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Sarah Ribet, Hazem Wannous, Member, IEEE, and Jean-Philippe Vandeborre, Senior, IEEE

Abstract—The meaning of the word style depends on its
context. While actions have already been quite studied for a
while, style in human body motion is a growing topic of interest.
In the context of animation, style is crucial as it brings realism
and expressiveness to the motion of a character. Even though
it is undoubtedly a key element in motions, its definition and
the use of the word style in itself, among research works, lack
consensus. Achieving realistic motions is tedious. It requires
either a large motion capture dataset or the considerable work
of artist animators. The lack of consistent style data is thus a
challenge. Stylistic motion generation is quite studied in order
to overcome this issue. This paper focuses on the study of style
in human body motion from 3D human body skeletal data. It
establishes a taxonomy of definitions of style, describes the data
that have been used up until now, introduces key notions about
motion capture data as well as machine learning, and presents
approaches about style recognition, person identification through
their style and motion style generation.

Index Terms—style, motion, character animation, motion style
generation

I. INTRODUCTION

STYLE has various meanings and refers to different fields:
someone fashionable wears clothes with style, a painter

has a specific style, there are different styles of music, etc.
This paper deals with the study of style in human body
motion. Indeed, a growing interest in body movement analysis
is observed recently. It is due to the reliability of whole body
sensing technologies that are now affordable and, more impor-
tantly, that are more efficient due to the increased processing
power. While many approaches focus on actions, this paper
focuses on style in 3D human body motion.

The content of this paper has to be seen in the context of
animation and its multiple applications such as entertainment
(feature films, video games), human computer interaction,
education, health, scientific visualization and simulation, video
surveillance, etc. [1]–[4]. Moreover, it focuses on approaches
dealing with 3D skeletal data of human body. As a result,
we focus on papers that are either recognizing style in human
body motion or that are generating stylistic motions. We insist
on the fact that the whole body has to be involved; papers
working on face are out of scope of that paper. According to
the taxonomy of definitions of style we establish in Section II,

S. Ribet and J.-P. Vandeborre are with IMT Lille Douai, Univ. Lille,
CNRS, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal
et Automatique de Lille, F-59000 Lille, France. e-mail: {sarah.ribet,jean-
philippe.vandeborre}@imt-lille-douai.fr

H. Wannous is with Univ. Lille, CNRS, Centrale Lille, IMT Lille Douai,
UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et
Automatique de Lille, F-59000 Lille, France. e-mail: hazem.wannous@univ-
lille.fr

emotions are part of style. However, emotions are already a
wide studied subject. To keep the scope of the paper reasonable
and to focus solely on style, we take the bias to exclude papers
that are dealing with emotions.

Bringing realism and expressiveness to an animated char-
acter is one of the main challenges in computer animation
[5], [6]. Style is then an added value to the motion and this
is crucial in that field [7], [8]. It is especially critical as the
human eye is sharp and can easily detect unnatural motions
[1], [3], [9]. Moreover, the concept of the uncanny valley [10]
also applies to character animation [11]. In order to get out of
the uncanny valley, where a human being experiences feelings
going from uneasiness to revulsion while looking at, in this
case, an animated character that is trying to resemble a human
being, the animated character needs to reach a certain level of
realism. Style can help in that purpose, surpass the uncanny
valley.

Accurate realistic motions can be obtained either by the
considerable work of 3D animators who manipulate details [6],
[8] or by capturing motions [12]. The animators’ work is time-
consuming, expensive and tedious, as they do the animations
from scratch by hand most of the time [6], [8], [13]. Capturing
motions is also time-consuming and a burden for actors,
especially when combinations of actions and styles are needed
[2] and should ideally be performed several times [14]. One
way of overcoming this is by generating new motions, thus
reducing the amount of captures needed in datasets [8], [15]
and saving animators time [6], [16]. As a result, generating
new stylistic 3D human body motions is studied.

Style in 3D human body motion is per consequent studied,
particularly when it comes to stylistic motion generation. We
identify three types of motion style generation: synthesis of
stylistic motion, editing of stylistic motion and motion style
transfer. It is also studied as a classification problem and can
be a tool to identify persons. However, the notion of style is not
clearly defined and lacks a formal definition; different trends
are observed. Furthermore, style in 3D human body motion is a
growing topic of interest that has been less studied than human
body motion action. Consequently, the amount and quality of
3D human body data available on style is not comparable to
the data used in the study of motion actions.

The rest of the paper is structured as follows. Section II es-
tablishes a taxonomy of definitions of style in 3D human body
motion, exposing the different trends that can be observed
in computer literature. Data used in motion style approaches
are described in Section III. Key concepts about motion
capture data and some related machine learning techniques
are exposed in Section IV. Section V highlights motion style
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recognition studies. Section VI provides details about methods
performing stylistic 3D human body motion generation. An
overwhole discussion about motion style, the data related to it
and its applications is conducted in Section VII.

II. TAXONOMY OF STYLE IN BODY MOTION

In computer animation literature, the concept of motion style
is vaguely defined [17]. Providing a definition of style in body
movements is not an easy task; it leads to a lack of consensus
[18]. Moreover, the words affective state and body expression
also refer to style. We only use style in the rest of this paper.

This section aims at introducing a subjective proposition
of a taxonomy of definitions of style in body motion, from
how style is seen by research authors, and exposes relations
between emotions and style.

A. Taxonomy of definitions of style in body motion
Three common trends can be observed with respect to how

body motion style is seen in the literature. Fig. 1 illustrates
these trends that are described in this section.

1) Style as a component of a motion: This trend gathers
research works that consider style as an add-on to a particular
motion.

Some researchers stated that style is one of the components
of a motion. Rose et al. [19] introduced the notion of verbs and
adverbs. They designated parameterized (stylistic) motions as
verbs being parameterized by adverbs. For example, walk was
a verb and happy and sad were some of its adverbs. Morawetz
[20] opted to decompose an emotional motion into primary
and secondary movements; an emotion was thus considered
as a secondary movement in addition to a primary movement.
Etemad and Arya [9], [21] also decomposed a motion into
primary and secondary themes, stating that a stylistic motion
amounted to a neutral motion to which a style was added.

2) Style as variations in a motion: Style in body motion is
sometimes defined as a variation in a motion. As a result, this
trend clusters the differences (variations) that can be observed
between motions of the same action.

It can be a variation in the type of motion itself. For
example, Brand and Hertzmann [13] claimed that “walking,
running, strutting, etc., are all stylistic variations on bipedal
locomotion”. Chien et al. [18] referred to “walking, limping,
running, jumping, etc.” as being styles of human motion.

It can also be a variation within the same action, considering
intuitive features such as the speed of a movement [22].

Style can also represent variations due to the undeniable
fact that every human being is different which induces natural
variations in our movements [23]. Indeed, each and one of us
human being introduces her/his own uniqueness to motions:
that is in itself a variation in motions. It is commonly admitted
that someone can not perform the same motion in the exact
same way twice [3], [22], [24], [25]. Indeed, Lasseter [26]
mentioned that “one character would not do a particular action
the same way in two different emotional states. [...] No two
characters would do the same action in the same way”. Style
can thus be seen as being the style of a person.

Finally, style can also simply be seen as spatio-temporal
variations in a motion [2], [7], [9], [21].

3) Style as individual-related features: Another trend,
less abstract than the previously identified ones, involves
individual-related features that can be shown through adjec-
tives. They are tangible characteristics of an individual, of a
human being. Table I highlights styles of research approaches
that are introduced in further details in subsequent sections
(see Sections V and VI).

We can notice the heterogeneity in adjectives used. It goes
from happy or proud to childlike or zombie, including sexy
and old, etc. Still, common characteristics appear such as
emotions, gender, age, physical states, personality features and
behaviors, that can thus be considered as subsets of style. It
is in accordance with the definitions of style from Troje [29]
and Abdul-Massih et al. [28], who respectively claimed that
style referred to “emotions, personality or biological features,
such as age or gender” and “your perceived mood, behaviour
or physical properties of the motion”. It was confirmed by
Etemad and Arya [14] who specified that the style, represented
by secondary themes, contained “variations caused by individ-
ual characteristics of the actor such as gender, age, emotions,
energy, mood, health, and even inherited characteristics”. The
second column of Table I allocates the adjectives used in
literature to one of the categories identified as subsets. Even
though this allocation has been conducted through readings
about emotions and behaviors, the reader should be aware that
this proposed allocation is subjective. Fig. 2 summarizes the
different categories of those adjectives depicting individual-
related features that can be found up until now.

According to Table I, research approaches didn’t seem to
focus on a specific category of style and rather attempted
to tackle several categories at once. Table II presents the
adjectives and their occurrences, per category. The behavior
category gathers more adjectives than the emotion, personal
feature and physical state categories. However, most of those
behavior adjectives are referred to once. They were thus not
the most used. Note that both biological feature categories
only contain two adjectives each, as expected, and the no
category subset only reports the absence of style represented
by the single adjective neutral. The most studied styles were
angry, happy, sad, old, proud, depressed and tired. Aside
from old, they belong to the emotion category, making it the
most studied category. Furthermore, about 2/3 of the referenced
papers worked with the neutral style, which is actually hard
to define or get (either by simulation or with real data). We
refer the reader to Section VII-A2 for a further analysis of this
style.

B. Emotions and style

Emotions have been defined for quite a while now [1].
Plutchick and Kellerman [30] considered emotions as “envi-
ronmental and psychological events influence brain processes
that actively modulate clearly observable behaviors”. Six basic
– universal – emotions have been identified by Ekman [31]:
anger, happiness, sadness, disgust, fear and surprise. Emotion
representations have later been introduced; they identified
more emotions and measured them according to dimensions.
They included the model from Russel [32] for which each
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Fig. 1: Common trends (including examples and/or subcategories) of the definition of style as seen in the literature.

TABLE I: Individual-related adjective features seen as style.
In the category column: B= Behavior, BF:A= Biological Feature: Age, BF:G= Biological Feature: Gender, E= Emotion, PF= Personality Feature, PS= Physical State, –= no

category.

Style Category [1] [2] [5] [27] [24] [25] [3] [14] [7] [28] [4] [9] [15] [8] [16]
afraid E X
angry E X X X X X X X

catwalk B X X X
childlike B X X X
confident PF X

cool PF X
crab walking B X

crouch B X
decided B X

depressed E X X X X X
drunk PS X X

energetic PS X X
excited E X
fearful E X X

feminine BF:G X
flap B X

frustrated E X
goose-step B X

happy E X X X X X X X
heavy B X

in a hurry B X
injured PS X X X
inverse B X

lame walking B X
limp B X

manly PF X
march B X

masculine BF:G X
mummy B X
neutral – X X X X X X X X X X X

old BF:A X X X X X X
proud PF X X X X X X

relaxed E X
sad E X X X X X X X X X
sexy PF X X X

sideways B X
sneak B X X
strong PF X

struggling B X
strutting B X X
tiptoeing B X

tired E X X X X
topmodel B X

weak PS X
young BF:A X
zombie B X X
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Fig. 2: Classification of style when seen as individual-related features.

TABLE II: Occurrences of styles as individual-related features per category.

(a) Behavior

Style Nb. occur. Style Nb. occur.
catwalk 3 limp 1
childlike 3 march 1
crab walking 1 mummy 1
crouch 1 sideways 1
decided 1 sneak 2
flap 1 struggling 1
goose-step 1 strutting 2
heavy 1 tiptoeing 1
in a hurry 1 topmodel 1
inverse 1 zombie 1
lame walking 1

(b) Biological Feature: Age

Style Nb. occur.
old 6
young 1

(c) Biological Feature: Gender

Style Nb. occur.
feminine 1
masculine 1

(d) Emotion

Style Nb. occur.
afraid 1
angry 7
depressed 5
excited 1
fearful 1
frustrated 1
happy 7
relaxed 1
sad 7
tired 4

(e) Personal feature

Style Nb. occur.
confident 1
cool 1
manly 1
proud 6
sexy 3
strong 1

(f) Physical state

Style Nb. occur.
drunk 2
energetic 2
injured 3
weak 1

(g) No category

Style Nb. occur.
neutral 11

emotion was a point in the space defined by valence and
arousal dimensions which specified if an emotion was positive
or negative and its intensity (see Fig. 3). The circumplex
model of Plutchik and Conte [33] had a similar configuration.
The Pleasant-Arousal-Dominant (PAD) model [34], presented
in Fig. 4, proposed a representation measuring how pleasant
an emotion was (pleasure dimension), its intensity (arousal
dimension) and its dominant nature (dominant dimension).
Surveys from Zacharatos et al. [35] and Karg et al. [36] gave
more details about the different models of emotions.

Emotions are a subset of style. While it seems natural to
include all the emotions, most state-of-the-art approaches on
style focused only on some of the six basic emotions identified
by Ekman [31], as shown in Table I. This is a restriction
that induces emotions to be quite simplistic within style. More
complex models [32]–[34] prove this wrong.

Emotions are subjective: people can have divergent inter-
pretation of an emotion. It can for example depend on culture
(see Section VII-A3) or on the fact that each human being
is unique. A lot more could be said on this subject, such as
the difference between emotions, feelings and mood. However,

Fig. 3: The valence-arousal space. Image reproduced from
[35].
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Fig. 4: The Pleasant-Arousal-Dominant (PAD) model. Image
reproduced from [36].

emotions is a complex topic that can not be fully addressed
in this survey.

Liu et al. [5] referred to style as a range of phenomena,
such as variations due to emotional state, individual body
shape, and functional activity such as walking or running. This
definition gathers different trends of the definition of style. As
a conclusion, style can be interpreted as representing spatio-
temporal variations of a motion that add value to the motion,
depending on individuals.

III. DATA USED IN HUMAN BODY MOTION STYLE
APPROACHES

As almost all of the approaches in literature chose one trend
of the style definition presented in Section II, data that were
used to study style were of various types. Table III presents an
overview of the datasets used in motion style approaches. The
data came from two main application fields: action and style.
Moreover, most of those data have been collected via motion
capture (mocap) systems. Mocap is a popular technique to
represent human motion from tracked markers corresponding
to different regions or joints of the human body. Further details
on this technique are provided in Section IV-A.

This section only focuses on the datasets used in the
reviewed papers and mentioned in Table III. Thus, this section
first presents action specific datasets that were used in motion
style methods. Then we introduce specific datasets for style.
Finally, we present how they were used for motion style
approaches.

A. Action datasets used in motion style approaches

Action datasets are widely used to recognize actions and
gestures. We refer the reader to surveys such as the one from
Presti [50] to appreciate approaches on action recognition and
the data that were used to perform it. Some of them were
used in motion style approaches, for the purpose of motion

style recognition, motion style generation (editing/synthesis or
transfer) and person identification through their style. Those
datasets that were specifically sometimes used in style analysis
are introduced.

1) Berkeley Multimodal Human Action Database (MHAD)
[37]: The dataset has been made of 11 actions (jumping in
place, jumping jacks, bending – hands up all the way down,
punching – boxing, waving – two hands, waving – one hand:
right, clapping hands, throwing a ball, sit down then stand
up, sit down, stand up). A total of 660 action sequences were
recorded by 12 subjects (seven males + five females) who
performed five repetitions of each action. The optical motion
capture system Impulse captured the 3D position of 43 active
LED markers on a custom built tight fitting suit. Skeletons of
21 joints have been extracted using MotionBuilder software.
The capturing frequency was 480 Hz.

2) Carnegie Mellon University (CMU) Graphics Lab Mo-
tion Capture Library [38]: The dataset has been recorded by
12 Vicon infrared MX-40 cameras at 120 Hz. About 144 actors
performed motions divided into four categories including the
locomotion one with running, walking, jumping and varied
(run/leap) actions.

3) HDM05 [39]: The dataset has been made of 2,337
motion sequences divided into 130 gesture groups includ-
ing regular, happy and sad walks performed by five non-
professional actors. Motion sequences were recorded by an
optical marker-based technology (made of a suit with 40-50
retro-reflective markers and 6 to 12 calibrated high resolution
cameras). The frame rate was up to 240 Hz. Data were
represented by 24 joints.

4) Microsoft Research (MSR) Action 3D Dataset [40]: It
was designed to interact with game consoles. The dataset has
been made of 20 action types: high arm wave, horizontal arm
wave, hammer, hand catch, forward punch, high throw, draw
x, draw tick, draw circle, hand clap, two hand wave, side-
boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, pickup & throw. A depth camera
(infra-red light) recorded depth maps of resolution 640x240 at
15 frames per second. In total, 567 sequences were captured
thanks to 10 subjects who performed two or three times each
action. Data were later processed to obtain skeletal data of 20
joints.

5) Microsoft Research Cambridge 12 (MSRC-12) [42]: The
dataset has been made of 16 actions split into two categories:
iconic gestures (crouch or hide, shoot with a pistol, throw an
object such as a grenade, change weapon, kick to attack an
enemy, put on night vision goggles to change the game mode)
and metaphorical gestures (start music/raise volume, navigate
to next menu, wind up the music, take a bow to end the session,
protest the music, lay down the tempo of a song). A Microsoft
Kinect camera recorded the performance of 30 participants
(60% males) at 30 Hz. It resulted in 594 sequences of skeletal
data of 20 joints.

6) UCF Kinect [43]: The dataset has been made of 16
actions (balance, climb ladder, climb up, duck, hop, kick, leap,
punch, run, step back, step front, step left, step right, twist
left, twist right, vault). A Microsoft Kinect sensor was used to
capture the 1280 action samples. The OpenNI platform was
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TABLE III: Datasets used in motion style approaches and their frequency of use.

Dataset Application

Type Name Recognition Motion generation
Classification Person identification Synthesis Editing Transfer

Action

Berkeley MHAD [37] [15]
CMU [38] [18], [23] [15], [22]

HDM05 [39] [14] [9], [15]
MSR Action 3D [40] [41]

MSRC-12 [42] [41]
UCF Kinect [43] [41]

UTKinect [44] [41]

Style

eNTERFACES’08 3D [45] [3]
Body Login Dataset [46] [41]

Body Movement Library [47] [4], [24]
Mockey [48] [3]
UCLIC [49] [4]

Own data [14] [12] [25], [27] [1], [7], [17]

used to estimate skeletons of 15 joints. There were 16 subjects
(13 males + 3 females).

7) UTKinect-Action3D Dataset [44]: The dataset has been
made of 10 actions (walk, sit down, stand up, pick up, carry,
throw, push, pull, wave and clap hands). To collect the dataset,
10 persons (nine males + one female) performed each action
twice. There were 200 action samples. RGB images (resolution
480x640) and depth maps (resolution 320x240) were captured
with a Kinect at 30 frames per second (fps). The final frame
rate was about 15 fps though. Skeletal data (20 joints) were
also recorded.

B. Motion style specific datasets
Style specific datasets used in motion style approaches

(recognition, generation – editing/synthesis/transfer, person
identification) are presented.

1) Body Movement Library [47]: The dataset collected
4,080 movement records split into 1356 motions. Three cate-
gories of neutral and emotional (angry, happy, sad, afraid) ac-
tions were recorded: walking, arm movements (lifting, knock-
ing and throwing) and arm movements separated by walking.
Angry, happy and sad styles were chosen because of their
easiness of recognition and mapping into actions as well as
their duration. Indeed, they contrast with reactive emotions
such as surprise and disgust for example that are associated
with very specific movements. An attempt was made for the
afraid style though, with six actors. The collection of data
was conducted with the eight cameras of the Falcon Analog
optical motion capture system and a suit to which 35 retro-
reflective markers were attached. Non professional actors (15
females + 15 males) were given non-verbal instruction through
the following emotion scripts (reproduced from [47]):

Neutral Imagine yourself standing by your
kitchen table on a Saturday morning. You are well
rested, you just had breakfast and yesterday you and
your flatmates tidied the house so you are free to
do whatever you want. It is a sunny day and you
are thinking about what you are going to do today.
There's a bit of paper on the table and you pick it
up and throw it to the bin.

Angry Today you slept in, so you had to rush to
get ready. Then on the way to work, a policeman
flags you down and gives you a speeding ticket,
although you were just keeping up with traffic. You
finally get to work where a note is waiting for you
denying your request for having Friday off; now you
are furious. Standing by your desk, you reach for a
bit of rubbish and slam it into the bin as your temper
flares.

Happy It's Friday evening and you feel great,
because earlier you handed in your final year project.
Your supervisor was very pleased, he complimented
you on it and hinted that you're going to get excellent
marks for it. You just talked to your best friend who
suggested you go out to celebrate and now you are
just waiting for her to arrive. As your excitement
mounts you joyously pick up a bit of rubbish on the
table in front of you and throw it at the bin.

Sad You are in your flat after just trying to finish
dinner. You didn't feel like eating, your stomach is
heavy and seems to be bearing all of your body's
inner activity and weight. Half an hour ago, you
received a telephone call that your best friend had
died in a car accident. Deeply grieving, you don't
know what to do. Needing to do something you
reach for a bit of rubbish and throw it in the bin.

2) Body Login Dataset [46]: This dataset was specifically
meant to be used for user authentication. Four Kinect cameras
recorded depth image (resolution 640x480) and skeleton joint
coordinates (20 joints) from 40 users (27 males + 13 females)
at 30 fps. They were asked to perform 20 samples for each of
two gesture types: an “S gesture” and a “user-defined gesture”
ie. no instruction was given, each user could choose her/his
own gesture. Table IV lists all the user-defined gestures.

3) eNTERFACE’08 3D [45]: This dataset was recorded in
order to be able to develop 3D statistical models of human
gait styles. It was made of 17 walk sequences (rectilign at
different speeds and direction changes of various amplitudes)
from each of the 40 subjects. The IGS 190 motion capture suit
was used to record the motions at 60 fps; it had 19 inertial
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TABLE IV: User-defined gestures per subject in Body Login
Dataset [46]. Table reproduced from [51].

Subject ID Description Subject ID Description
1 Double armed backstrokes 21 Shoot basketball
2 Y of Y-M-C-A 22 Parallel arms forward
3 Backwards jump-rope 23 Muscular pose
4 Backhand Tennis Swing 24 Wipe away motion
5 X-pose 25 Kamehameha
6 Upper body stretch 26 Upwards pose
7 Upper meditation 27 Salute
8 Halfway spin 28 Rockstar
9 Left arm chopping 29 Double clap
10 Long swimming frontcrawl 30 Stretches
11 Crouch forward swim 31 Taichi pose
12 Left-right body tilt 32 Taichi stretches
13 Arm-to-head stretch 33 Double wave
14 Balance-something 34 Stretch leg up
15 Chopping action 35 Jump pose
16 Dribble 36 Golf swing
17 Assorted poses 37 Shake imaginary maracas
18 Upper stretches 38 Y of Y-M-C-A (duplicate)
19 Upper flutter 39 Slow wave
20 Stretch and bend 40 Double hand stretch left right

sensors (with accelerometer, gyroscope and magnetometer).
A skeleton of 20 body segments and 66 DOFs (Degrees Of
Freedom) was built.

4) Mockey [48]: This dataset aimed at analyzing the
expressiveness of walking sequences. A professional actor
performed back and forth walks in 11 styles: proud, decided,
sad, cat-walk, drunk, cool, afraid, tiptoeing, heavy, in a hurry
and manly. The actor was given instructions on how to act
the different styles resulting in exaggerated variations of a
plain walk. These styles were chosen arbitrarily as they were
recognized to have a noticeable influence on walk (see Fig. 5).
A motion capture suit, IGS-190, containing 18 inertial sensors
(accelerometers, gyroscopes and magnetometers) collected
247 walk cycles at 30 fps. Data were represented by 18 3D
joint angles. Joint positions were discarded as they depend on
the walk (displacement + orientation).

Fig. 5: Four example postures taken from the Mockey dataset.
Image reproduced from [48].

5) UCLIC Affective Body Posture and Motion Database
[49]: The dataset has been made of 183 body motions
collected from 13 cross-cultural non professional actors (11
actors were Japanese, one was from Sri-Lanka and one was
from the United States). The emotions portrayed were anger,
fear, happiness and sadness (see Fig. 6). These emotions were
chosen as they were part of the basic emotions identified
by Ekman [31]. Data were recorded using a Vicon motion
capture system of eight cameras. Actors wore a suit with 32
markers. Data were, after being captured, built into avatars.

This aimed at eliminating bias, by creating non-gender nor
cultural-specific avatars, and at not affecting people by facial
expressions.

C. How the data are used in motion style approaches

Datasets used in motion style approaches, as well as the
methods using them, are presented in Table III. Three cate-
gories of applications are identified: motion style recognition,
motion style generation (editing, synthesis and transfer) and
person identification through their style. Each of these cate-
gories are explored.

1) Motion style recognition: Both action and style datasets
were used. Etemad and Arya [14] used a total of 48 segmented
sequences from HDM05 [39] of regular and stylistic walks
(happy and sad) in addition to their own data. They indeed
used a Vicon MX40 to record multiple walks from five actors
in four styles (young, old, energetic and tired).

Two style datasets were also used. Bernhardt and Robinson
[24] used Body Movement Library [47] and Crenn et al. used
both Body Movement Library [47] and UCLIC [49].

2) Motion style generation: The use of action dataset was
predominant. Indeed, in synthesis approaches, Wang et al.
[23] used six sequences from CMU [38] to illustrate walking,
striding and running sequences. Chien and Liu [18] also used
walking, jumping and running sequences from this dataset.
Only Tilmanne et al. [3] used style datasets, that they actually
created: eNTERFACES’08 3D [45] and Mockey [48]. In editing
approaches, Ma et al. [22] used sideways, stepping, walking
and running sequences from CMU [38]. Etemad and Arya
[9] segmented and extracted 16 2-step neutral walk sequences
from HDM05 [39]. Holden et al. [15] used sequences of
motions including walk, run, punching and kicking from CMU
[38], HDM05 [39] and Berkeley MHAD [37].

The lack of stylistic data thus led several approaches to
record their own data. To perform motion style synthesis,
Urtasun et al. [12] used a Vicon optical motion capture system
to capture walking motions at different speeds from nine
people, running motions at different speeds from five persons
and jumping at different distances sequences from four people.
Editing approaches also created their own data. Wang et al.
[27] recorded two walk sequences (regular walk from an actor
and cat walk from an actress) with a motion capture device at
33,3 fps. Min et al. [25] recorded walk sequences in 11 styles
(neutral, angry, happy, sad, tired, proud, sneaky, goose-step,
cat walking, crab walking, lame waking) from 20 persons.
Holden et al. [15] added internal captures to the data they got
from existing datasets.

The lack of stylistic data was even more present in style
transfer approaches, as no specific and known dataset was used
and researchers did have to create their own data. Amaya et al.
[1] used an Optotrak system to record two actions (“pick up
the glass of water, drink from it, and put it back onto the table”
and “knock at the door three times”) in 10 emotions (angry,
sad, happy, fearful, tired, strong, weak, excited, relaxed as well
as neutral). Torresani et al. [17] used 12 dance sequences
recorded from professional dancers who performed motions
in their own style. Xia et al. [7] decided to create a large



1949-3045 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2019.2906167, IEEE
Transactions on Affective Computing

IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. X, NO. X 8

Fig. 6: Examples of the 3D affectively expressive avatars for each emotion category in the UCLIC Affective Body Posture and
Motion Database. (a) Angry (b) Fear (c) Happy (d) Sad. Image reproduced from [49].

and heterogeneous human stylistic motion dataset. They thus
recorded human actions (walking, running, jumping, kicking,
punching as well as transitions between these actions) in eight
styles (neutral, proud, angry, depressed, strutting, childlike,
old and sexy). A total of 572 motions were recorded by the
Vicon system with 18 cameras at 120 Hz. Their data were in
fact reused in several approaches: Crenn et al. [4] used them
for style recognition, Holden et al. [15] used them for editing,
Yumer and Mitra [8] as well as Holden et al. [16] used them
for style transfer.

3) Person identification through their style:
Kviatkovsky et al. [41] used four action datasets and
one style dataset to perform person authentication. Indeed,
they used UTKinect [44], UCF Kinect [43], MSRC-12 [42]
and MSRAction 3D [40] action dataset in addition to the style
dataset Body Login Dataset [46].

As a summary, action datasets were mostly used for motion
style editing or synthesis, when style was considered as being
variations in motions, or when neutral motions were required.
The style datasets used for recognition focused mainly on
emotions. Two style datasets have been recorded for edit-
ing/synthesis; however, as far as we know, only creators of
the datasets have used them in motion style analysis. The
datasets described in Sections III-A and III-B are publicly
available online. Researchers faced a lack of style specific
data, especially in style transfer; some of them created their
own data. Among them, Xia et al. [7] recorded novel data for
style transfer; their data have been used for other applications.

IV. MOTION CAPTURE DATA AND MACHINE LEARNING

This section presents key notions related to the represen-
tation of motion capture data and exposes key concepts of
machine learning, as it is one the medium used to analyze
motion capture data. We focus on dimensionality reduction
and the modeling of time-series, as these two notions were
used in research methods on style in Sections V and VI and
they are part of the discussion led in Section VII.

A. Motion data representation

Motion capture (mocap) is a technique that acquires se-
quences of 3-dimensional joint positions at high frame rate
and enables a large range of applications, from movie special
effects to human machine interaction systems. There are
different motion capture systems that allow to produce 3D
data in real-time: magnetic, mechanic, and optical. Magnetic
systems use electromagnetic sensors connected to a computer,
which restricts movement due to cabling. Mechanical motion
capture systems employ sensors attached to the actor’s body
that register the motion of articulation. Optical motion capture
systems, which are the most used, employ a set of multiple
synchronized cameras to capture markers placed in body parts
in order to reconstruct the human body posture in movement.

These systems produce data with three degrees of freedom
(DOF) for each marker, and rotational information must be
inferred from their relative orientation. Human motion is
therefore represented as a sequence of human poses, described
through body joint positions, or through 3D-joint rotations
which are then integrated via forward kinematics. The full-
body pose is thus represented as the root position and orien-
tation as well as joint relative orientations.

There are many possible ways to represent a 3D joint
angle using a set of numbers, such as Euler angles [52],
quaternions [53] and exponential maps [54]. Euler angles
are often employed to represent 3D joint angles as rotations
around x, y and z axes: three Euler angles are used for three
DOFs. Quaternions are complex numbers with a real part
and three imaginary parts that represent a rotation in three
DOFs. Exponential maps are in general a re-parameterization
in R3 of a quaternion. For these three types, the representation
format for motion data starts with the Cartesian root joint
position, followed by the first frame’s corresponding value
(Euler, quaternion or exponential map) of angles of each joint,
then the second frame’s, and so on. The storage format for such
data is different according to the capture system. It usually
consists of a hierarchical skeletal structure and trajectories of
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degrees of freedom of joints.
During the last decade, markerless motion capture ap-

proaches have developed and gained an increasing interest
thanks to efforts made by the computer vision community
[55]. These markerless systems do not require subjects to
carry special equipment or markers for tracking, so multiple
streams of optical input are often analyzed to identify human
forms, such as silhouettes or skeletons, to break them down
into component parts for tracking.

Imaging technologies have recently shown a rapid advance-
ment with the introduction of RGB-D sensors with real-
time capabilities, such as the Microsoft Kinect, which have
provided an alternative for developing markerless motion
capture systems at low cost. Note that a camera such as the
Kinect, with compromised accuracy and capture rate, exhibits
instability when tracking bodies in fast movements, rotating,
or whose parts are occluded.

B. Machine learning

The goal of machine learning generally is to understand the
structure of data and fit those data into effective mathematical
models, which are often statistical, and thus useful in cases that
are difficult to model exactly. An important issue in learning
from motion data is how to represent their content. In order to
achieve a good representation, 3D configurations derived from
the motion capture systems, like the relative positions of joints,
their temporal difference and the normalized trajectory of the
motion, can be used. Motion capture data are time-series data
which often contain much noise and have high dimensionality
with unique properties that make them challenging to analyze
and model. Hence, there is an interest of reducing the dimen-
sionality of time series and extracting relevant information.

1) Dimensionality reduction: Dimensionality reduction
techniques can be widely classified as linear and nonlinear
techniques. Principal component analysis (PCA) is a linear
technique in common use, which aims at finding orthogonal
principal directions of a data set by solving an eigenvalue
problem, allowing to retain a small number of principal com-
ponents on a linear, low-dimensional subspace. Independent
Component Analysis (ICA) also produces a linear mapping. It
assumes that each sample of data is a mixture of components
having independent non-Gaussian distributions and it aims
at finding these independent components. ICA can capture
higher-order statistics in the data matrix instead of only finding
correlations between its components. Instead of working on
the original data, Kernel PCA, which is an extension to
PCA, works on the linear feature space transformed from a
nonlinear feature space using a kernel function [56] to perform
a nonlinear dimension reduction. Unlike linear techniques,
nonlinear ones do not estimate the parameters of mapping but
margin them. Hence, Gaussian Process Latent Variable Mod-
els (GPLVM) maximize the posterior probability to reduce
dimensionality given prior probability.

2) Time-series modeling: Recognition systems based on
traditional learning algorithms can be designed in two ways.
First, a whole motion is represented by a single feature matrix
and classified by a classifier as a whole [57], [58]. Second, the

motion is decomposed by a sliding window or key features to
build a codebook thanks to the learning phase from the whole
dataset, and then each motion can be represented as a bag
or histogram of words [59]. For an effective representation of
motion data, both the spatial and temporal dynamics of human
motion must be modeled. The Hidden Markov Model (HMM)
is a popular technique for modeling sequential data. The HMM
represents the human motion as a succession of states. At each
state, local statistics and state transition probabilities are de-
termined by the training phase on the dataset. After the recent
progress in deep learning techniques, many applications of
computer graphic field, including motion data recognition and
prediction, have shown a change of paradigm. In particular,
Recurrent Neural Networks (RNNs) are capable of preserving
states as they pass through a step, hence they are suitable
for sequence-based problems. The Long Short Term Memory
networks (LSTMs) are a special kind of RNNs, with the main
difference lying in the inclusion of memory states and gates,
that can learn long-term dependencies in time series problems.
They notably solve the problem of vanishing gradient [60],
which arises in very deep neural networks, including RNNs.

V. MOTION STYLE RECOGNITION

While some papers studied categories of style such as emo-
tion or gender recognition [29], or even person identification
[61], this section focuses on style in body motion. We distin-
guish two aspects of recognition: motion style classification
and person identification through their style.

A. Motion style classification

The recognition of style in body motion remains a rarely
studied subject. Some methods identified features and classi-
fied styles with machine learning techniques.

Bernhardt and Robinson [24] analyzed non-stylised motions
in order to detect the implicitly communicated affect, espe-
cially in knocking motions. They segmented motion sequences
in order to obtain basic motion primitives and periods with
absence of motion. To do so, they computed the motion
energy thanks to an objective function and set thresholds (see
Fig. 7a). Then, extracted segments of motions were gathered
into semantically meaningful clusters (see Fig. 7b). Angles
from a 15-joint skeleton were considered; segments were time-
normalized and their mean was subtracted to get the relative
motion. The normalized segments were finally clustered with
the k-means method to represent the motion primitives (see
Fig. 7c). Features were afterwards computed. For the example
of knocking motions, as the right hand and elbow exhibit
the movement information, they computed eight statistical
measures: maximum distance of hand from body, average hand
speed, average hand acceleration, average hand jerk and simi-
lar features for the elbow. Individual movement bias, estimated
by the average of all the knocking motions in the dataset,
was removed from motions leading to non-stylised motion
sequences. They used a Support Vector Machine (SVM) with a
polynomial kernel for classification purposes. They conducted
their experiments on the 1200 knocking sequences in four
styles (neutral, happy, sad, angry) from the Body Movement
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Library dataset [47]. They chose the leave one subject out
cross validation protocol and obtained recognition rates of
50% and 81% respectively when the features were biased (ie.
the individual bias was not removed) and unbiased.

Etemad and Arya [14] decomposed motion trajectories into
basic functions through a linear least square method and
modeled secondary features of motions, that they considered
as style, with three Radial Basis Functions (RBF). Then they
aligned the sequences with a Correlation optimized Time
Warping (CoTW) method [62]. Finally, they conducted a
dimension reduction of the data with a Principal Component
Analysis (PCA) that showed that only six principal compo-
nents were enough to represent 94% of the sequences. For
classification purposes, they used RBF neural networks. The
training was led using an orthogonal least square technique.
They proposed an ensemble of networks to perform classifica-
tion. Indeed, for each style, their system contained one network
per DOF and a subsystem, based on majority vote, classified
the entire motion sequence. The chosen style was determined
as having the minimum distance to all classifiers. They used
48 neutral, happy and sad walk sequences from the HDM05
dataset [39] as well as 75 neutral, young, old, tired and
energetic walking sequences that they recorded themselves.
They used a 15 fold cross validation protocol for their data
and a 16 fold cross validation protocol for data coming from
the HDM05 dataset [39]. They reached a recognition rate of
93, 5% in average.

Crenn et al. [4] computed a total of 136 features based on vi-
sual cues. Indeed, they first computed 68 low-level descriptors
based on the geometry, the motion and the frequency of eight
specific body part joints (head, pelvis, elbows, shoulders and
hands). Then they computed meta features on those low-level
features (ie. mean and standard deviations for each feature,
abstracting the time). All the features were scaled within the
range [−1,+1]. They used a SVM with a RBF kernel. They
tested their method on three datasets: UCLIC [49], the Body
Movement Library dataset [47] and the data from Xia et al. [7]
for which they respectively obtained recognition rates of 78%,
57% and 93%. They used a 10 fold cross validation protocol.

B. Person identification through their style

Style can be recognized but it can also, in itself, help
recognize persons. It emphasizes that style is really related
to persons as it is mentioned in Section II-A2. Thus, Kvi-
atkovsky et al. [41] were interested in recognizing a person
based on their style.

They used a joint position representation leading to a 57-
dimensional vector. Data were temporally normalized using a
combination of Dynamic Time Warping (DTW) and Fourier
temporal pyramid, and spatially normalized with respect to the
root joint. A dimension reduction was made with PCA. To en-
hance the discrimination of persons, a linear discriminant anal-
ysis was then performed. They used a probabilistic framework
based on generative models (see Fig. 8). The classification of
the user’s identity was made using a Maximum A Posteriori
(MAP) classifier. The relationship between style and content
was represented by an application of a 1-nearest neighbor

kernel density estimation. They proved that performing action
recognition with a SVM ahead of the user identification was
beneficial, as it was shown by the Mahalanobis distance. They
conducted their experiments and obtained good results on
four action recognition datasets and one person identification
dataset: MSR Action 3D [40], MSRC-12 [42], UCF Kinect
[43], UTKinect-Action3D [44] and Body Login Dataset [46].

They were the first ones to work on the identification of a
person from general actions, ie. not only on locomotion.

Only few methods proposed approaches to recognize style
in motions. Features to describe style in motions were per
consequent rare and not all the styles mentioned in Section II
were actually studied in motion style recognition.

VI. MOTION STYLE GENERATION

In animation and video games, large datasets of actions and
styles are required. Capturing all the possible combinations is
a burden for actors, tedious and time-consuming. One way of
solving this issue is to generate motions, avoiding the capture
of all combinations of actions and styles.

We distinguish three types of motion style generation:
motion style synthesis, motion style editing and motion style
transfer. We define motion style editing as a subpart of motion
style synthesis that implies the user intervention. Motion style
transfer was defined by Hsu et al. [2] as being “the process of
transforming an input motion into a new style while preserving
its original content”.

This section describes these motion style generation meth-
ods, that are discussed in Section VII-D.

A. Motion style synthesis

Some of the motion style synthesis methods in the literature
made use of style-content separation process to be able to
perform the synthesis. Others focused on motion adaptation
to environmental constraints (see Fig. 9).

Grochow et al. [63] used Inverse Kinematics (IK), represented
as a maximization of an objective function describing how
desirable a pose is, to interpolate motions between styles
and perform motion style synthesis. Poses were represented
over a probability distribution function which described the
likelihood function over poses. This was done using a Scaled
Gaussian Process Latent Variable Model (SGPLVM). Each
pose was represented by a 42 dimensional vector (joint angles
in addition to position and orientation of the root of the
kinematic chain where the root orientation was represented
as quaternions and joint angles as exponential maps). The
SGPLVM learning required the definition of a kernel function
that measured the similarity between two points in the input
space and the algorithm selected a subset of original poses to
keep. Pose synthesis was led through the optimization of the
objective function derived from SGPLVM.

Urtasun et al. [12] segmented their data and represented
them as vectors of 78 angular DOFs. They proceeded to a
PCA decomposition of motions. When a new motion came,
it was projected into the PCA space and they computed the
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(a) Motion energy.
(b) Semantic meaningful segments: Raise
arm, Knock, Retract, Lower arm.

(c) Motion primitives.

Fig. 7: Basic motion primitives extraction example for a knocking motion. Reproduced from Bernhardt and Robinson [24].

Fig. 8: Male (a) and Female (b) users performing a hand wave
gesture. (c) Generative models. Image reproduced from [41].

Mahalanobis distance to the motions in their dataset. New
motions could be created by extrapolation, as being a weighted
average of motions with target characteristics. Given one
single example, they could modify the speed, length or body
size while preserving the style of an actor.

Tilmanne et al. [3] used a variation of Hidden Markov
Model (HMM) called Hidden Semi-Markov Model (HSMM)
that took state duration modeling into account. Neutral walk
sequences were used to train an average model which was
then used for automatic adaptation to a particular style.
Style adaptation training was performed with constrained
structural Maximum A Posteriori (MAP) linear regression
transformation followed by a MAP adaptation that further
transformed the models. Synthesis was performed via an
algorithm which directly generated the optimal parameter
sequence. They represented their data by 54 values
corresponding to 3D angles (exponential maps) of 18
joints.

Early work from Tenenbaum and Freeman [64] separated
style from content in the context of speech recognition and
it inspired researchers to apply it to human body motions
style analysis. Thus, Brand and Hertzmann [13] separated
structure and style out of dance motions via a state-space
representation given by a HMM to which they added a style
variable. That variable could be used to vary the HMM
parameters, leading to a stylistic HMM called style machine.

Fig. 9: Examples of synthesized motions in various walking
and running styles. From top to bottom: 180-degree walking
turn, limp walk, descending an incline, walking with a suit-
case, running with springy shoes, ascending an incline. Image
reproduced from [5].

The separation between structure and style was made through
entropy minimization. They represented their motion capture
data with an arrangement of 20 markers and only considered
joint angles. A PCA showed that only three stylistic DOFs
explained 93% of the variations between 10 models: global
pose, a DOF controlling balance and gender and a DOF
that could be characterized as the amount of swagger and
energy in the motion. Then, they made interpolations and
extrapolations within the space of HMM to make new styles.

It also inspired Wang et al. [23] to apply style-content
separation to body motions with a probabilistic latent
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variable model. Indeed, they modeled each pose from motion
sequences as a combination of 3D vectors standing for three
independent factors: the identity of the subject performing
the motion denoted s, the gait of locomotion denoted g and
the current state of the motion sequence denoted x. The
locomotion included walk, run and stride motions. They
considered s and g as being the style of the motion and x
as being the content. Each pose was represented by a 89
dimensional feature vector (43 angular DOFs, velocities,
transitional velocity). Joints were represented as Euler
angles except for the joints with three DOFs and the global
orientation which were represented as exponential maps. They
applied Gaussian Process Latent Variable Model (GPLVM)
with a RBF kernel to properly separate style from content
and then generate new stylistic motions.

A few approaches focused on motion adaptation and
studied how to conserve style and generate new stylistic
motions in new environments or when constrained.

Liu et al. [5] represented their data with 29 joint DOFs and 6
root DOFs (rotational joints represented by exponential maps).
They considered style parameters based on biomechanical
studies and hypotheses on human locomotion. Thus, a person’s
style was described by the simplified set of musculoskeletal
parameters and muscle preferences. These parameters were
automatically estimated by nonlinear inverse optimization. A
parameter of 147 dimensions represented the style of an actor.
Motion synthesis was conducted by minimizing the muscles
usage; constraints on footsteps were imposed. Then, motions
of the same style but with actors performing different tasks,
with news constraints, were generated (see Fig. 9).

Chien and Liu [18] worked on stylistically similar motion
pairs. Each motion sequence was segmented into a set of
limb motion segments (based on the interaction of its end
effector with the environment), that produced whole body
motion segments when fused. Motion data were represented by
six rigid DOFs for the root joint and 60 principal components
for each limb that touched the environment. Features were
extracted providing a 30 dimensional feature vector for the
limb segments and a 108 dimensional feature vector for whole
body segments. The stylistic similarity of a new motion to an
example motion was represented by constraints and objective
functions. A similarity region was approximated by one class
SVM and Kernel PCA.

B. Motion style editing

We define motion style editing as a subpart of motion style
synthesis that implies the user intervention in the synthe-
sis process, usually by manipulating a style parameter (see
Fig. 10).

Shapiro et al. [65] combined, frame by frame, two mo-
tions together to automatically decompose them into style
components that represented the style and expressiveness of
a motion. Usually three to five style components were enough
to represent 95% of the differences in motion data. The
decomposition was performed via the unsupervised learning
technique Independent Component Analysis (ICA). The user

Fig. 10: GUI developed and used to generate the features.
Image reproduced from [9].

then selected the components she/he found the most inter-
esting. Style components that highlighted the differences in
posture, cadence or any other nuance that appeared in one
motion but not the other should be preferred. The selected
style components were then merged before being transferred in
order to create a new motion. The amount of style components
could be interpolated. Motion style generation was done with
an alignment step DTW on one of the DOF of the character
(skeleton) that the user selected according to her/his desired
motion. They led their experiments on two kinds of skeleton
hierarchies: either 31 joints with 62 DOFs or 26 joints with
84 DOFs represented by Euclidean coordinates.

Wang et al. [27] extended the HMM and created a
HMM/Mix-SDTG model, designed to learn a full-body motion
under the control of a style variable. They trained a HMM with
four hidden states on two walk sequences. Each output density
contained a mixture of components Stylized Decomposable
Triangular Graphs (SDTG). Each dimension of the style vari-
able had a meaning for the user who could give it an arbitrary
value to designate the desired style of the new motion. The
motion generation was made in two steps. First, a path con-
necting two specified hidden states of the HMM was selected
to maximize the transition probabilities along the path. Then
the mean vector of the output densities along the path were
calculated with a given style value and an interpolation was
made between the samples. They transformed the positions
into 3D rotations parameterized as exponential maps leading
to a 120 dimension pose space formed by the global position,
global velocity, joint rotations and angular velocities of joints.

Ikemoto et al. [6] developed an interactive learning method
and controllable system that propagated the edits made by
an animator. An artist selected an existing animation clip and
edited it. The system automatically generalized and propagated
those edits to a new motion clip. The artists could make
additional edits, refining the system by providing feedbacks.
The process was reiterated until the result was satisfying
enough. The system thus incrementally built a model of edits.
Their method merged estimations made by a Gaussian process
regression. A set of features represented the dynamics and
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kinematics of both source and target skeletons as they used
four types of features to represent the source and target
kinematics and acceleration. The method could generalize to
new characters (retargeting), even with different morphologies.

Ma et al. [22] had the user specify control parameters (for
example, stride length) and a hierarchical model was built. The
skeletons were separated into four joint groups (legs, left arm,
right arm, rest upper body). For each joint group, a latent
variation parameter was automatically selected. A Bayesian
network was constructed, automatically learnt from example
motions, in order to describe the relationship between user-
defined style parameters and the latent variation parameters.
Motion synthesis was conducted via a Gaussian process regres-
sion (Kriging model) that amounted to a style and variation
interpolation to generate partial motions of all group joints
that were assembled to synthesize whole body motions. Thus,
new motions were generated by the user who interactively
controlled the style parameters. They preprocessed their data.
Indeed, their example motions were normalized: each pose
contained the global 3D position and orientation of the root
node and the rotations of all the other joint nodes relative to
their parent joint nodes. Note that all rotations were repre-
sented by quaternions. They also segmented the motions into
short clips, by an automatic key frame extraction according to
two body parts: lower body (legs) and upper body (rest of the
body). They also established a correspondence with the key
frames, both spatially, performing rotations, and temporally,
with Iterative Time Warping (ITW).

Min et al. [25] modeled identity and style. They applied
dimension reduction (PCA) to their data obtaining a 77 di-
mensional vector which could represent 99% of the geometric
variations in motions. They established a temporal correspon-
dence with warping functions. They annotated their data with
environmental constraints and important key events. They
applied multilinear analysis techniques to motions and con-
structed a generative model that interpreted style and identity
variations thus providing parameters. They could synthesize
new motions, retarget motions from one actor to another and
edit stylistic motions. Editing was made by adjusting the style
and identity parameters.

Etemad and Arya [9] constructed secondary features with
Gaussian RBFs. Through an interface, animators provided
up to three Gaussian RBFs per DOF in cartesian space that
converted a neutral base motion into several stylistic variations
(see Fig. 10). The RBFs edits were collected and summarized
to create a feature set which was applied to neutral walking
sequences. Their data were represented by 54 DOFs. They
temporally aligned sequences using Correlation optimized
Time-Warping (CoTW) [62].

Holden et al. [15] synthesized motions based on high level
parameters (trajectory of the character over the terrain and the
movement of the end effectors). They learnt a motion man-
ifold training a convolutional autoencoder where the motion
manifold was represented by hidden units of the autoencoder.
They mapped high level parameters to motion manifold (ie.
hidden units) with a deep forward neural network stacked
on top of the trained autoencoder, that trained on only some
of the data that were the most relevant to the task. A user

could specify constraints (eg. drawing a curve over the terrain
so that the character could walk along it) that led to the
generation of a new motion. It could then be edited in the
space of hidden units; motion editing was represented as
a minimization problem. Constraints, represented as costs,
were applied in hidden space: positional constraints (to fix
foot sliding artifacts), bone length constraints (to preserve the
rigidity of the body) and trajectory constraints. The costs were
defined by two terms, relative to the content and the style of
the output motion. They used huge amount of data coming
from several sources. They retargeted them all to match to a
unique skeleton represented by 3D positions.

C. Motion style transfer

Motion style transfer, or motion style translation, can be
defined as the process of transforming an input motion into
a new style while preserving its original content [2]. Fig. 11
presents an example.

Amaya et al. [1] decomposed their motion sequences into
basic periods. They computed emotional transforms thanks
to signal processing techniques. Those transforms established
motion differences with respect to speed and spatial ampli-
tude components. The speed component was calculated via
a nonlinear time warping technique. The spatial amplitude
component was calculated via signal amplifying methods.

Hsu et al. [2] used Iterative Time Warping (ITW), inspired
by the motion warping of Witkin and Popovic [66], to compute
a dense correspondence between motions applying spatial
and temporal warps. They then described the relationship
between input and output styles using a linear time invariant
model. Style transfer was then applied with simple linear
transformations.

Torresani et al. [17] based their method on the Laban
Movement Analysis (LMA) and more specifically on the
LMA-Effort dimension and its factors Flow, Weight and
Time. Similar action fragments were matched with DTW.
They referred to fragments when each motion sequence was
manually segmented by a LMA human expert. They focused
on the rotation DOFs, considering joint angles as exponential
maps. A space-time interpolation was learnt with a SVM and
a Gaussian RBF kernel. Style transfer was done by applying
DTW to fragments, computing a distance between the motion
blends and concatenating the best approximated fragments.

Abdul-Massih et al. [28] decided to manually split spa-
tially the skeletons into groups of body parts. They extracted
positional and angular amplitude features. Positional features
were represented by joint-specific relative paths on a source
character S and were used to transfer the motion from S to a
target character T. Angular amplitude features were extracted
between stylistic and neutral source motions. They were used
to scale and offset angles in the motion of T. Those features
created constraints that were taken into account during the
transfer for which a space-time approach was used.

Xia et al. [7] developed an online learning algorithm which
aimed at approximating the spatio-temporal transformations
in frames. This was done by constructing a series of lo-
cal regression models. The current pose was then translated
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Fig. 11: A neutral heterogeneous walk ⇒ jump motion (top-right) stylized as childlike (bottom-right) using a dataset where
only kick and punch actions are available (left). Image reproduced from [8].

through linear transformations. A timing prediction was done
by a k-Nearest Neighbor (KNN) algorithm with a gaussian
interpolation kernel. Unlabeled data were handled with a prob-
abilistic framework mixture of local autoregressive models.
They worked on heterogeneous data and converted joint angles
to Cartesian parameters with an exponential map parameter-
ization. Moreover, they needed to have their data annotated
with footplant contact information, in order for their artifact
correction classifier to work.

Yumer and Mitra [8] proposed a spectral approach. In a
pre-processing step, in order to help differentiate actions, they
computed a skeletal representation. They used the translation
and rotation DOFs of all the joints except the root joint.
Real-time transfer was made by applying a discrete Fourier
transform. A sliding window filter was applied in time domain
to handle heterogeneous data.

Etemad and Arya [14] used RBF Neural Networks
(RBFNNs) to transfer style. They used the features that were
extracted with RBFs and the warped motion data with CoTW
[62] to generate a set of 5 to 10 RBFNNs for each style.

Holden et al. [16] also proposed a neural approach for
motion style transfer. They focused on joint positions in 3D
Euclidean space as well as the turning velocity, the forward
velocity and the sideways velocity. Their pipeline was com-
posed of two networks. A transformation network, performing
the style transformation, was a feed forward convolutional
autoencoder. A loss network aimed at computing the loss
between motion content and style and correcting artifacts
except foot sliding output motions. Errors calculated in hidden
units were back propagated into the feedforward network.

Methods for motion style generation (synthesis, editing
and transfer) have been exposed. Beside their main common
goal, ie. motion style generation to enhance datasets and
save animators and actors time, they have similarities and
divergences that are discussed in Section VII.

VII. DISCUSSION ON APPLICATIONS OF STYLE IN
MOTION

This section highlights interesting facts resulting from previ-
ous sections. We first discuss matters that arise when it comes
to the definition of style in human body motion and what it
implies. We then focus on data that are used in motion style
approaches. An analysis of the methods in motion style recog-
nition precedes another analysis of the approaches in motion
style generation, where common points and divergences of the
methods are discussed.

A. Motion style analysis

The taxonomy of definitions of style in Section II arises
several questions about style in motion and how it is defined
and seen.

1) Number of styles per motion: For the sake of simplicity,
existing approaches usually focused on one style in motion se-
quences. For example, combinations of styles such as feminine-
sad were discarded in the method of Etemad and Arya [9].
It was not always limited to one style per motion sequence
though. Wang et al. [27] generated motions with the combi-
nations normal-masculine and catwalk-feminine. Xia et al. [7]
interpolated a motion between up to three styles.

2) Neutrality in motion style: Neutral style was also named
no style, normal or even regular. Out of 15 paper referenced in
Section II-A3, 11 considered this style. However, rare methods
questioned the neutral aspect of a motion. Even though, while
recording a neutral sequence motion, actors were asked to
display minimum style in their motion, an absolute neutral
motion was impossible to achieve: actors brought their own
personal bias in the recorded motions. Etemad and Arya [9]
proposed to average several neutral walking sequences in order
to minimize if not eliminate that bias.

3) Influence of culture: Etemad and Arya [9] highlighted
that style could be influenced by several factors, including
the culture. Besides, while basic emotions can be considered
as universal in facial expressions, studies showed that when
body emotional expressions were taken into account, culture
involved divergences in their expression and perception, es-
pecially between Americans and Japanese [67], [68]. This
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emphasized the lack of consensus on motion style, even when
focusing on the subset of emotions. Indeed, for instance, an
American and a Japanese have divergent ideas on what a
happy motion is. Furthermore, depending on the culture, some
stereotypes could be reinforced: how would you define a sexy
or manly motion? It could imply a normative view on gender,
which is also suggested by the feminine and masculine styles.
Besides, Wang et al. [27] had an actress perform the catwalk
style, while a male actor performed the neutral walk.

4) Expressiveness of body versus face: Face, speech, body
movements, etc. are means of verbal and non-verbal com-
munication. More importance is given to facial expressions
in affective computing, where it has been studied for several
decades already. It can moreover benefit from knowledge in
intuitive adjacent domains such as biology, as a face contains a
lot of muscles, or theater plays, where actors put on masks or
exaggerate their expressions to convey as explicitly as possible
an emotion. Still, stylistic motions can sometimes convey more
information of affective expressions than the face [69]–[71].
As an example, De Gelder [69] highlighted that in a situation
of fear, while the face indicated that there was something
scary, the body position indicated what was scary and how
the individual intended to deal with it. Ekman and Friesen
[72] even suggested that the body was more reliable than the
face to convey affective expressions. They concluded that it
was easier to deceive people with the face than the body. It
emphasized that studying the style of human body motion is
proved to be as relevant as studying facial expressions.

B. Style data analysis
Section III presents the data used in motion style ap-

proaches. It points out the following elements for which a
particular attention should be paid to.

1) Need for data: Style datasets that have been presented
in Section III-B were designed either for emotion recognition
(Body Movement Library [47] and UCLIC [49]), for motion
style synthesis (eNTERFACE’08 3D [48] and Mockey [48])
or for person identification (Body Login Dataset [46]). As
a result, no publicly available motion style dataset has been
created yet to perform motion style recognition specifically,
and, for motion style generation purposes, only two datasets
were recorded to perform motion style synthesis.

Furthermore, Table III highlights that none of the action
as well as style datasets has been used to perform both
style recognition, person identification included, and motion
style generation (synthesis, editing and transfer). Data from
Xia et al. [7] paved the way though. Recorded to perform
motion style transfer, their data have been used for motion
style recognition and motion style generation. Furthermore,
their data were the only ones to consider different categories
of style as well as various heterogeneous actions.

Besides, deep learning techniques arise. A lot of data need
to be considered, such as in the method of Holden et al. [15].
Moreover, Etemad and Arya [14] pointed out that data used
for neural networks needed to be very consistent. Such data
are, to the best of our knowledge, missing.

The lack of consistent, publicly available and specifically
recorded datasets to perform motion style recognition as well

as motion style generation is consequently obvious. It was
more striking when style was considered as being individual-
related features than when style was considered as being
variations in a motion, where action datasets could suffice.
It induces a difficulty in the comparison of results from the
different methods that tackled motion style analysis.

2) Motion capture technologies: Data sequences were
mostly recorded with motion capture (mocap) systems. Most
of the systems used in the mentioned papers were optical
infrared systems with markers: Impulse, Vicon, and Falcon
Analog. The Microsoft Kinect camera is a markerless optical
solution.

Motion capture technologies are affordable now and enable
users to have readily realistic data [1], [3], [12], [65]. However,
they require specific equipment. They are constrained to a lim-
ited space [1], [3], impairing the naturalness of actors’motions.
IGS-190 is an exception as it relies on inertial sensors on a
suit and has no space constraints. Motion capture technologies
also provide highly dimensional data that are usually reduced
in the process [3].

3) Motion types: Most of the used datasets were composed
of homogeneous motions (ie. one kind of motion per sequence
– eg. walking, running, etc. – was considered). Data from
Xia et al. [7] contained heterogeneous motions (ie. several
kinds of motions were considered per sequence) and it has
led to a new kind of motion study. CMU dataset also included
heterogeneous motions.

Besides, the used datasets were made of actions of different
kinds: locomotion like walking, running, jogging, etc. but also
dynamic gestures like jumping, kicking, punching, etc. or even
specific actions like draw X. The most frequent action was
walking, especially in stylistic data, then running. This makes
sense knowing that locomotion is central to human movement
[5].

4) Acted and naturalistic motions: Recorded data can be
acted or non-acted (ie. naturalistic). Data are “acted” if the
person performing the motion expressed the motion purposely.
When a motion is expressed naturally, data are “non-acted”.
The style specific datasets presented in Section III-B all used
acted data. The “user-defined gesture” of the Body Login
Dataset [46] could be considered as non-acted though (the “S-
gesture” making the dataset acted), as each user could have
their own gesture. It is hard to record naturalistic data. Acted
data have the advantage of being clearly defined; however,
they introduce a bias.

The actors also play a determinant role in the naturalness
of the recorded data. Actors can be professional or not. In
the datasets presented in Section III-B, most of the actors
were non professional. The Mockey dataset [48] recording re-
quested professional actors to perform motions. Motions were
exaggerated there. Even though the difference in motion is
more visible (acted motions), the naturalness of the motions is
impaired. One could expect non professional actors to provide
more naturalistic motions than professional actors. However,
the same observation could be made for the UCLIC dataset
[49]: even though actors were non professional, emotions were
exaggeratedly portrayed (see Fig. 6). This emphasizes that
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recording naturalistic data is not easy, whether motions are
performed by professional or non professional actors.

C. Analysis of motion style recognition

A few approaches tackled the motion style recognition
challenge. It poses two main questions: what styles can be
recognized and which features are extracted?

1) Styles to choose to perform recognition: Researchers
mentioned that sometimes two styles could be very similar.
Indeed, some styles can be mistaken with others, even by
human beings. For example, the difference between an old
walk and an injured walk is not always straightforward.
Etemad and Arya [14] highlighted that the confusion rates for
happy, energetic and young styles were quite high, as well as
for sad, tired and old styles. They decided, for this reason, to
evaluate their methods on opposite styles, by evaluating happy
and sad, separately from young and old as well as energetic
and tired.

Furthermore, when recording their dataset, Ma et al. [22]
emphasized the fact that emotions such as surprise and disgust
could hardly be studied in motions as they were immediate and
usually short reactions to an event and resulted in very specific
movements. As a result, sets of styles should be carefully
chosen when it comes to perform motion style recognition.

2) Features to represent a style: Methods presented in
Section V highlighted that many kind of features have been
studied. Bernhardt and Robinson [24] chose them accordingly
to the very specific motion (knocking) they were studying.
Moreover, they removed what they considered as being an
individual bias, considered by Crenn et al. [4] as being part
of the styles to classify. Crenn et al. [4] computed quite a lot
of different geometry, frequency and motion-based descriptors.
Etemad and Arya [14] let RBFs and PCA estimate the best
descriptors. In another method, Etemad and Arya [9], [21]
mentioned that style, in the field of biology, was composed
of two general types of spatio-temporal features: posture (no
change throughout time) and movement (dynamics - variation
throughout the motion).

Kleinsmith and Bianchi-Berthouze [68] gathered informa-
tion about the features of affective states or dimensions from
body expressions studied in the literature. Discriminative fea-
tures have thus actually been identified. However, most of
the styles reported in their survey belonged to the emotion
subcategory of style. Etemad and Arya [9] worked on six styles
(happy, sad, energetic, tired, feminine and masculine) and
identified common features for each of them. In both studies,
those features relied heavily on visual cues. For example, a
happy person would tend to perform movements with high
amplitudes, while a sad person would be more prone to lower
her/his arms, etc.

Identifying descriptors of motions styles thus remains a field
to investigate more deeply, as no agreement has yet been made
on non visual features describing motion style. Moreover, the
features that were extracted to recognize motion style are not
the same as the ones that characterized motion style when it
came to motion style generation approaches, as suggested by
Etemad and Arya [9] and as it can be seen in Section VI.

D. Analysis of stylistic motion generation methods
Section VI presents methods on motion style generation,

either by performing motion style synthesis, editing or transfer.
Common characteristics that appear for those three types of
motion style generation are presented, as well as characteristics
specific of methods of one motion style generation type.

1) Trend of style definition: Most of the approaches pre-
sented in this paper opted for the trend exposed in Section
II-A3, namely considering style as individual-related features
characterized by adjectives. There was indeed a quasi unanim-
ity in motion style transfer approaches, as well as in motion
style recognition approaches.

2) Motion types: Most of the approaches studied walking
motion sequences, as stated previously (Section VII-B3), but
also running sequences and kicking or punching sequences.
Some of these approaches stated that their method, applied
to walking sequences, should theoretically apply to running
[25], boxing [22] or kicking [22] but that it would not apply
to dance motions as they are too complex. A few approaches
though, managed to deal with dance motions [13], [17]. The
same observation could be made with heterogeneous data as
only a few recent approaches decided to deal with them [7],
[8]. Data that have been used up until now were thus mostly
related to human locomotion.

3) Data representation: In methods performing motion
style synthesis, most of the data were represented by joint
angles [12], [13]. Some were represented by Euler angles [23]
but exponential maps were undoubtedly more used [3], [5],
[23], [63].

In methods performing motion style editing, data represen-
tations were more various: DOFs were represented either in
Cartesian space [9], in Euclidean space [65] or by exponential
maps [6], [27].

As for motion style transfer approaches, data representations
were also various. When joint angles were considered, they
were represented as exponential maps [7], [17]. Positions in
euclidean space were also considered [16].

However, even if common characteristics appeared such as
the use of exponential maps to represent angular DOFs, the
number of DOFs used was never the same, even though data
were usually skeletons that were recorded with motion capture
techniques and thus had a similar skeleton structure.

4) Motion decomposition: Motion sequences needed to be
segmented only when style transfer was applied. Indeed, no
approach studying motion style editing decomposed its data.
Among motion style synthesis approaches, only Chien and Liu
[18] decomposed spatially their data. On the contrary, motion
decomposition was much more frequent in style transfer
studies. It could be spatially [28] but it was mostly temporally
[1], [8], [17].

5) Establishment of the difference between two motions:
Motion style transfer approaches were the only ones that did
so. Indeed, transferring motion style implied most of the time
to establish a representation of the difference between input
and output styles. It could be the difference between a neutral
and stylistic motions such as in the approaches of Amaya et al.
[1] – and their emotional transforms, Abdul-Massih et al. [28]
or Yumer and Mitra [8] – in the frequency domain, or even
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Etemad and Arya [14] with neural networks. It could also
be the difference between two stylistic motions such as for
Xia et al. [7], where the relationship between input and output
styles was explained by a time-varying autoregressive model
whose parameters were estimated via a linear least square
regression, or for Hsu et al. [2].

6) Motion alignment: In motion style synthesis approaches,
Tilmanne et al. [3] aligned the directions of all their sequences.

In motion style editing approaches, alignment has been a
key step, especially temporal alignment [25] with DTW [65]
and its variants ITW [22] or CoTW [9]. Some approaches also
used spatial alignment [22]. Moreover, in the case of methods
relying on neural networks, the amount of data that was used
is huge, which implied a normalization step [15], [22].

Motion alignment has also been widely used in motion style
transfer studies. Abdul-Massih et al. [28] decided to achieve it
manually when groups of body parts were set by users. DTW
[17] or its variants – ITW [2], CoTW [14] – was often used.
Xia et al. [7] opted for a KNN search they applied to the
dataset to find motions that were close to the current input
frame thanks to a distance computation. If the input sequence
had a different structure than the sequences in the dataset, a
retargeting step was applied.

This step has been central to the motion generation
pipelines. Holden et al. [16] highlighted that it was difficult for
artists to intervene in post processing step, so pre-alignment
should be preferred. Other motion alignments exist such as
Canonical Time Warping (CTW) [73] and Generalized Time
Warping (GTW) [74].

7) Dimension reduction: Lots of motion style synthe-
sis approaches used a dimension reduction algorithm [12],
[13], [18]. Among motion style editing methods, only
Min et al. [25] used PCA. Shapiro et al. [65] did a similar
dimension reduction, as they stated that only a few of their
style components could cover for 99% of the geometric vari-
ations of the data. No approaches from motion style transfer
methods applied dimension reduction.

This steps seems rational as motion capture data, that are
used here, are highly dimensional [3]. This is due to the motion
capture technologies but also to the skeleton structure [41] and
the fact that human motions are repetitive [6], [65].

8) Learning methods: In Section VI, methods for motion
style generation are gathered by subcategories of motion style
generation (synthesis, editing and transfer). These methods can
also be gathered according to their common points.

Some of the methods used unsupervised learning techniques
with a HMM [3], [13], [27] or the ICA [65]. Others used
supervised learning with a SVM [17] or a KNN search [7].
Statistical models, namely Gaussian processes, have been quite
investigated: Grochow et al. [63] used a SGPLVM, Wang et al.
[23] used a GPLVM, both Ikemoto et al. [6] and Ma et al.
[22] used a Gaussian process regression and Etemad et al.
[9] used Gaussian RBFs. Neural networks have been used as
well, mostly in the last few years: Ma et al. [22] used Bayesian
networks, Etemad and Arya [14] used neural networks based
on RBFs and Holden et al. [15] used a deep forward neural
network combined with a convolutional autoencoder. Note
that in action recognition, Long Short Term Memory (LSTM)

networks are widely used [75], whereas they were not used at
all in the methods on 3D human body motion style presented
in this paper.

9) Post-processing step to clean up foot sliding artifacts:
In computer animation, some visual artifacts, such as the foot
sliding or foot skating artifact, can appear. A foot sliding
artifact appears when the contact between the feet and the
floor is not correctly enforced [76].

No researcher used a post-processing step for cleaning foot
sliding artifacts in motion style synthesis approaches.

On the opposite, motion style editing approaches dealt with
it. Only Shapiro et al. [65] explicitly mentioned that they
required a post processing step to clean up the foot skating
artifacts: the global translation DOF, removed before the ICA
decomposition, was added again to synthesized motion. This
is nonetheless a persistent problematic. Ikemoto et al. [6]
did not directly handle environmental contacts like footstrikes
as they cleaned them up with an automated postprocessing
step but stated that it was a lead for future work. Ma et al.
[22] created transitions if long motion sequences were wanted
and eliminated foot skates. Min et al. [25] took care of foot
sliding artifacts by enforcing the environmental constraints
(foot contact) with an inverse kinematics process. Holden et al.
[15] detected whether the toe or heel of the skeleton went
beyond a certain height or velocity thus getting foot contact
labels. Then they added positional constraints during editing
to act against artifacts.

Motion style transfer approaches also considered foot slid-
ing artifacts. Classifiers were used to correct them. Hsu et al.
[2] built a footplant classifier with a multi discriminant anal-
ysis and univariate Gaussians modelisation. An heuristic gen-
eralisation, blending the input to the transferred motion, gave
priority to the content over style, in case a conflict appeared.
Xia et al. [7] developed a KNN classification algorithm to
automatically process footplant artifacts: they annotated in
a pre-processing step contact information and detected them
with the KNN; noise reduction was applied with Gaussian
filters. Yumer and Mitra [8] also proceeded to a foot-plant
nearest neighbor search before cleaning the artifacts in a post
processing step. Holden et al. [16] did not do any artifact
correction, but they mentioned that it should have been done.

10) Bone length: In motion style editing approaches, in
addition to the foot sliding artifact, a particular attention
should be paid to the bone lengths. Etemad and Arya [9],
who used cartesian data representation, stated that the bone
lengths were not necessarily preserved after edits were applied.
Shapiro et al. [65] highlighted that the change of limb length
impacted foot plants and also created occasional foot skating
or violation of floor constraints, which was why if the data
were represented by marker positions instead of joint angles,
they applied a filter to restore the correct limb lengths (and a
low-pass filtering was automatically done to eliminate high-
frequency motions). Holden et al. [15] applied bone length
constraints.

11) Evaluation metrics: The most frequent way to evaluate
motion style generation was to proceed by conducting a visual
evaluation, for example presenting the synthesized motion and
the original one. In motion style synthesis approaches, that was
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the most common evaluation mean [3], [5], [12], [18]. This
was not the only one though: Urtasun et al. [12] also measured
statistical values (interpolation error, intra-variability and inter-
variability, that are specific to their data).

In motion style editing approaches, evaluations were con-
ducted by the perception of the user. Indeed, the specificity of
motion style editing is that it implies a visual tool [9], [25],
[65]. This leads to the absence of other mean of evaluation than
the perception of the user [6], [9], as these methods are based
on perceptual approaches and opinions of users (animators).
Still, Ma et al. [22] conducted a leave-one-out cross validation
between the validation clips and the predicted motion clips.
Min et al. [25] evaluated their motion synthesis process using
cross validation techniques to compare synthesized motion
with ground truth motion data. Etemad and Arya [9] conducted
a survey.

In motion style transfer approaches, some researchers used
vision and perception to assess the correctness of their method
[14], [28]. A few methods used measures. Thus Xia et al. [7]
measured temporal and pose errors. Most of the approaches
actually proposed user surveys [14] to assess the naturalness
[28] or realism [8] of the generated motions.

Broadly speaking, most studies lacked qualitative assess-
ments.

12) Applications and further investigations: Motion style
generation became a key to save time during motion capture
sessions. Moreover, it aims at helping animators by automating
their work. Focusing on style appears crucial in the generation
of crowds, as it brings realism. However, only motion style
editing methods using neural networks explored this appli-
cation [15], [22]. Brand and Hertzmann [13] talked about a
potential use of their method for a cast of thousands though,
perhaps implying that their technique could be used for crowd
simulation. This application is thus to be further investigated.

A common trend is to study other style features. Indeed,
Amaya et al. [1] highlighted that it could be desirable to work
on personalities, culture and gender ie. other subsets of style.
Torresani et al. [17] supported the idea of learning person-
specific styles. Kviatkovsky et al. [41] also suggested that
gender classification could be investigated.

Amaya et al. [1] suggested to transfer a human emotional
motion to an animal. Abdul-Massih et al. [28] explored this
path and worked on style transfer applied to morphologi-
cally different characters: human, T-Rex, dragon, three-headed
creature and snake. Note that Wampler [77] focused only on
animals.

VIII. CONCLUSION

This paper exposes approaches on the study of style in 3D
human body motion based on skeletal data. It includes style
motion analysis, recognition and generation. Style is critical as
it brings realism and expressiveness to different applications
such as character animation.

The first key element is to set a definition of motion style
in 3D human body motion, where it lacks consensus. Each
author of the approaches that have been presented in this
paper had their own definition and worked on their own styles.

A taxonomy of definitions of style highlights that human
body motion style is sometimes seen as variations in motions,
or as a component of a motion, or as individual-related
features. Among the approaches presented in this paper, the
most frequent trend was to consider style as individual-related
features. Even when opting for this trend, the features de-
fined with adjectives are diverse. Subcategories are identified:
emotions, biological features (age and gender), physical states,
personality features and behaviors. The most studied styles
were angry, happy, sad, old, proud, depressed and tired; most
of them being emotions. Furthermore, 2/3 of the referenced
papers worked with the neutral style, even though it is difficult
to represent it, in particular as the actors add an individual bias.

A second key point lies in the data that are used in motion
style approaches. The lack of publicly available datasets on
stylistic motions is highlighted, as most of the approaches
either used action and mostly emotional datasets or recorded
their own data. This makes any comparison between ap-
proaches difficult. Action datasets were mostly used when style
in human body motion was seen as being variations in a mo-
tion, or when neutral sequence motions were required. When
style was seen as individual-related features, only two publicly
available datasets (eNTERFACE’08 3D [45] and Mockey [48])
truly focused on style with several of its subcategories (other
datasets focus on emotions), explaining why many researchers
decided to record their own data.

Only a few methods tackled 3D human body motion style
recognition. Several approaches have already been conducted
on emotions though. Finding features that describe style
without relying on visual cues (and hence being specific
to the styles that are studied) remains a challenge. Person
identification through their style is one of the applications of
style in human body motion. It highlights that it is related to
persons.

Stylistic motion generation has been more broadly investi-
gated. We distinguish three types of motion style generation:
motion style synthesis, motion style editing and motion style
transfer. These types of motion style generation have common
characteristics and challenges, such as the way to perform a
relevant evaluation of the generated stylistic motions as there
is a lack of qualitative assessment. They also have specific
characteristics or steps, as the establishment of the difference
between two motions that has only been performed in motion
style transfer. Stylistic motion generation is a solution to the
lack of data and it can save time for actors when recording
datasets as well as for 3D animators when creating a character
animation. Animators are not that much involved in the process
though: only motion style editing approaches inquired their
opinion.

Some challenges have been highlighted in this survey. There
is definitely a need for data, especially databases that would
relate to the different trends of the definition of style presented
in Section II. The neutral style also needs to be clarified. Some
methods already paved the way to work on stylistic motion
generation. More investigations would need to be done in body
motion style recognition though, especially in determining
what could be the style features. An evaluation metric of the
performance of the methods that wouldn’t be relying on visual
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cues should also be investigated. Analysis of body motion
style and stylistic motion generation could be valuable in
character animation. Indeed, it would for instance be helpful
to surpass the uncanny valley, or to make improvements in
crowd simulation.
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