
V (r) (2.12)

wn(r) = Ln

(
−1

4∆
)2
w(r) (2.13)

where ∆ is the Laplacian and Ln the Laguerre polynomial

Ln(u) =

n∑

l=0

(
n

l

)
(−u)l
l!

. (2.14)
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Remark: Since we have not assumed any regularity of V and w except being measurable
functions with finite moments the differentiations in (2.12) and (2.13) have in general to
be understood in the sense of distributions. This poses no problems, however, because the
potentials are integrated against densities of wave functions in LLLN , which are smooth
functions. Moreover, the densities have the form of polynomials times a gaussian so the
finiteness of the moments for all m guarantees that the integrals are well defined. In Sec. V
B it will be convenient to assume that the potentials have integrable Fourier transforms, but
this is not really an extra restriction because the general case follows by a density argument.

We shall give two proofs of the Theorem in Sec. 5. Note that the constant we subtract
from HnLL is just the magnetic kinetic energy of N particles in the nLL.

What the Theorem says is that one can profit from the nice properties of the LLL to
study phenomena in other Landau levels. This is particularly relevant because the main
features are supposed not to depend very much on the potentials Vn, wn entering (2.7). In
particular the Laughlin states have equivalents in any Landau level (cf Sec. 6).

Since potential energies are integrals of potentials against particle densities, Theorem 2.1
can be seen as a corollary of a general result about particle densities of a many body states
in different Landau levels. We recall that the k-particle density of an N -particle state with
wave function Ψ(r1, . . . , rN ) is by definition

ρ
(k)
Ψ (r1, . . . , rk) =

(
N

k

)∫

R2(N−k)
|Ψ(r1 · · · ; r′k+1 · · · r′N )|2dr′k+1 · · · dr′N . (2.15)

If Ψ ∈ nLLN for some n, then ρ
(k)
Ψ is a C∞ function and decreases rapidly at infinity. This

is discussed in Sec. V.

Theorem 2.2 (Particle densities in the n-th Landau level).
There is a unitary mapping UN,n : nLLN → LLLN such that if Ψ0 = UN,nΨn ∈ LLLN with
Ψn ∈ nLLN then for all k

ρ
(k)
Ψn

(r1, . . . , rk) =
k∏

i=1

Ln

(
−1

4∆ri

)
ρ
(k)
Ψ0

(r1, . . . , rk) (2.16)

Theorem 2.1 follows as a corollary if one integrates V (r) against the right hand side of
(2.16) with k = 1, respectively w(r1 − r2) with k = 2, and shifts the differentiations to the
potentials by partial integration.

Conversely, Theorem 2.2 (for k = 1, 2) follows from Theorem 2.1 if one regards the
potentials as trial functions for the densities.

In the following we shall define (in several related but distinct ways) the unitary mappings
between Landau levels (see (4.12)), and discuss the proofs of Theorems 2.1 and 2.2. The
physically most appealing way to interpret these unitaries is to see them as replacing the
physical coordinates of electrons by the coordinates of the guiding centers of their cyclotron
orbits, mathematically implemented through the use of coherent states. Indeed, in the LLL
the position coordinates and the guiding center coordinates are really two different names
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for the same thing as will be evident in Sec. 4.2. Moreover, the quantum mechanical spread
of both coordinates is of the order of the magnetic length ∼ B−1/2. The cyclotron radius in
Landau level n has an extra factor

√
n+ 1. Thus it is plausible that for large B and small n

the difference between position and guiding center coordinates, and the non-commutativity
of the latter, is not of much significance in thermodynamically large systems, i.e., for large
N , provided the magnetic length stays much smaller than the interparticle distance.

Although the coherent state approach offers a satisfactory physical picture it is not always
the most convenient one from a computational point of view. This motivates our review of
alternate routes to the mappings between levels.

We also take the example of Laughlin states to explain how to deduce properties of the
actual wave-functions in nLLN minimizing effective energies from their representation in
the LLLN using the above unitary map. This amounts to saying that the density in guiding
center coordinates can to a large extend indeed be identified with the true, physical, density
in electron coordinates. We believe this is crucial for the understanding of the efficiency of
the correspondence between Landau levels in FQH physics.

3. The Landau Hamiltonian and the two oscillators

3.1. The cyclotron oscillator. The magnetic Hamiltonian of a particle of charge q and
effective mass m∗, moving in a plane with position variables r = (x, y), is

H =
1

2m∗ (π
2
x + π2y) (3.1)

where

π = (πx, πy) = p− qA (3.2)

is the gauge invariant kinetic momentum with A the magnetic vector potential and

p = −i~(∂x, ∂y) (3.3)

the canonical momentum. We assume a homogeneous magnetic field of strength B perpen-
dicular to the plane and choose the symmetric gauge

A =
B

2
(−y, x). (3.4)

Moreover, we choose units and signs so that |q| = 1, qB ≡ B > 0, ~ = 1 and m∗ = 1. Then

πx = −i∂x +
1

2
By, πy = −i∂y −

1

2
Bx (3.5)

and the kinetic momentum components satisfy the canonical commutation relations (CCR)

[πx, πy] = iℓ−2
B (3.6)

with

ℓB = B−1/2 (3.7)

the magnetic length.
In terms of the creation and annihilation operators

a† =
ℓB√
2
(−πy − iπx), a =

ℓB√
2
(−πy + iπx) (3.8)
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with [a, a†] = 1 the Hamiltonian is

H = 2B(a†a+
1

2
). (3.9)

Powers of a† generate normalized eigenstates

ϕn = (n!)−1/2(a†)nϕ0 (3.10)

with aϕ0 = 0 and the energy eigenvalues

En = (n+
1

2
)2B,n = 1, 2, . . . . (3.11)

In position variables the corresponding wave functions are

ϕ0(r) =
1√
π
e−(x2+y2)/4ℓB , and ϕn(r) =

1√
πn!

(x− iy)ne−(x2+y2)/4ℓB . (3.12)

3.2. Complex notation. With

z = x+ iy, z̄ = x− iy, ∂z =
1

2
(∂x − i∂y), ∂z̄ =

1

2
(∂x + i∂y) (3.13)

we can write

a† =
1√
2ℓB

(
1

2
z̄ − 2ℓ2B∂z), a =

1√
2ℓB

(
1

2
z + 2ℓ2B∂z̄). (3.14)

Choosing units so that B = 2, or equivalently, defining z = 1√
2ℓB

(x+ iy), this becomes

a† =
1

2
z̄ − ∂z, a =

1

2
z + ∂z̄. (3.15)

Also, the gaussian factor e−(|x|2+|y|2)/4ℓ2
B becomes e−|z|2/2.

For computations it is often convenient to use the corresponding operators â†, â, acting
on the pre-factors to the gaussian and defined by

a#
[
f(z, z̄)e−|z|2/2

]
=
[
â#f(z, z̄)

]
e−|z|2/2. (3.16)

These are
â† = z̄ − ∂z, â = ∂z̄. (3.17)

In the sequel we shall generally use the hat ˆ on operators and functions to indicate that
the gaussian normalization factors are excluded.

Besides the standard definition z = x+iy, other complexifications of R2 are possible and
can be useful, as stressed in [12].

3.3. The guiding center oscillator. The classical 2D motion of a charged particle in a
homogeneous magnetic field consists of a cyclotron rotation around “guiding centers”. The
quantization of the cyclotron motion is the physical basis for the energy spectrum (3.11),
and the creation operators a† generate the corresponding harmonic oscillator eigenstates.
Every energy eigenvalue is infinitely degenerate, due to the different possible positions of
the guiding centers.

Quantum mechanically the dynamics of the guiding centers is described by another har-
monic oscillator commuting with the first one. One arrives at this picture by splitting the
(gauge invariant) position operator r into the guiding center part R and the cyclotron part

R̃ = ℓ2Bn× π, (3.18)
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with n the unit normal vector to the plane. Both R and R̃ are gauge invariant and they
commute with each other. On the other hand the two components of (Rx, Ry) of R do not

commute and likewise for the components of R̃. More precisely, we have

r = R+ R̃ (3.19)

with

Rx = x+ ℓ2Bπy =
1

2
x− iℓ2B∂y, Ry = y − ℓ2Bπx =

1

2
y + iℓ2B∂x, (3.20)

R̃x = −ℓ2Bπy =
1

2
x+ iℓ2B∂y, R̃y = ℓ2Bπx =

1

2
y − iℓ2B∂x (3.21)

and the commutation relations

[R, R̃] = 0, [Rx, Ry] = −iℓ2B, [R̃x, R̃y] = iℓ2B . (3.22)

The creation and annihilation operators for R̃ are the same as (3.8),

a† =
1√
2ℓB

(R̃x − iR̃y), a =
1√
2ℓB

(R̃x + iR̃y). (3.23)

Those for the guiding center, on the other hand, are

b† =
1√
2ℓB

(Rx + iRy), b =
1√
2ℓB

(Rx − iRy). (3.24)

Note the different signs compared to (3.23) due to the different signs in (3.22). We have
[b, b†] = 1 and in complex notation

b† =
1√
2ℓB

(
1

2
z − 2ℓ2B∂z̄), b =

1√
2ℓB

(
1

2
z̄ + 2ℓ2B∂z). (3.25)

For B = 2

b† =
1

2
z − ∂z̄, b =

1

2
z̄ + ∂z (3.26)

and
b̂† = z − ∂z̄, b̂ = ∂z. (3.27)

The splitting (3.19) corresponds to
(
z
z̄

)
=

(
b†

b

)
+

(
a
a†

)
. (3.28)

While the operators a†, a increases or decrease the Landau level index, the operators b†, b
leave each Landau level invariant. Pictorially speaking we can say that operators associated
with the cyclotron oscillator move states “vertically”, i.e. act as ladder operators, while
those associated with the guiding center oscillator move them “horizontally”.

With ϕ0,0 = ϕ0 the common, normalized ground state for both oscillators,

aϕ00 = bϕ00 = 0, (3.29)

the states

ϕn,m =
1√
n!m!

(a†)n(b†)mϕ0,0 =
1√
n!m!

(b†)m(a†)nϕ0,0, n,m = 0, 1, . . . (3.30)

form a basis of common eigenstates of the oscillators with ϕn,0 being the previously defined
ϕn. For fixed n the states ϕn,m, m = 0, 1, . . . generate the Hilbert space of the n’th Landau
level, which we shall denote by nLL. The lowest Landau level will be denoted LLL.
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Using complex coordinates the wave functions with n = 0 respectively m = 0 are

ϕ0,m(z, z̄) =
1√
πm!

zme−|z|2/2, ϕn,0(z, z̄) =
1√
πn!

z̄ne−|z|2/2. (3.31)

More generally, the wave functions

ϕn,m(z, z̄) =
1√

πn!m!
[(z − ∂z̄)

mz̄n]e−|z|2/2 =
1√

πn!m!
[(z̄ − ∂z)

nzm]e−|z|2/2 (3.32)

can be written in terms of associated Laguerre polynomials. They are eigenfunctions of
the angular momentum operator in the symmetric gauge (acting on the pre-factor to the
gaussian)

L̂ = z∂z − z̄∂z̄ (3.33)

with eigenvalues M = −n +m = −n,−n + 1, . . . in the nLL. The operators b†, b shift the
angular momentum within each Landau level.

4. Expressions of the inter-level unitary maps

4.1. With coherent states. A coherent state associated with the guiding center oscillator
in the nLL with parameter Z ∈ C is defined in a standard way [7, 14] as

|Z, n〉 = e(Zb†−Z̄b)ϕn,0 =

∞∑

m=0

Zm

√
m!

ϕn,me
−|Z|2/2. (4.1)

The overlap of two coherent states is

〈Z, n|Z ′, n′〉 = δn,n′e(2Z̄Z′−|Z|2−|Z′|2)/2 = δn,n′e−|Z−Z′|2/2 ei Im (Z̄Z′). (4.2)

Moreover, ∫
|Z, n〉〈Z, n| d

2Z

π
= Πn (4.3)

is the projector on nLL, where d2Z := i
2dZ ∧ dZ̄ is the Lebesgue measure on the plane.

Indeed,
1√

m!m′!

∫
Z̄mZm′

e−|Z|2 d
2Z

π
= 〈ϕn,m|ϕn,m′〉 = δm,m′ , (4.4)

and

Πn =

∞∑

m=0

|ϕn,m〉〈ϕn,m|. (4.5)

The coherent states allow an interpretation of nLL as a Bargmann space of analytic
functions of the coherent state variable Z: If ψ ∈nLL then

Ψ̂(Z) := 〈Z̄, n|ψ〉e|Z|2/2 =
∞∑

m=0

〈ϕn,m|ψ〉 Z
m

√
m!

(4.6)

is analytic in Z and

Ψ(Z, Z̄) = Ψ̂(Z)e−|Z|2/2 (4.7)

has the same L2 norm as ψ because of (4.3). Thus the map

Un : ψ 7→ Ψ (4.8)
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is isometric from the nLL to the LLL. From the definition it is clear that

Unϕn,m = ϕ0,m (4.9)

and

Un|Z, n〉 = |Z, 0〉, (4.10)

so Un is in fact a unitary with

U−1
n ϕ0,m = ϕn,m and U−1

n |Z, 0〉 = |Z, n〉. (4.11)

Either (4.9) or (4.10) can be taken as the definition of Un. The unitary map

UN,n : nLLN → LLLN

ΨN 7→
(

N⊗

asym

Un

)
ΨN (4.12)

is that used in Theorem 2.1.
The function Ψ(Z, Z̄) coincides with the LLL wave function of Unψ if Z is identified with

the complex position variable z = x + iy. Note, however, that Z is associated with the
(non-commutative) components of the guiding center operator R rather than the (commu-
tative) position operator r. By the definition (4.6) Ψ depends linearly on ψ; the alternative
definition Ψ = 〈ψ|Z, n〉, that is sometimes used, leads to an anti-unitary correspondence.

4.2. With integral kernels. Consider the coherent state (4.1) without the gaussian nor-
malization factors as as function of Z; z, z̄:

F̂ (Z; z, z̄) =
∞∑

m=0

Zm

√
m!

ϕ̂n,m(z, z̄). (4.13)

The coherent state is an eigenstate of the annihilation operator b̂ = ∂z with eigenvalue Z,
so

F̂ (Z; z, z̄) = f(z, z̄)eZz. (4.14)

Furthermore, F̂ is an eigenstate of â†â = (z̄ − ∂z)∂z̄ to eigenvalue n which leads to

F̂ (Z; z, z̄) = cn(z̄ − Z)neZz (4.15)

with a normalization constant cn = 1/
√
πn!. The full coherent state (4.1) as a function of

Z, z and z̄, including normalization factors, is thus given by

cn(z̄ − Z)ne−(|Z|2+|z|2−2Zz)/2. (4.16)

Inserting this into (4.6) gives

Ψ(Z, Z̄) =

∫
G(Z, Z̄ ; z, z̄)ψ(z, z̄) d2z (4.17)

with

G(Z, Z̄ ; z, z̄) =
1√
πn!

(z − Z)ne−(|Z|2+|z|2−2Zz̄)/2 =
1√
πn!

(z − Z)ne−|z−Z|2/2e−i Im (z̄Z).

(4.18)
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This formula was derived in a different way in [2] and appears there (in slightly different
notation) as Equation (34). The inverse map is given by

ψ(z, z̄) =

∫
Ḡ(z, z̄;Z, Z̄)Ψ(Z, Z̄) d2Z (4.19)

with

Ḡ(z, z̄;Z, Z̄) =
1√
πn!

(z̄ − Z̄)ne−(|Z|2+|z|2−2Z̄z)/2 =
1√
πn!

(z̄ − Z̄)ne−|z−Z|2/2e−i Im (zZ̄).

(4.20)
Note that G can be written as

g(z − Z) e−2i Im (z̄Z) (4.21)

where g is essentially concentrated in a disc of radius ∼
√
n+ 1 and the factor is a phase

factor. Recall also that the length unit is
√
2ℓB ∼ B−1/2.

A further remark is that for n = 0 G is the reproducing kernel in Bargmann space,
confirming again that in the LLL Ψ and ψ are the same function on C just with different
names for the variables. The phase factor in G is essential for this to hold.

4.3. With ladder operators. A direct approach to the correspondence nLL ↔ LLL, by-
passing the coherent states, starts from (4.9), noting that

Un = (n!)−1/2an restricted to nLL (4.22)

and hence
U−1
n = (n!)−1/2(a†)n restricted to LLL. (4.23)

Using the representations (3.17) for the creation and annihilation operators we conclude
that the following holds:

Proposition 4.1 (Unitary maps with ladder operators).
Let ψn ∈ nLL have wave function

ψn(z, z̄) =
n∑

ν=0

z̄νfν(z)e
−|z|2/2, (4.24)

fν analytic for ν = 0, . . . , n. Then Ψ0 = Unψn ∈ LLL has wave-function

Ψ0(z, z̄) =
√
n!fn(z)e

−|z|2/2. (4.25)

Conversely, the wave function of ψn = U−1
n Ψ0 is

ψn(z, z̄) = [(z̄ − ∂z)
nfn(z)]e

−|z|2/2

=

[
z̄nfn(z) +

n∑

k=1

(−1)k
(
n

k

)
z̄n−kf (k)n (z)

]
e−|z|2/2. (4.26)

Note that Equation (4.26) implies in particular that the factor fn(z) to the highest power
n of z̄ determines uniquely the factors to the lower powers z̄ν :

fν(z) = (−1)n−ν

(
n
ν

)
f (n−ν)
n (z). (4.27)

The state is thus completely fixed by the holomorphic function fn and the Landau index n.
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Incidentally, these considerations also lead to a method for projecting functions to the
lowest Landau level:

Proposition 4.2 (LLL projection).
Let

φ(z, z̄) =

n∑

ν=0

z̄νgν(z)e
−|z|2/2 (4.28)

with arbitrary analytic functions gν . It’s orthogonal projection into LLL is

PLLLφ(z) =

n∑

ν=0

g(ν)ν (z)e−|z|2/2. (4.29)

where g(ν) = ∂νz g.

This is well-known as the recipe “move all z̄ factors to the left and replace them by
derivatives in z”, see e.g. [13]. For completeness we give the simple proof:

Proof. The previous considerations lead to a method for splitting a state

φ ∈
n⊕

k=0

kLL (4.30)

into its components in the different LL: Start with a wave function as in (4.28). It’s com-
ponent ψn in the nLL is then given by (4.26) with fn := gn and fν for 0 ≤ ν ≤ n − 1

defined by (4.27). The difference φ̃ = φ − ψn is now in
⊕n−1

k=0 kLL and we can repeat the

procedure with n replaced by n− 1, φ by φ̃ etc. until we obtain the splitting ϕ =
∑n

k=0 ψk

with ψk ∈ kLL. By induction over n, using that
n∑

ν=0

(
n

ν

)
(−1)ν = (1− 1)n = 0 (4.31)

this procedure implies (4.29). �

4.4. Recap of the different expressions for the unitary maps. Summarizing the
contents of this section, we have displayed three equivalent ways to represent a state Ψ ∈
nLL by analytic functions in Bargmann space:

1. Take the scalar product 〈Z̄, n|Ψ〉 with a coherent state, cf. (4.6).
2. Use Equation (4.17) with the integral kernel (4.18).
3. Apply the differential operator ∂z̄ n-times to the pre-factor of the Gaussian. Equiv-

alently: Expand the pre-factor in powers of z̄ and keep only the highest power.
The inverse mapping, LLL → nLL, is achieved by applying the differential operator
(z̄ − ∂z)

n to the analytic function representing the state in the LLL.

The last method is formally the simplest and in the Sec. V we shall use it to discuss
particle densities in higher Landau levels in term of their counterparts in the lowest Landau
level.

5. Particle densities and the nLL Hamiltonian, proofs of the Theorems

We now have all the necessary ingredients to prove Theorems 2.1 and 2.2. We provide
two slightly different approaches.
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5.1. Many body states and particle densities. All considerations in Secs. III and IV
carry straightforwardly over to many-body states in symmetric or anti-symmetric tensor
powers nLLN ≡ nLL⊗s,aN of single particle states by applying the single particle formulas
to each tensor factor.

Let Ψn be a state in nLLN with wave function

ψn(z1, z̄1; . . . ; zN , z̄N ) = ψ̂n(z1, z̄1; . . . ; zN , z̄N )e−(|z1|2+···+|zN |2)/2. (5.1)

Expanding in powers of z̄i we can write

ψ̂n(z1, z̄1; . . . ; zN , z̄N ) =

N∏

i=1

z̄ni fn(z1, . . . , zN ) +
∑ N∏

i=1

z̄νii fν1,...,νN (z1, . . . , zN ). (5.2)

The sum is here over N -tuples (ν1, . . . νN ) such that νk < n for at least one k. The functions
fn and fν1,...,νN are holomorphic and the latter are, in fact, derivatives of fn, cf. (4.27).

The state Ψ0 = UnΨn in LLLN has the wave function

ψ0(z1, z̄1; . . . ; zN , z̄N ) = ψ̂0(z1, . . . , zN )e−(|z1|2···|zN |2)/2 (5.3)

with

ψ̂0(z1, . . . , zN ) = (n!)−N/2
N∏

i=1

∂nz̄i ψ̂n(z1, z̄1; . . . ; zN , z̄N ) = (n!)N/2fn(z1, . . . , zN ). (5.4)

The wave function ψ̂n can now be written

ψ̂n((z1, z̄1; . . . ; zN , z̄N ) = (n!)−N/2
N∏

i=1

(z̄i−∂zi)nψ̂0(z1, . . . , zN ) =

N∏

i=1

(z̄i−∂zi)nfn(z1, . . . , zN ).

(5.5)
Next we consider the k-particle density of Ψn, defined by

ρ(k)n (z1, z̄1, . . . , zk, z̄k) =

(
N

k

)∫
|ψn(z1, z̄1; . . . ; zN , z̄N )|2d2zk+1 · · · d2zN

=

(
N

k

)∫ ∣∣∣ψ̂n(z1, z̄1; . . . ; zN , z̄N )
∣∣∣
2
e−(|z1|2+···+|zN |2)d2zk+1 · · · d2zN . (5.6)

The density ρ
(k)
0 of Ψ0 = UnΨn is given by the same formula with n = 0.

Functions in LLL are holomorphic and decrease at ∞ as e−|z|2/2; the latter follows from
the fact that the Bargmann kernel (4.18) with n = 0, which has this decrease, is a repro-
ducing kernel for the Hilbert space LLL. Equation (4.18) (equivalently, Equation (4.24))
also implies that functions in nLL are C∞ in the real position variables and decrease in the
same way. This clearly carries over to wave functions in nLLN and corresponding densities.

To prove Theorem 2.2 (which then implies Theorem 2.1) we have to compare ρ
(k)
n and

ρ
(k)
0 . It is, in fact, sufficient to consider the problem for a single variable, i.e., to prove the

following Lemma:

Lemma 5.1 (Reshuffling differentiations).

Let ψ(z, z̄) = f(z)e−|z|2/2 with holomorphic f . Then

(n!)−1[(z̄ − ∂z)nf(z)] [(z̄ − ∂z)
nf(z)] e−zz̄ = Ln (−∂z̄∂z)

[
f(z)f(z)e−zz̄

]
(5.7)
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with Ln the Laguerre polynomial (2.14). Recall that ∂z̄∂z = 1
4∆.

Proof. This is a straightforward computation by induction over n, using the recursion rela-
tion for the Laguerre polynomials,

(n+ 1)Ln+1(u) = (2n + 1)Ln(u)− nLn−1(u)− uLn(u). (5.8)

To compute

∂z̄∂z

[
[(z̄ − ∂z)nf(z)] [(z̄ − ∂z)

nf(z)] e−zz̄
]
, (5.9)

starting with n = 0 and L0 = 1, one uses the commutation relations

∂z̄(z̄ − ∂z)
n = (z̄ − ∂)n∂z̄ + n(z̄ − ∂z)

n−1, ∂z(z̄ − ∂z)
n = (z̄ − ∂)n∂z, (5.10)

and the fact that ∂z̄f(z) = ∂zf(z) = 0 for holomorphic f . �

Applying the Lemma to each variable in a many-body wavefunction leads directly to
(2.16) and hence Eqs.(2.12) and (2.13).

5.2. Projected Hamiltonian and guiding center coordinates. We now discuss an
alternative road to (2.12) and (2.13), providing additional insights. The starting point is
the splitting (3.19) of the position variables in guiding centers and cyclotron motion, and the
ensuing factorization of matrix elements of exp(iq · r) which enter the Fourier transformed
version of (5.7).

Lemma 5.2 (Plane waves projected in Landau levels).
For any q ∈ R

2, identify eiq·r with the corresponding multiplication operator on L2(R2),
where r is the spatial variable. Let R be the guiding center operator defined in Sec. 3.3, Πn

the orthogonal projector on nLL and Un : nLL → LLL the inter-LL unitary map.
We have that

UnΠne
iq·rΠnU

∗
n = Ln

( |q|2
4

)
e−

|q|2

8 Π0e
iq·RΠ0 = Ln

( |q|2
4

)
Π0e

iq·rΠ0 (5.11)

with the Laguerre polynomial

Ln(u) =
n∑

l=0

(
n

l

)
(−u)l
l!

. (5.12)

The equality of the left-hand and the right-hand sides of (5.11) can be seen as a Fourier
transformed version of (2.16) (with k = 1). The identity (5.11) implies that the norm of
Π0e

iq·rΠ0 decays faster than any polynomial in |q|. Indeed, on the left hand side we have a
product of unitaries and projections whose norm is bounded by one. Also, when q 6= 0 and
n grows, the norm of Πne

iq·rΠn decays like n−1/4.
We now provide another proof, using guiding center coordinates rather than ladder op-

erators. This also connects with the middle expression in (5.11).

Proof. Some of the following computations can be found in a variety of sources, e.g. [13,
Proof of Theorem 3.2] or [9].

First note that if A is a function of a†, a and B of b†, b, then

〈ϕn′,m′ |AB|ϕn,m〉 = 〈ϕn′,0|A|ϕn,0〉 〈ϕ0,m′ |B|ϕ0,m〉. (5.13)

This is a consequence of the fact that the two commuting harmonic oscillators (3.8) and
(3.24) can be represented, in a unitarily equivalent way, in the tensor product of two spaces
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with basis vectors ϕn,0 and ϕ0,m respectively. In this representation ϕn,m = ϕn,0⊗ϕ0,m and
the operators A and B act independently on each of the tensor factors. One can also pick
directly A,B to be polynomials in creation and annihilation operators and use the CCR to
prove the claim. Note, however, that in the representation (3.32) the functions ϕn,m(z, z̄)
are not simply products of the functions ϕn,0 and ϕ0,m. Indeed, the variables z and z̄,
regarded as position operators, do not act independently in the tensor factors, cf. (3.28).

We apply (5.13) to compute the matrix elements of exp(iq · r), q ∈ R
2, in the nLL. With

q = (qx, qy), q = qx + iqy, r = (x, y), z = x+ iy (5.14)

and further employing

z = a+ b†, z̄ = a† + b (5.15)

we have

q · r = qxx+ qyy =
1

2
(q̄z + qz̄) =

1

2
(qa† + q̄a) +

1

2
(q̄b† + qb). (5.16)

Since the a#’s and the b#’s commute it follows that

exp (iq · r) = exp

(
i

2
(qa† + q̄a)

)
exp

(
i

2
(q̄b† + qb)

)
(5.17)

and thus by (5.13)

〈ϕn,m′ | exp(iq · r)|ϕn,m〉 = 〈ϕn,0| exp
(
i

2
(qa† + q̄a)

)
|ϕn,0〉〈ϕ0,m′ | exp

(
i

2
(q̄b† + qb)

)
|ϕ0,m〉.
(5.18)

By the Baker-Campbell-Hausdorff formula

eX+Y = eX eY e−
1
2
[X,Y ] (5.19)

for two operators commutating with their commutator (recall that [a, a†] = 1) we can write

exp

(
i

2
(qa† + q̄a)

)
= exp

(
i

2
(qa†)

)
exp

(
i

2
(q̄a)

)
exp

(
−1

8
|q|2
)

(5.20)

and thus

〈ϕn,m′ | exp (iq · r) |ϕn,m〉 = h̃n(q)〈ϕ0,m′ | exp
(
i

2
(q̄b† + qb)

)
|ϕ0,m〉. (5.21)

with

h̃n(q) = 〈exp
(−i

2
(q̄a)

)
ϕn,0| exp

(
i

2
(q̄a)

)
ϕn,0〉 exp

(
−1

8
|q|2
)
. (5.22)

Expanding the exponential and using ak ϕn,0 =
√

(n− 1) · · · (n− k + 1)ϕn−k,0 we obtain

h̃n(q) =
n∑

k=0

(−1)k

4k

(
n

k

)
1

k!
|q|2k exp

(
−1

8
|q|2
)

= Ln(
1
4 |q|

2) exp

(
−1

8
|q|2
)
. (5.23)

Thus, recalling the definition of the guiding center coordinate R in Sec. 3.3, (5.21) implies
the first equality in (5.11).

To obtain the second equality we subtract

i

2
(qa† + q̄a) (5.24)
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from (5.16) to get, employing the Campbell-Hausdorff formula again,

exp (iq ·R) = exp

(
− i

2
qa† +

(
i

2
(qa† + q̄a) +

i

2
(q̄b† + qb)

)
− i

2
q̄a

)

= exp

(
− i

2
qa†
)
exp (iq · r) exp

(
− i

2
q̄a

)
exp

(
1

8
|q|2
)
. (5.25)

On the LLL exp
(
− i

2 q̄a
)
is the identity, so the second equality in (5.11) follows. �

To deduce Equations (2.13)–(2.12) and hence Theorem 2.1 it only remains to write the
Fourier decompositions

V (r) =

∫

R2

V̂ (q)eiq·rdq (5.26)

and

w(r1 − r2) =

∫

R2

ŵ(q)eiq·r1e−iq·r2dq (5.27)

and use Lemma 5.2. The expressions involving Laplacians in Theorem 2.1 follow from the
Fourier representation −∆ = |q|2. This argument demands absolute integrability of the
Fourier transforms, but the general case follows by a density argument.

6. Laughlin states in higher Landau levels

As already mentioned, a crucial approximation in FQH physics is to truncate the Haldane
pseudo-potential series in the LLL Hamiltonian (2.7) to obtain the Laughlin state (2.9) as
an exact ground state of the translation invariant problem V ≡ 0.

In view of Theorem 2.1, it is desirable to do the same in a higher Landau level, at the
level of the effective Hamiltonian HLLL

0,wn
and (2.9) then becomes an exact ground state after

the unitary mapping to the LLL. In this section, we explain how the previous considera-
tions allow to study the properties of the corresponding physical wave-function (that is, as
expressed in the position coordinates, rather than in the guiding center coordinates).

6.1. Density estimates on mesoscopic scales. Consider a Laughlin state in the LLLN

ΨLau
0,N = cN

∏

i<j

(b†i − b†j)
ℓϕ⊗N

0,0 (6.1)

with wave function

ΨLau
0,N (z1, . . . , zN ) = cN

∏

i<j

(zi − zj)
ℓe−(|z1|2+···+|zN |2)/2. (6.2)

Here ℓ = 1, 3, . . . for fermions and ℓ = 2, 4, . . . for bosons. We denote by

̺Lau0,N (r) := N

∫

R2(N−1)

|Ψ0,N (r, r2, . . . , rN )|2dr2 . . . drN (6.3)

the corresponding 1-particle density. According to Laughlin’s plasma analogy [15] the den-

sity profile is for large N well approximated by a droplet of radius (ℓN)1/2 and fixed density
(πℓ)−1,

̺flatN (r) :=

{
1
πℓ if |z| ≤

√
ℓN

0 otherwise.
(6.4)
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Indeed, by a rigorous mean-field analysis it was proved in [26] that this approximation holds
in the sense of averages over discs of radius Nα with 1/2 > α > 1/4. More generally, the
k-particle densities are well approximated in this sense by the k-fold tensor power of the
flat density if N → ∞. The more refined analysis of classical Coulomb systems in [18, 1, 31]
leads to an extension of this result down to mesoscopic scales Nα for all α > 0. We shall
now use results from [18] to estimate the density of Laughlin states in higher Landau levels.

The Laughlin state corresponding to (6.1) in the n-th Landau level nLLN is

ΨLau
n,N = cN

∏

i<j

(b†i − b†j)
νϕ⊗N

n,0 = cN
∏

i<j

(b†i − b†j)
ν

N∏

i=1

[
(a†i )

n ϕ0,0

]
(6.5)

with wave function (cf Lemma 4.1)

ΨLau
n,N (r1, . . . , rN ) = cN


 1

(n!)N/2

N∏

i=1

(z̄i − ∂zi)
n
∏

i<j

(zi − zj)
ν


 e−(|z1|2+···+|zN |2)/2. (6.6)

This is, in electronic position variables, the exact ground state of a Hamiltonian obtained
by

• Projecting the physical starting point (2.1) in the nLLN .
• Unitarily mapping the result down to an effective Hamiltonian on LLLN using The-
orem 2.1.

• Neglecting the one-body potential Vn and truncating the Haldane pseudo-potential
series of the interaction potential wn.

The Hamiltonian obtained this way acts on LLLN , and its exact ground state is a LLL
Laughlin state in guiding center variables. Lifting it back up to the nLLN results in (6.6):

ΨLau
n,N = (U∗

n)
⊗N ΨLau

0,N . (6.7)

We now vindicate a natural expectation: the density of ΨLau
n,N is very close, for large N , to

that of ΨLau
0,N on length scales much larger than the magnetic length (1 in our units). This

is because electron coordinates and guiding center coordinates differ only on the scale of
a cyclotron orbit, which is much smaller than the thermodynamically large extent of the
states themselves.

We shall test the densities with regularized characteristic functions of discs. Let χ1 be the
characteristic function of the unit disc around the origin and for ε > 0 let ηε be a function
with support in the annulus 1 ≤ |r| ≤ 1+ ε such that χ1,ε := χ1 + ηε is C

∞. For R > 0 and
r0 ∈ R

2 define
χR,r0,ε(r) = χ1,ε(R

−1(r− r0)). (6.8)

The analysis in [26, 18] is carried out using scaled variables,

r′ = N−1/2r. (6.9)

In these variables the extension of the Laughlin state is O(1) and mesoscopic scales are
O(N−γ) with 0 < γ < 1/2. The scaled densities are (̺Laun,N is defined in analogy with (6.3))

˜̺Laun,N(r′) = ̺Laun,N(N1/2r′) and ˜̺flatN (r′) = ̺flatN (N1/2r′). (6.10)

We scale the test functions accordingly and consider χr,r′0,ε
(r′) = χ1,ε(r

−1(r′ − r′0)). The
result on the density and its fluctuations we want to sketch the proof of is as follows:
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Theorem 6.1 (Density of Laughlin states on mesoscopic scales).
(i) For every Landau index n, every fixed ε > 0 and all mesoscopic scales r ∼ N−γ with
0 < γ < 1

2∫
˜̺LauN,n(r

′)χr,ε,z0(r
′) d2r′ =

∫
˜̺flatN (r′)χr,ε,z0(r

′) d2r′ (1 +O(N−1+2γ)) (6.11)

(ii) If r ∼ N−γ, the fluctuation of the linear statistics associated to χr,ε,z0 in the n-th
Landau level is

∼ ε−1/2(1 + ε−2nO(N−n(1−2γ))). (6.12)

Proof. The considerations of Sec. 5.1 imply that for every test function χ∫

R2

˜̺LauN,n(r
′)χ(r′) =

∫

R2

˜̺LauN,0(r
′)Ln

(
−1

4N
−1∆

)
χ(r′) (6.13)

with Ln the Laguerre polynomial. The point is that for large N , only the lowest order term
in the above polynomial will contribute:

Ln

(
−1

4N
−1∆

)
≈ 1. (6.14)

We use Theorem 1 and Remark 1.2 in [18], see also Theorem 1 in [31]. The function denoted
there by ξ is in the present case

Ln

(
−1

4N
−1∆

)
χr,ε,r′0

. (6.15)

The potential in Equation (1.14) of [18] is here |z|2 so Mean(ξ) = 0. Equation (1.17) in [18]
and ∫

˜̺flatN χr,ε,z0 ∼ r2 (6.16)

now lead directly to (6.11) above. The dependence of the error term on n and ε cannot be
deduced from Equation (1.17) in Remark 1.2 alone, however.

For the fluctuations we need ‖∇ξ‖2, according to the “Mesoscopic case” of Theorem 1 in
[18]. Since

ξ = Ln

(
−1

4N
−1∆

)
χr,ε,r′0

, (6.17)

Equation (6.12) is a consequence of this theorem and of a simple L2-estimate of the gradient
of the test function χr,ε,r′0

. �

6.2. Rigidity estimates. In [27, 28, 20, 21, 29, 24] we have investigated rigidity/stability
properties of the LLL Laughlin state. The question is now the response of the Laughlin
function to a slight relaxation of the assumptions made in it’s derivation, namely that
one could in first approximation neglect the one-body potential and truncate the Haldane
pseudo-potential series to a finite order. If one assumes the validity of a certain “spectral gap
conjecture” (see [25, Appendix] and references therein), investigating this question basically
means minimizing the one-body energy and the residual part of the interaction within the full
ground eigenspace of the truncated interaction energy (cf degenerate perturbation theory).
Our main conclusion was that this problem could be solved to leading order in the large N
limit by generating quasi-holes on top of Laughlin’s wave function. We now want to quickly
explain how this can be generalized to Laughlin states in higher levels. We discuss only the
adaptation of [21, 29] for the response to one-body potential. One could consider as well
the response to smooth long-range weak interactions as in [24], but for brevity we do not
write this explicitly.
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We take v : R
2 → R

+ to be a smooth one-body potential, growing polynomially at
infinity. We scale it so that it lives on the scale of the Laughlin wave-function:

VN (r) = v(
√
Nr). (6.18)

As discussed in the aforementioned references these assumptions can be relaxed to some
extent. The main observation is that after the reduction of the nLL interacting Hamiltonian
discussed in Subsection VI A, any multiplication of the LLL Laughlin state by a symmetric
analytic function F still yields an exact zero-energy eigenstate in guiding center variables.
It is thus relevant to consider the action of the one-body potential VN on the ground-state
space of the truncated interaction Hamiltonian. In electron variables the latter is

Lℓ
N,n :=

{
ΨN,n ∈ nLLN , U

⊗N
n ΨN,n = F (z1, . . . , zN )Ψ

(ℓ)
Lau with F analytic and symmetric

}

(6.19)
where the LLL Laughlin state is as in (2.9). For any many-body wave-function ΨN,n ∈ Lℓ

N,n

we define it’s one-particle density as

̺ΨN,n
(r) := N

∫

R2(N−1)

|ΨN,n(r, r2, . . . , rN )|2dr2 . . . drN . (6.20)

The variational problem for the response of the Laughlin state to an external potential,
within the class (6.19) is now

E(N,n, ℓ) := inf

{∫

R2

V ̺ΨN,n
, ΨN,n ∈ Lℓ

N,n,

∫

R2N

|ΨN,n|2 = 1

}
. (6.21)

It is of importance in Laughlin’s theory of the FQHE that one needs only consider so-called
quasi-holes states to solve the above approximately. If one makes this approximation, the
minimum energy becomes

e(N,n, ℓ) := inf

{∫

R2

V ̺ΨN,n
, U⊗N

n ΨN,n = f⊗NΨ
(ℓ)
Lau with f analytic ,

∫

R2N

|ΨN,n|2 = 1

}
.

(6.22)
The latter energy is obtained by reducing the variational set, so, obviously

E(N,n, ℓ) ≤ e(N,n, ℓ). (6.23)

What is much less obvious is that this upper bound is optimal in the large N limit:

Theorem 6.2 (Response of higher LL Laughlin states to external potentials).
With the previous notation we have, for any fixed n, ℓ ∈ N

E(N,n, ℓ)

e(N,n, ℓ)
→

N→∞
1 (6.24)

The n = 0 version of the above was proved in [21, 29]. The adaptation to higher n follows
from the tools therein, together with the representation of UnVnU

∗
n discussed at length in

Sec. 5. We do not give details for brevity. We however point out that consequences for
minimizing densities also follow, so that the density of a (quasi)-minimizer for (6.21) is
approximately flat with value (πℓ)−1 on an open set to be optimized over, and quickly
drops to 0 outside. This is in accordance with the physical picture of the system responding
to external potentials by generating quasi-holes to accommodate their crests. Indeed, the
interpretation of the states in (6.22) is that the zeroes of the analytic function f correspond
to the location of quasi-holes in guiding center coordinates.
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