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Abstract

We introduce a semi-implicit two-speed relaxation scheme to solve the compressible
Euler equations in the low Mach regime. The scheme involves a relaxation system with two
speeds, already introduced by Bouchut, Chalons, Guisset (2019) in the barotropic case. It
is entropy satisfying and has a numerical viscosity well-adapted to low Mach flows. This
relaxation system is solved via a dynamical Mach number dependent splitting, similar to
the one proposed by Iampietro et al. (2018). Stability conditions are derived, they limit the
range of admissible relaxation and splitting parameters. We resolve separately the advection
part of the splitting by an explicit method, and the acoustic part by an implicit method. The
relaxation speeds are chosen so that the implicit system fully linearizes the acoustics and
requires just to invert an elliptic operator with constant coefficients. The scheme is shown to
well capture with low cost the incompressible slow scale dynamics with a timestep adapted
to the velocity field scale, and rather well the fast acoustic waves.
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1 Introduction

Solutions to the compressible Euler system of gas dynamics involve waves that propagate either
at material speed or at sound speed. These can be very different in terms of order of magnitude,
in particular in the so called low Mach regime when the sound speed is large with respect to the
material velocity. In this situation and in order to be efficient, numerical schemes should work
with the CFL condition associated with the material speed. It implies that an implicit treatment
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has to be performed on the sound waves, and this should be done with limited loss of accuracy
and with explicit cost.

The full Euler system of fluid dynamics can be written
∂tρ + ∇ · (ρu) = 0,
∂t(ρu) + ∇ · (ρu ⊗ u + p Id) = 0,
∂tE + ∇ · (Eu + pu) = 0,

(1)

where ρ(t, x) is the mass density, u(t, x) the fluid velocity, p(t, x) the pressure and E(t, x) the total
energy related to the specific internal energy e(t, x) by

E = ρ
|u|2

2
+ ρe. (2)

The system is closed by a state law that relates the pressure p to the density ρ and the internal
energy e. Additional state variables such as the temperature T and the specific entropy s are
attached to the system, but then can be seen as nonlinear functions of ρ and e, satisfying the
differential relation de =

p
ρ2 dρ + Tds.

The low Mach regime is characterized by the property that at density and temperature given,
the state law, given under the form F(ρ,T, p) = 0, does not depend much on the pressure (∂F/∂p
is small), see [20]. In this formulation the pressure has to be measured at the scale of velocities
u. The more standard way to describe this regime is to say that the acoustic waves travel much
faster than the flow, i.e.

c >> |u|, (3)

where the sound speed c is given by c2 =
(
∂p
∂ρ

)
s
. Yet another way to formulate the low Mach

regime is to say that there is a small time scale attached to the acoustic waves, and a larger time
scale attached to the flow. The acoustic waves are anyway of small amplitude compared to the
main flow. It we only look for the flow evolution, thus only considering a timestep obeying the
CFL condition of the type ∆t|u| ≤ ∆x, it is classical to filter out the acoustic waves, leading to
incompressible models.

We would like here to design a numerical method that is able to treat all the regimes (low
Mach or not), and which is accurate in the low Mach regime. In particular this means to well
resolve the flow scale (close to incompressible), but also to describe as much as possible the
acoustic waves. Under the assumption (3) and rescaling the equations so as to have velocities
of order unity, we classically have that ρ, u, T remain bounded. For times t at the flow scale a
leading expansion is then

ρ = ρ0 + O(M2), u = u0 + O(M2), T = T0 + O(M2), (4)

with M the Mach number i.e. the order of magnitude of |u|/c, whereas ρ0, u0, T0 represent the
leading incompressible flow. Indeed the low Mach assumption (3) enables to write according to
[20] that the pressure law can be written

p(ρ,T ) = pre f + psc(ρ,T )/M2, (5)
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with pre f a constant and psc a scaled pressure law. The state differential relation can then be
written

e = −pre f /ρ + esc/M2, s = ssc/M2, with desc =
psc

ρ2 dρ + Tdssc. (6)

Then the leading flow is characterized by the incompressible Euler system
∂tρ0 + u0 · ∇ρ0 = 0,
ρ0(∂tu0 + u0 · ∇u0) + ∇p0 = 0,
∇ · u0 = 0,

(7)

with p0 a Lagrange multiplier and T0 is related to ρ0 by the constraint psc(ρ0,T0) = 0. Indeed
one has

p = p0 + O(M2), (8)

and the incompressibility condition ∇·u0 = 0 follows from the equation on p that can be deduced
from (1), (2),

∂t p + u · ∇p + c2ρ∇ · u = 0. (9)

Coming back to the the original system (1), (2), we can formulate it by including the scaled
law (5), as 

∂tρ + ∇ · (ρu) = 0,
∂t(ρu) + ∇ · (ρu ⊗ u +

psc
M2 Id) = 0,

∂tE + ∇ ·
(
Eu +

(
pre f +

psc
M2

)
u
)

= 0,
(10)

with E related to e by (2), and with (6). In this formulation the O(M2) corrections of (4) are
included, they describe the residual of acoustic waves. We have to mention that at the acoustic
time scale, the acoustic waves are perturbations as in (4) but with O(M) instead of O(M2).
They are generated from so called "not well prepared" initial data satisfying ∇ · u = O(M),
psc(ρ,T ) = O(M) (O(M2) corresponds to "well prepared" initial data leading to small acoustic
waves even at the acoustic time scale). Nevertheless even for "not well prepared" initial data, for
times at the flow scale or larger the O(M) part of the acoustic waves have gone (unless iterately
reflected by boundaries) and we recover "well prepared" states.

To capture the low Mach regime implies to capture the slow dynamics (7) which is the
transport at the fluid velocity of density and velocity, as well as the divergence free constrain. In
order to achieve this with a reasonable CPU cost, the time marching scheme is important. Indeed,
if we use a standard explicit scheme, we have a CFL condition for the model (1) constrained by
the sound speed, which is very large compared to the fluid velocity. This is nevertheless possible
since in this case there is no linear system to solve [15]. An alternative method is to use a fully
implicit scheme, which leads to a nonlinear problem to invert, with ill-conditioned linear part,
because the ratio between the acoustic and physical speeds is large. Another possibility is to use
a semi-implicit scheme as in [26, 25, 19, 17] where only the acoustic part is implicit. In this
case we obtain a linear problem to invert. This is the method that we adopt here, and we shall
pay a particularly attention to the kind of linear system we have to solve. Our aim is to preserve
the low Mach limit with good accuracy, and at the same time to have a simple implicit step, as
cheap as possible in terms of cpu time and memory. This is obtained via a particular relaxation
approach introduced in [13] that has an asymptotic viscosity expressed in terms of ∇ · u and ∇p.
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This is appropriate in the compressible regime in order to well resolve contact discontinuities,
across which u · n and p do not jump; and this is also very appropriate in the low Mach regime
since u and p remain bounded. It also allows a not too bad resolution of acoustic waves.

In the remainder of the paper we consider the system (1) with (2), keeping in mind the
scaling laws (5) and (6) (after an eventual rescaling so that velocity is of order unity), where we
take pre f = 0. An important example of state law is the stiffened gas lawp = (γ − 1)ρe − γp∞, (11)where γ > 1, p∞ ≥ 0 are constants. Then the temperature is given by cpT/γ = e − p∞/ρ, where
cp > 0 is a constant, and admissible states are those for which T > 0. The entropy is given by
s =

cp
γ log(T/ργ−1). The scaling assumptions (5) and (6) are then satisfied if p∞ = p∞sc/M2,

cp = cp,sc/M2, with p∞sc, cp,sc constants independent of M. The scaled state law psc, esc is then
a stiffened gas with the constants p∞sc, cp,sc instead of p∞, cp. In the incompressible regime
the relation psc(ρ,T ) = 0 gives ρT =

γ
γ−1

p∞sc
cp,sc

= cst. We remark that for a perfect gas law
p∞ = 0, the temperature tends to 0 in the incompressible regime. We will first restrict ourselves
to the one dimensional case as it already contains an important part of the difficulty. Then in
the incompressible regime and with compatible boundary conditions, (7) implies that the fluid
velocity u0 and the pressure p0 are constant. However, contrary to isotropic or barotropic flows,
the density ρ0 is still inhomogeneous and is advected at velocity u0. Hence the one-dimensional
low-Mach regime is non trivial in that case. Numerical schemes have to capture the advection
of the density, and the emission of acoustic waves for small times of order M. The outline of the
paper is the following. In Section 2 we briefly present two classes of methods already proposed
in the literature for low Mach flows and discuss their advantages and drawbacks in the one-
dimensional case. In Section 3 we introduce our two-speed relaxation method following [13],
and discuss its stability properties. In Section 4 we introduce our numerical scheme based on a
particular splitting strategy that allows a low cost linear system to solve. Finally in Section 6 we
perform several one and two-dimensional test cases.2 Two relaxation methods for low-Mach flows
In this section we recall two strategies based on relaxation to design implicit/semi-implicit
scheme for low Mach flow and we introduce the main issues that we have to tackle: the control
of the numerical diffusion error and the numerical cost of the implicit linear solver.

2.1 Implicit Jin-Xin relaxation scheme

The Jin-Xin relaxation model [27] applied to the 1d Euler system consists in considering the
extended system 

∂tρ + ∂xvρ = 0,

∂t(ρu) + ∂xvρu = 0,

∂tE + ∂xvE = 0,

∂tvρ + λ2 ∂xρ =
1
ε

(
ρu − vρ

)
,

∂tvρu + λ2 ∂x(ρu) =
1
ε

(
ρu2 + p − vρu

)
,

∂tvE + λ2 ∂xE =
1
ε

(Eu + pu − vE) ,

(12)

where vρ(t, x), vρu(t, x) and vE(t, x) are supplementary unknowns and λ > 0 is the relaxation
speed. The system (12) has the following interesting features: the left-hand side is a linear
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hyperbolic system, while all the nonlinearity is in the right-hand side, which is local in space.
This system is a stable approximation of the original system under the so-called subcharacteristic
condition λ > |u| + c with c the acoustic speed.

In [5] an implicit method based on the system (12) was proposed. It consists in using a
time splitting scheme between transport and relaxation and to use implicit schemes for each
step. The main advantage of this algorithm is that the implicit transport part requires only the
inversion of constant Laplacian operators and the computation of matrix-vector products. The
limitation of this method lies in the diffusion error. Indeed, the diffusion matrix associated with
the relaxation process is given by λ2Id − |A(ρ, u, E)|2 with A(ρ, u, E) the Jacobian matrix of the
Euler flux function, which has eigenvalues u, u − c, u + c. Since λ > |u| + c, the material wave
suffers from an error of the order of c2. In particular, in the asymptotic incompressible regime,
an expansion of the relaxation system gives

∂tρ + u ∂xρ = ∆t λ2 ∂xxρ + O(∆t2).

Consequently, unless the timestep is taken very small, the diffusion error is large compared with
the convection term. It would be desirable to have an error of order O(|u|2) instead of O(c2).

2.2 Semi-implicit Suliciu relaxation system

Implicit schemes have been designed from the Suliciu relaxation method, [3, 2]. The Suliciu
relaxation system [11] writes

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + Π) = 0,

∂tE + ∂x(Eu + Πu) = 0,

∂t(ρΠ) + ∂x(ρΠu) + λ2 ∂xu =
ρ

ε
(p − Π),

(13)

where Π(t, x) is an auxiliary pressure and λ > 0 is again a relaxation speed. The left-hand side
system is hyperbolic with all fields linearly degenerate. The stability of the approximation is
ensured by the subcharacteristic condition λ ≥ ρc.

A semi-implicit scheme can be designed from the Suliciu relaxation method. In [6] the
authors introduce a dynamic splitting of this relaxation system between a convective part

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x
(
ρu2 + E2(t)Π

)
= 0,

∂tE + ∂x
(
Eu + E2(t)Πu

)
= 0,

∂t(ρΠ) + ∂x (ρΠu) + λ2
c ∂xu = 0,

(14)

an acoustic part 

∂tρ = 0,

∂t(ρu) +
(
1 − E2(t)

)
∂xΠ = 0,

∂tE +
(
1 − E2(t)

)
∂x(Πu) = 0,

∂t(ρΠ) +
(
1 − E2(t)

)
λ2

a ∂xu = 0,

(15)
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and a relaxation part 

∂tρ = 0,

∂t(ρu) = 0,

∂tE = 0,

∂t(ρΠ) =
ρ

ε
(p − Π),

(16)

where the splitting parameter is defined as

E(t) = max
(
Mmin,min

(
Meff(t), 1

))
∈ [Mmin, 1], (17)

with the effective Mach number defined as

Meff(t) = sup
x

|u(t, x)|
c(t, x)

. (18)

The lower bound Mmin > 0 imposed on E(t) guarantees (14) to remain hyperbolic, it is needed
if we have data for which u ≡ 0.

We have the free parameters λc > 0, λa > 0 in the splitting of the auxiliary pressure equation,
that have to satisfy λ2 = λ2

c +
(
1 − E2(t)

)
λ2

a. Note that in [6] the scheme is constructed in the
opposite order, by first introducing the splitting and then relaxation systems. The splitting has
the property to separate the multi-scale dynamics. All the waves of the convective part (14) have
O(u) speeds while the acoustic part (15) have O(c) waves speeds. Hence a classical explicit finite
volume scheme can be used for the convective part and generates only O(u) diffusion terms. For
the acoustic system (15), a classical strategy is to use a parabolization method [5, 21, 4], thus
considering the time implicit scheme

ρnun+1 = ρnun − ∆t
(
1 − E2(t)

)
∂xΠ

n+1,

En+1 = En − ∆t
(
1 − E2(t)

)
∂x(Πn+1un+1),

ρnΠn+1 = ρnΠn − ∆t
(
1 − E2(t)

)
λ2

a∂xun+1.

(19)

Plugging the third equation into the first one, we obtain the elliptic equation

un+1 − ∆t2
(
1 − E2(t)

)2 1
ρn ∂x

(
λ2

a

ρn ∂xun+1
)

= un − ∆t
(
1 − E2(t)

) 1
ρn ∂xΠ

n.

When this elliptic equation is solved we get un+1, and then we can compute Πn+1 and En+1 from
(19). Contrary to the implicit Jin -Xin relaxation scheme presented in the previous section, here
we need to invert a non homogeneous Laplacian operator. This requires to assemble a new matrix
at each timestep, which could have an important CPU cost for 2D or 3D simulations. Moreover
the matrix may have a large condition number when the density has large spatial variations.

This whole scheme is detailed in appendix A. Note that another strategy has been proposed
in [3, 2] for the implicit treatment of the acoustic system. It is based on the diagonalization of
the (Π, u) subsystem and the resolution of the two resulting transport equations with an implicit
solver. However, we face the same difficulties: the transport equations are non-homogeneous
and thus also require a matrix assembly at each timestep.
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The conclusion of this section is that the first method allows to obtain very simple implicit
steps, but admits a very large error in the low-Mach regime. The second method is accurate in
the low-Mach regime but requires assembling a new matrix at each timestep. In the following
we propose a scheme that combines the advantages of the two previous methods.

3 A two speed relaxation model for the full Euler system

In this section we introduce a two-speed relaxation model for the full Euler system (1), following
the strategy considered in [13] for the barotropic case.

3.1 The relaxation model

The two speed relaxation system for the full Euler system (1) in one dimension writes



∂tρ + ∂x(ρv) = 0,

∂t(ρu) + ∂x(ρuv) + ∂xΠ = 0,

∂tE + ∂x(Ev) + ∂x(Πv) = 0,

∂t(ρΠ) + ∂x(ρΠv) + ab ∂xv =
ρ

ε
(p − Π) ,

∂t(ρv) + ∂x(ρv2) +
a
b
∂xΠ =

ρ

ε
(u − v) ,

(20)

where still E = ρu2/2 + ρe and p ≡ p(ρ, e) is the state law. In this system, Π(t, x) and v(t, x)
are relaxation variables that approximate p and u respectively, and a(t, x) > 0, b(t, x) > 0 are
auxiliary positive speed relaxation variables that are advected by the flow

 ∂t(ρa) + ∂x(ρav) = 0,

∂t(ρb) + ∂x(ρbv) = 0.
(21)

This system is the direct extension of the relaxation model proposed in [13] for the barotropic
case. Notice that when a ≡ b, one has v ≡ u and we recover the usual Suliciu relaxation model
(13) with a = b = λ. The parameters a, b need to respect some stability inequalities, as shown
below.

This relaxation method has the advantage to have two relaxation variables that follow an
approximate acoustic dynamics. But as auxiliary variables we can make their propagation speed
constant by choosing adequately the speeds a and b. Therefore it will be possible to define a
semi-implicit discretization with homogeneous elliptic equation as we will see in Section 4.

We notice that the system (20), (21) can be written under the following nonconservative
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form 

∂tρ + ∂x(ρv) = 0,

∂t(ρu) + ∂x(ρuv) + ∂xΠ = 0,

∂tE + ∂x(Ev) + ∂x(Πv) = 0,

∂tΠ + v ∂xΠ +
ab
ρ
∂xv =

1
ε

(p − Π) ,

∂tv + v ∂xv +
a

bρ
∂xΠ =

1
ε

(u − v) ,

∂ta + v ∂xa = 0,

∂tb + v ∂xb = 0.

(22)

Then, the following lemma characterizes the hyperbolicity of the relaxation system.

Lemma 3.1. The relaxation system (20), (21) is hyperbolic and all the characteristic fields are
linearly degenerate. The characteristic speeds are given by:

Σ =

{
v, v, v, v, v, v −

a
ρ
, v +

a
ρ

}
. (23)

Proof. The computation of the eigenvalues of the Jacobian matrix of the flux is easy and left to
the reader. The eigenvalues can also be deduced from the following argument: the relaxation
system (20) is the same as that in [13] except for the addition of a new unknown E, or equiva-
lently e or ê, that satisfies (41), (42). We conclude that as in [13] the system is hyperbolic with
all eigenvalues linearly degenerate. The solution to the Riemann problem is also the same as in
[13]. �

We notice that if a ' ρc and b ' ρc, we obtain that the extreme eigenvalues of (23) verify
v ± a

ρ ' u ± c, the eigenvalues of the original Euler system (1). On the contrary, in order to be
accurate in the low Mach limit, in [13] the authors propose to choose a ' ρc/min(1,M) with
M the Mach number (which means that |u|/c is of the order of M) and b ' ρc min(1,M). This
choice satisfies the subcharacteristic conditions (30). Then the eigenvalues (23) of the relaxation
system are much larger than those of the Euler system, but b remains bounded for small M, a
condition that guarantees to keep a finite numerical viscosity. This choice for a and b, when
discretizing in space [13] and applying an explicit treatment, leads to a numerical viscosity of
the form (25) where we replace formally in the case of small M

ε
(a
b
− 1

)
−→

∆x
2cM

, ε
(ab
ρ2 − c2) −→ ∆x

2
(|u| + cM). (24)

This implies that the scheme is then first order uniformly for small M. However this approach
induces a very restrictive CFL condition ∆t a/ρ ≤ ∆x since a is large. Moreover it is not possible
to bypass this difficulty with an implicit treatment, because for timesteps ∆t significantly larger
than ρ∆x/a the time diffusion will be large, see Lemma 3.2 below where ε has to be understood
as ∆t/2 according to [12].

In the present paper we introduce a semi-implicit scheme with a different choice for a and b,
that enables to have a moderate diffusion in time for large timesteps.
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3.2 The asymptotic equivalent equation

The asymptotic diffusion in the relaxation parameter ε, that is related to time, depends on the
choice of a and b. It is given by the following formulas.

Lemma 3.2. As ε → 0 the relaxation system (20)-(21) provides the following first order in ε
approximation of the Euler system

∂tρ + ∂x(ρu) = ε ∂x
(
δ1∂x p

)
,

∂t(ρu) + ∂x(ρu2 + p) = ε ∂x (δ1u ∂x p + δ2∂xu) ,

∂tE + ∂x(Eu + pu) = ε ∂x

(
δ1

E
ρ
∂x p + δ1

p
ρ
∂x p + δ2u∂xu

)
,

(25)

with δ1 = a
b − 1 and δ2 =

ab−ρ2c2

ρ .

We notice that the relaxation system is an approximation of the Euler system with diffusion
fluxes all depending linearly on ∂xu and ∂x p. This is the key property for capturing contact
discontinuities since u and p do not jump through these, as well as the low-Mach regime since
in the latter case u and p remain bounded, as explained in the introduction.

Proof. We perform an Hilbert expansion with respect to powers of ε for all the unknowns:
ρ = ρ0 + ε ρ1 + O(ε2), u = u0 + ε u1 + O(ε2), etc. Then we plug these expansions into (22) and
identify terms of equal powers of ε.
The terms of order 1/ε lead to

Π0 = p0, v0 = u0. (26)

The terms of order 1 in the first three equations of (22) satisfy the system
∂tρ0 + ∂x(ρ0v0) = 0,

∂t(ρ0u0) + ∂x(ρ0u0v0 + Π0) = 0,

∂tE0 + ∂x(E0v0 + v0Π0) = 0.

According to (26), this is equivalent to
∂tρ0 + ∂x(ρ0u0) = 0,

∂t(ρ0u0) + ∂x(ρ0u2
0 + p0) = 0,

∂tE0 + ∂x(E0u0 + p0u0) = 0.

(27)

The equation on Π leads to an expression for Π1

Π1 = p1 −

(
v0 ∂xΠ0 +

ab
ρ0
∂xv0 + ∂t p0

)
= p1 −

(
u0 ∂x p0 +

ab
ρ0
∂xu0 − u0 ∂x p0 − c2

0ρ0∂xu0

)
= p1 −

1
ρ0

(
ab − ρ2

0c2
0

)
∂xu0,

10



where we used the relations (26) and where c stands for the sound speed, c2 =
(∂p
∂ρ

)
s. Similarly

from the equation on v we get the an expression for v1

v1 = u1 −

(
v0 ∂xv0 +

a
bρ0

∂xΠ0 + ∂tu0

)
= u1 −

(
u0∂xu0 +

a
bρ0

∂x p0 − u0∂xu0 −
1
ρ0
∂x p0

)
= u1 −

1
ρ0

(a
b
− 1

)
∂x p0.

We thus have
Π1 = p1 − δ2∂xu0, v1 = u1 −

δ1

ρ0
∂x p0, (28)

with the above definitions of δ1 and δ2.
Finally the terms in ε lead to the system

∂tρ1 + ∂x(ρv)1 = 0,

∂t(ρu)1 + ∂x(ρuv)1 + ∂xΠ1 = 0,

∂tE1 + ∂x(Ev)1 + ∂x(Πv)1 = 0,

(29)

where ( f g)1 stands for f0g1 + f0g1 for any quantities f , g. Using (26) and (28) we get

(Πv)1 = Π1v0 + Π0v1 = u0 p1 + p0u1 − u0δ2∂xu0 − p0
δ1

ρ0
∂x p0

= (pu)1 − u0δ2∂xu0 − p0
δ1

ρ0
∂x p0.

Similarly we have for the convective fluxes

(ρv)1 = ρ0v1 + ρ1v0 = (ρu)1 − δ1∂x p0,

(ρuv)1 = (ρu)0v1 + (ρu)1v0 = (ρu2)1 − u0δ1∂x p0,

(Ev)1 = E0v1 + E1v0 = (Eu)1 −
E0

ρ0
δ1∂x p0.

Plugging these expressions in (29) and then adding systems (27) and ε times (29), we obtain the
system satisfied by ρ0 + ερ1, (ρu)0 + ε(ρu)1 and E0 + εE1, which is the system (25). �

3.3 Stability of the diffusion approximation

A first step in proving stability of the relaxation system is to evaluate the dissipation of the dif-
fusive approximation [12]. This provides stability conditions on the parameters of the problem.

Lemma 3.3. The diffusive system (25) is entropically stable if and only if

ab
ρ2 ≥ c2 and a ≥ b. (30)

11



Proof. The Euler system (1) has an entropy

η = ρφ(s), (31)

where s = s(ρ, e) is the specific entropy, related to the density and internal energy by the dif-
ferential relation de =

p
ρ2 dρ + Tds, with T the temperature. The function φ is a nonlinearity

that satisfies φ′ ≤ 0 and φ′′ ≥ 0. Under the classical assumption that −s is a convex function
of (1/ρ, e), we have that η is a convex function of the conservative variable (ρ, ρu, E), see [11,
Lemma 1.3]. Then for the entropic stability of the diffusive system (25), we have to write that
the diffusive part is symmetrically entropy dissipative. According to [12, Definition 2.11], this
means that the matrix Dtη′′ is symmetric nonnegative, where D is the diffusion matrix, and η′′

is the second-order derivative of η with respect to the conservative variable U = (ρ, ρu, E). The
definition of the diffusion matrix D is that the right-hand side of (25) has to be written in vector
form as ε∂x(D∂xU). Thus according to (25), the diffusion matrix is given in terms of its lines by

D =


αp′

αup′ + βu′
E+p
ρ αp′ + βuu′

 =


1
u

E+p
ρ

αp′ +

01
u

 βu′, (32)

with

α = δ1 =
a
b
− 1, β = δ2 =

ab − ρ2c2

ρ
. (33)

Here p′ and u′ stand for the derivatives of p and u with respect to U. These are linear forms,
identified with line vectors. Using the identity E = ρu2/2 + ρe we get

dE =
u2

2
dρ + ρudu + edρ + ρde, d(ρu) = udρ + ρdu.

Thus with the thermodynamical identity de =
p
ρ2 dρ + Tds we obtain

s′ =
1
T

(e′ −
p
ρ2 ρ

′)

=
1
T

(
−

e
ρ

+
u2

2ρ
−

p
ρ2 ,−

u
ρ
,

1
ρ

)
=

1
ρT

(u2

2
− e −

p
ρ
,−u, 1

)
.

(34)

Next we differentiate (31) and get

η′ = φ(s)(1, 0, 0) +
φ′(s)

T

(u2

2
− (e + p/ρ),−u, 1

)
.

In order to compute η′′ we have to differentiate once more the previous formula. We compute((u2

2
− (e + p/ρ),−u, 1

)t)′
=


−
∂ρp
ρ −

1
ρT (T +

∂s p
ρ )( u2

2 − (e + p/ρ)) − u2

ρ
u
ρT (T +

∂s p
ρ ) + u

ρ − 1
ρT (T +

∂s p
ρ )

u
ρ − 1

ρ 0
0 0 0

 ,
12



where ∂ρp and ∂s p denote the derivatives of p with respect to ρ at s constant and with respect to
s at ρ constant, respectively. Thus we obtain

η′′ =
φ′(s)

T


−
∂ρp
ρ −

∂s p
ρ2T ( u2

2 − (e + p/ρ)) − u2

ρ u ∂s p
ρ2T + u

ρ −
∂s p
ρ2T

u
ρ − 1

ρ 0
0 0 0


+

(u2

2
− (e + p/ρ),−u, 1

)t
(
φ′(s)

T

)′
.

(35)

We have to write that Dtη′′ is symmetric nonnegative. Since ( u2

2 − (e + p/ρ),−u, 1) is orthogonal
to the vectors (1, u, u2

2 + e + p/ρ) and (0, 1, u), we notice that in the left product with Dt (with
D given by (32)), the second line of (35) gives a vanishing contribution. Thus we only have to
consider the first line of (35), and we get

Dtη′′ = α(p′)t φ
′(s)
T

(
−
∂ρp
ρ
−
∂s p
ρ2T

(
u2

2
− (e + p/ρ)), u

∂s p
ρ2T

,−
∂s p
ρ2T

)
+ β(u′)t φ

′(s)
T

(u
ρ
,−

1
ρ
, 0

)
= −α

φ′(s)
ρT

(p′)t p′ − β
φ′(s)

T
(u′)tu′.

(36)

This matrix is symmetric, and since p′ and u′ are independent linear forms, the matrix is non-
negative if and only if α ≥ 0 and β ≥ 0, which yields (30). �

3.4 Entropy stability

In this section we prove that the relaxation system (20) is entropy satisfying, meaning that the
physical entropy is necessarily increasing in the reference frame of the flow when starting with
an initial condition at equilibrium. Entropy inequalities allow in good cases to prove the conver-
gence of relaxation models [10]. We prove here the increase of entropy at least in the transport-
projection case, which means that the relaxation is replaced by a projection onto equilibrium
every timestep.

Lemma 3.4. Under the stability inequalities (30), the system (20) is entropy satisfying, in the
sense that solving it without right-hand side and taking initial data at equilibrium (Π = p(ρ, e)
and v = u), one has

s(ρ, e) ≥ ŝ, (37)

where ŝ is defined as solving

∂t ŝ + v ∂x ŝ = 0, (38)

with initial data at equilibrium ŝ = s(ρ, e). Here, s(ρ, e) stands for the specific entropy related
to the state law.
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Proof. We recall that the specific entropy s is related to the other internal variables by the relation
de =

p
ρ2 dρ + Tds, with T the temperature. The system can be written as (22), without the right-

hand side, and with E = ρu2/2 + ρe. We subtract the equation of v to the one on u to get

∂t(v − u) + v∂x(v − u) +

(a
b
− 1

) 1
ρ
∂xΠ = 0.

We multiply this by (v − u) and obtain

∂t
(v − u)2

2
+ v∂x

(v − u)2

2
+

(a
b
− 1

) 1
ρ

(v − u)∂xΠ = 0.

Then, multiplying by Π the Π equation we get

∂t
Π2

2
+ v∂x

Π2

2
+

ab
ρ

Π∂xv = 0.

Adding the two previous equations and using that a and b are in the kernel of ∂t + v∂x, we obtain

∂t

 Π2

2ab
+

(v − u)2

2
(

a
b − 1

) + v∂x

 Π2

2ab
+

(v − u)2

2
(

a
b − 1

) +
1
ρ
∂x(Πv) −

u
ρ
∂xΠ = 0. (39)

In the previous formula we agree with the convention that (v− u)2/(a/b− 1) vanishes in the case
when a = b, because in this case we have v ≡ u. One easily gets the equation on u2

∂t
u2

2
+ v∂x

u2

2
+

u
ρ
∂xΠ = 0.

Next we can write the equation satisfied by E/ρ,

∂t
E
ρ

+ v∂x
E
ρ

+
1
ρ
∂x(Πv) = 0,

and since E/ρ = u2/2 + e, we obtain

∂te + v∂xe +
1
ρ
∂x(Πv) −

u
ρ
∂xΠ = 0. (40)

Define now ê by

e = ê +
(v − u)2

2
(

a
b − 1

) ≥ ê, (41)

the inequality holding because of the second stability condition in (30). Subtracting (39) to (40)
and using (41) we deduce that

∂t
(̂
e −

Π2

2ab

)
+ v∂x

(̂
e −

Π2

2ab

)
= 0. (42)
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Now we can observe that the relaxation system (20) is the same as that in [13] except for the
addition of a new unknown E, or equivalently e or ê, that satisfies (42). We conclude that the
system is hyperbolic with all eigenvalues linearly degenerate, and this justifies to use the chain
rule in all the computations. Then, using the mass equation we get

∂t
1
ρ

+ v∂x
1
ρ
−

1
ρ
∂xv = 0,

and combining it with the Π equation of (22) we get

∂t
(
Π +

ab
ρ

)
+ v∂x

(
Π +

ab
ρ

)
= 0.

We now introduce a new independent variable τ solving

∂tτ + v∂xτ = 0, (43)

initialized as τ = 1/ρ. Using this equation and the equation on ŝ in (38) we get (∂t+v∂x)(p(1/τ, ŝ)+
abτ) = 0, where p(ρ, s) stands for the pressure law written as a function of density ρ and specific
entropy s. Since Π + ab/ρ and p(1/τ, ŝ) + abτ take initially the same value and solve the same
equation, we deduce that they are equal,

Π + ab/ρ = p(1/τ, ŝ) + abτ.

With the same argument, we have that

ê −
Π2

2ab
= e(1/τ, ŝ) −

p(1/τ, ŝ)2

2ab
.

Therefore, eliminating π with the last two identities, we obtain an expression of ê as

ê = e(1/τ, ŝ) −
p(1/τ, ŝ)2

2ab
+

(
p(1/τ, ŝ) + abτ − ab/ρ

)2

2ab
= e(1/τ, ŝ) + p(1/τ, ŝ)(τ − 1/ρ) +

ab
2

(τ − 1/ρ)2.

(44)

We observe then that as proved in [13], this expression is larger than e(ρ, ŝ) as soon as

sup
ρ̄∈[ρ,1/τ]

ρ̄2
(
∂p
∂ρ

)
s
(ρ̄, ŝ) ≤ ab. (45)

This inequality is thus the precise sense in which we have to understand the first stability condi-
tion in (30). Under this condition we conclude that

e ≥ ê ≥ e(ρ, ŝ),

and since (∂e/∂s)ρ = T > 0, we conclude that s(ρ, e) ≥ ŝ, which is the claim. �
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4 Time and space discretization

We introduce here the discretization of the two-speed relaxation system (20)-(21). We consider
a dynamical splitting methodology as previously introduced in [6] and presented in Section 2.2.

4.1 Dynamical splitting

The aim is to separate the slow scale dynamics, that will be solved with an explicit scheme, from
the fast scale dynamics that we will be solved with an implicit one. We consider a parameter
E2(t) ∈ [M2

min, 1] as defined in (17). In practice, E2(t) is recalculated at the beginning of each
timestep and is constant during the timestep. We consider the splitting between a convection
step, denoted by (C): 

∂tρ + ∂x(ρv) = 0,

∂t(ρu) + ∂x(ρuv) + E2(t) ∂xΠ = 0,

∂tE + ∂x(Ev) + E2(t) ∂x(Πv) = 0,

∂tΠ + v ∂xΠ + χc
ab
ρ
∂xv = 0,

∂tv + v ∂xv + E2(t)
a

bρ
∂xΠ = 0,

∂ta + v ∂xa = 0,

∂tb + v ∂xb = 0,

(46)

an acoustic step, denoted by (A):

∂tρ = 0,

∂t(ρu) +
(
1 − E2(t)

)
∂xΠ = 0,

∂tE +
(
1 − E2(t)

)
∂x(Πv) = 0,

∂tΠ +
(
1 − E2(t)

)
χa

ab
ρ
∂xv = 0,

∂tv +
(
1 − E2(t)

) a
bρ
∂xΠ = 0,

∂ta = 0,

∂tb = 0,

(47)

and a relaxation step, denoted by (R):
∂tρ = 0, ∂t(ρu) = 0, ∂tE = 0,

∂tΠ =
1
ε

(p − Π), ∂tv =
1
ε

(u − v), ∂ta = 0, ∂tb = 0.
(48)

The parameters χc and χa in the Π equations of (C) and (A) are two extra degrees of freedom.
In order to be consistent with the Π equation of (22) they have to satisfy

χc +
(
1 − E2(t)

)
χa = 1. (49)
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We notice however that the real consistency we need is with (1), and for that the Π equation of
(22) is not needed. Thus the relation (49) is not strictly necessary.

The above splitting means that in order to solve our relaxation system (22) over one timestep
∆t, we first solve the convective system (C) over a timestep ∆t. Then we solve the system (A)
during the timestep ∆t, with initial data the final data obtained from the resolution of the first
system. Finally, we solve (R) during the timestep ∆t, with initial data the final data obtained
from the resolution of the second system.

The eigenstructure of systems (C) and (A) is as follows.

Lemma 4.1. The characteristic speeds of system (C) are given by

ΣC =

{
v, v, v, v, v, v − E(t)

√
χc

a
ρ
, v + E(t)

√
χc

a
ρ

}
.

The system (C) is hyperbolic with all fields linearly degenerate.

Proof. Since E(t) is independent of time (during the timestep used for its resolution), the system
(C) identifies with the original relaxation system (20) where we replace Π by Π̃ = E2(t)Π,
a by ã = E(t)

√
χca and b by b̃ = E(t)

√
χcb. It is thus hyperbolic with linearly degenerate

characteristic fields. �

Notice that if
√
χca/ρ ∼ c then in the low-Mach regime E(t) ∼ M, all the eigenvalues of the

system (C) are O(|u|), and the convective system contains only the slow scale dynamics. Since
according to (49) one has 0 ≤ χc ≤ 1, the previous assumption means that a is of the order of
1/M as M → 0.

Lemma 4.2. The characteristic speeds of system (A) are given by

ΣA =

{
0, 0, 0, 0, 0,−

(
1 − E2(t)

) √
χa

a
ρ
,+

(
1 − E2(t)

) √
χa

a
ρ

}
.

The system (A) is hyperbolic with all fields linearly degenerate.

The proof of this lemma is easy and not detailed here. Note that if a is of the order of 1/M as
M → 0 (as above), then all the eigenvalues of the system (A) are of the order of the sound speed,
which corresponds to the fast scale dynamics.

4.2 Stability conditions for the splitting algorithm, and choice of a, b, χc, χa

In order to define admissible relaxation parameters a, b, χc, χa, we have to write down stability
conditions. We follow here the methodology introduced in [6], and we consider the relaxation
limits of systems (C) and (A) separately.
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Lemma 4.3. (i) Up to errors of the order O(∆t2), the solution to system (C) starting at equilib-
rium and projected back at equilibrium after a timestep ∆t verifies

∂tρ + ∂x(ρu) =
∆t
2
E2(t) ∂x

((a
b
− 1

)
∂x p

)
,

∂t(ρu) + ∂x
(
ρu2 + E2(t)p

)
=

∆t
2
E2(t) ∂x

((a
b
− 1

)
u ∂x p + βc∂xu

)
,

∂tE + ∂x
(
Eu + E2(t)pu

)
=

∆t
2
E2(t) ∂x

((a
b
− 1

)E + E2(t)p
ρ

∂x p + βcu∂xu
)
,

(50)

with

βc = χc
ab
ρ
− ρ

(
∂p
∂ρ

)
s
+ (1 − E2(t))

p
ρ

(
∂p
∂e

)
ρ

. (51)

(ii) Up to errors of the order O(∆t2), the solution to system (A) starting at equilibrium and
projected back at equilibrium after a timestep ∆t verifies

∂tρ = 0,

∂t(ρu) + (1 − E2(t))∂x p =
∆t
2

(1 − E2(t))2 ∂x
(
βa∂xu

)
,

∂tE + (1 − E2(t))∂x(pu) =
∆t
2

(1 − E2(t))2 ∂x
((a

b
− 1

) p
ρ
∂x p + βau ∂xu

)
,

(52)

with

βa = χa
ab
ρ
−

p
ρ

(
∂p
∂e

)
ρ

. (53)

The proof of this lemma is very close to that of Lemma 3.2 (with ε replaced here by ∆t/2 in
accordance with [12]) and is not provided.

Lemma 4.4. Consider a viscosity of the form
∂tρ = ∂x(α∂x p),

∂t(ρu) = ∂x
(
αu∂x p + β∂xu

)
,

∂tE = ∂x
(
α

E
ρ
∂x p + γu ∂xu + δ

p
ρ
∂x p

)
,

(54)

with E = ρu2/2 + ρe and ρ, p, e are related by a state relation, and α, β, γ, δ are (possibly state
dependent) parameters. Then this viscous form is stable if and only if

β ≥ 0 and α

(
∂p
∂ρ

)
e

+ δ
p
ρ2

(
∂p
∂e

)
ρ

≥ 0. (55)

Proof. Denoting U = (ρ, ρu, E), the system can be written

∂tU = ∂x(D∂xU), (56)
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with the matrix D given by in terms of its lines by

D =


αp′

αup′ + βu′

αE
ρ p′ + γuu′ + δ

p
ρ p′

 , (57)

where p′ and u′ stand for the derivatives of p and u with respect to U. These are linear forms,
identified with line vectors. One can check that the eigenvalues of D are

0,
β

ρ
, , α

(
∂p
∂ρ

)
e

+ δ
p
ρ2

(
∂p
∂e

)
ρ

. (58)

Writing that these eigenvalues are nonnegative we obtain (55). �

Note that Lemma 4.4 is a variant of Lemma 3.3. In Lemma 3.3 we have a particular form of
(54) since the system (25) is (54) with γ = β and δ = α. However in Lemma 3.3 it is required
that Dtη′′ is symmetric nonnegative, while here in Lemma 4.4 only the nonnegativity of the
eigenvalues of D is required. Notice that when δ = α, (55) reduces to (30) because(

∂p
∂ρ

)
e

+
p
ρ2

(
∂p
∂e

)
ρ

=

(
∂p
∂ρ

)
e

+

(
∂p
∂e

)
ρ

(
∂e
∂ρ

)
s

=

(
∂p
∂ρ

)
s

= c2 > 0. (59)

We deduce the stability conditions for the steps (C) and (A).

Lemma 4.5. (i) The relaxation limit of system (C) is stable if and only if

a ≥ b, χc
ab
ρ2 ≥

(
∂p
∂ρ

)
s
− (1 − E2(t))

p
ρ2

(
∂p
∂e

)
ρ

≥ 0. (60)

(ii) The relaxation limit of system (A) is stable if and only if

a ≥ b, χa
ab
ρ2 ≥

p
ρ2

(
∂p
∂e

)
ρ

. (61)

Proof. For (i), according to Lemma 4.3(i) the numerical viscosity in the relaxation limit of
system (C) takes the form (54) with α = a/b−1, β = βc, γ = βc, and δ = (a/b−1)E2(t). Writing
the stability conditions (55) we obtain βc ≥ 0, a/b ≥ 1, and

(
∂p
∂ρ

)
e

+ E2(t) p
ρ2

(
∂p
∂e

)
ρ
≥ 0. Noticing

that
(
∂p
∂ρ

)
e

+ E2(t) p
ρ2

(
∂p
∂e

)
ρ

coincides with the expression in (60) by identity (59), and using the
value (51) of βc, we obtain (i).
For (ii), according to Lemma 4.3(ii) the numerical viscosity in the relaxation limit of system
(A) takes the form (54) with α = 0, β = βa, γ = βa, and δ = (a/b − 1). Writing the stability
conditions (55) we obtain βa ≥ 0 and a/b ≥ 1. With the value (53) of βa it yields (61). �

We remark that the stability conditions (60), (61) can be interpreted as a splitting of the sta-
bility condition (30), since adding (60) to (61) multiplied by 1 − E2(t) and using (49), we obtain
(30).
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For reasons that will be clear in Subsection 4.3.2 we would like to take a and b such that
ab/ρ and a/(bρ) are constant in space, which means that a is proportional to ρ and b is constant.
We are thus led to the following change of unknows: we consider that

a = ρλ, b = φλ, χc =
λ2

c

λ2 , χa =
λ2

a

λ2 , (62)

where φ, λ, λc, λa > 0 are four new parameters. Then we have

ab
ρ

= φλ2,
a

bρ
=

1
φ
. (63)

The stability conditions (60), (61) become then

ρ ≥ φ, φλ2
c ≥ ρ

(
∂p
∂ρ

)
s
− (1 − E2(t))

p
ρ

(
∂p
∂e

)
ρ

≥ 0, φλ2
a ≥

p
ρ

(
∂p
∂e

)
ρ

. (64)

We need in particular ρ to be lower bounded away from 0. A natural way to satisfy (64) is to
take φ a lower bound on ρ, and then define λc, λa large enough so as to satisfy (64). The last
parameter λ can be chosen finally so as to satisfy (49), i.e.

λ2 = λ2
c + (1 − E2(t))λ2

a. (65)

For a stiffened gas law p = (γ − 1)ρe − γp∞ where γ > 1, p∞ ≥ 0 are constants, the stability
conditions (64) become

ρ ≥ φ, φλ2
c ≥

1 + E2(t)(γ − 1)
γ

ρc2 +(1−E2(t))(γ−1)p∞, φλ2
a ≥

γ − 1
γ

ρc2−(γ−1)p∞. (66)

with c2 = γ(p + p∞)/ρ.

During the evolution, the speed parameters are managed as follows. The speeds a, b are
redefined at the beginning of each timestep (where here a timestep means a succession of the
substeps of (C), (A) and (R)) and are chosen according to (62)-(64). Indeed it is possible to
choose φ, λc, λa so as to satisfy (64) for all relevant values of ρ and c that are attained during
this timestep. We then define λ by (65), and b, χc, χa by (62). We observe however that there
is a conflict for the value of a during the convective substep, because a = ρλ defined by (62)
with ρ solving (46) will not satisfy ∂ta + v ∂xa = 0. We thus consider that during the convection
step, a is transported according to ∂ta + v ∂xa = 0. Then at the end of the convection step, a is
reinitialized as a = ρ∗λ with ρ∗ the value of ρ at the end of the acoustic step, before resolving
the next (acoustic) substep. This reinitialization of a does not alter the accuracy of the scheme,
even for second-order versions.

With these definitions, when the Mach number M is small, a and b are of the order of 1/M.
It follows that δ1 in (25) is bounded, while δ2 is of the order of 1/M2. But according to (8), (9),
p remains bounded whereas ∇ · u is of the order of M2, thus all the viscous terms in (25) remain
bounded. Thus the viscosity in time due to the relaxation approximation does not grow when M
is small, which means that we do not loose accuracy in the low Mach number limit.
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4.3 Numerical schemes for each substep of the splitting

In this subsection we present the space and time discretizations for the three substeps of the
splitting method: convection, acoustic and relaxation steps.

4.3.1 Numerical scheme for the convection step (C)

For system (C) i.e. (46), we consider an explicit finite volume scheme. For any quantity g(t, x),
we denote by gn

j an approximation of the average value of the quantity g over the j-th cell at
time tn. The finite volume method reads



ρ∗j = ρn
j −

∆t
∆x

(
Fρ

j+ 1
2
− Fρ

j− 1
2

)
,

(ρu)∗ = (ρu)n −
∆t
∆x

(
Fρu

j+ 1
2
− Fρu

j− 1
2

)
,

E∗ = En −
∆t
∆x

(
FE

j+ 1
2
− FE

j− 1
2

)
,

Π∗ = Πn −
∆t
∆x

(
Fπ

j+ 1
2
− Fπ

j− 1
2

)
−

∆t
∆x

FΠ
j ,

v∗ = vn −
∆t
∆x

(
Fv

j+ 1
2
− Fv

j− 1
2

)
−

∆t
∆x

Fv
j ,

(67)

with (Fρ

j+ 1
2
), . . . , (Fv

j+ 1
2
) the conservative fluxes and (FΠ

j ), (Fv
j) the nonconservative fluxes. The

quantities (ρ∗, (ρu)∗, E∗,Π∗, v∗) are the values obtained at the end of this convective step.
We can consider the local Lax-Friedrichs (Rusanov) flux coupled with an upwind flux for

the nonconservative part. It is also possible to design more accurate fluxes that are specific
to the relaxation system. We consider a linear acoustic flux splitting similar to [24, 9]. Since
according to Lemma 4.1 the system (C) has all its fields linearly degenerate, we can also consider
an explicit Godunov flux, as in [13]. These three fluxes are detailed in Appendix B and are
compared numerically in Section 6.

4.3.2 Numerical scheme for the acoustic step (A)

For system (A) that contains the fast scale dynamics, we consider an implicit scheme. In order
to get higher accuracy we indeed propose a theta scheme. For any quantity g, we denote

gn+ 1
2 = (1 − θ) g∗ + θ g∗∗,

where g∗ is the value obtained at the end of the previous convective step and g∗∗ is the value at
the end of this acoustic step. The parameter 0 ≤ θ ≤ 1 is a constant. We consider the following
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semi-discretization in time,

ρ∗∗ = ρ∗,

(ρu)∗∗ = (ρu)∗ − ∆t
(
1 − E2(t)

)
∂xΠ

n+ 1
2 ,

E∗∗ = E∗ − ∆t
(
1 − E2(t)

)
∂x

(
Πn+ 1

2 vn+ 1
2

)
,

Π∗∗ + θ∆t
(
1 − E2(t)

)
χa

a∗b∗

ρ∗
∂xv∗∗ = Π∗ − (1 − θ) ∆t

(
1 − E2(t)

)
χa

a∗b∗

ρ∗
∂xv∗,

v∗∗ + θ∆t
(
1 − E2(t)

) a∗

b∗ρ∗
∂xΠ

∗∗ = v∗ − (1 − θ) ∆t
(
1 − E2(t)

) a∗

b∗ρ∗
∂xΠ

∗.

(68)

Then, plugging the equation on v∗∗ into the equation on Π∗∗, we get

Π∗∗ − θ2∆t2
(
1 − E2(t)

)2
χa

a∗b∗

ρ∗
∂x

(
a∗

b∗ρ∗
∂xΠ

∗∗

)
= R(Π∗, v∗), (69)

where the right-hand side is given by

R(Π∗, v∗) = Π∗ + θ(1 − θ)∆t2
(
1 − E2(t)

)2
χa

a∗b∗

ρ∗
∂x

(
a∗

b∗ρ∗
∂xΠ

∗

)
− ∆t

(
1 − E2(t)

)
χa

a∗b∗

ρ∗
∂xv∗.

Here we observe that the quantities a∗b∗/ρ∗ = φλ2, a∗/(b∗ρ∗) = 1/φ are still constant in space.
Consequently, and as desired, the elliptic equation (69) has constant coefficients.

Then we consider central fluxes to approximate both first and second-order derivatives at
second-order accuracy. This is possible because the implicit time discretization ensures uncon-
ditional stability. For any discrete quantity f = ( f j) j, we define

D2h( f ) =

(
f j+1 − f j−1

2∆x

)
j
, Dh2( f ) =

(
f j+1 − 2 f j + f j−1

∆x2

)
j
.

We first solve the Π equation, which writes in the fully discrete case(
Id − θ2∆t2

(
1 − E2(t)

)2
χa λ

2Dh2

)
Π∗∗ = Rh(Π∗, v∗), (70)

with

Rh(Π∗, v∗) =

(
Id + θ(1 − θ)∆t2

(
1 − E2(t)

)2
χa λ

2Dh2

)
Π∗ − ∆t

(
1 − E2(t)

)
χa φλ

2D2h(v∗).

Then we compute Πn+ 1
2 = (1 − θ) Π∗ + θΠ∗∗ and we obtain v∗∗ as

v∗∗ = v∗ − ∆t
(
1 − E2(t)

) 1
φ

D2h(Πn+ 1
2 ), (71)

and vn+ 1
2 = (1 − θ) v∗ + θ v∗∗. Finally (ρu)∗∗ and E∗∗ are obtained by

(ρu)∗∗ = (ρu)∗ − ∆t
(
1 − E2(t)

)
D2h

(
Πn+ 1

2

)
, (72)

E∗∗ = E∗ − ∆t
(
1 − E2(t)

)
D2h

(
Πn+ 1

2 vn+ 1
2

)
. (73)

The acoustic step consists in solving successively (70), (71), (72), (73). Let us emphasize again
that the implicit linear system to be solved (70) has constant coefficients.
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4.3.3 Numerical scheme for the relaxation step (R)

The relaxation step is usually replaced by a projection step [12, 13, 15]: Πn+1 = p∗∗ and vn+1 =

u∗∗. In the following we rather consider the generalized projection step

ρn+1 = ρ∗∗,

(ρu)n+1 = (ρu)∗∗,

En+1 = E∗∗,

Πn+1 = Π∗∗ + ω
(
p∗∗ − Π∗∗

)
,

vn+1 = v∗∗ + ω
(
u∗∗ − v∗∗

)
,

(74)

with ω ∈ (0, 2]. When ω = 1 we recover the projection, and when ω > 1 we obtain the over-
relaxation scheme studied in [16] and used in Lattice Boltzmann methods [7, 8]. It allows to
reduce the numerical diffusion generated by the splitting method.

5 The scheme in several dimensions

Here we extend our relaxation method to several dimensions. As presented in the introduction,
the Euler system tends in the low-Mach limit to the incompressible Euler equations with advec-
tion of the density. Standard schemes generate a too large diffusion error on the density (as in
the one-dimensional case) and also on the velocity field, which breaks the preservation of the
divergence free constraint.

In several dimensions, generalizing (20), (21) we consider the relaxation system

∂tρ + ∇ · (ρv) = 0,

∂t(ρu) + ∇ · (ρu ⊗ v) + ∇Π = 0,

∂tE + ∇ · (Ev) + ∇ · (Πv) = 0,

∂t(ρΠ) + ∇ · (ρΠv) + ab∇ · v =
ρ

ε
(p − Π) ,

∂t(ρv) + ∇ · (ρv ⊗ v) +
a
b
∇Π =

ρ

ε
(u − v) ,

∂ta + v · ∇a = 0,

∂tb + v · ∇b = 0,

(75)

where E = ρ|u|2/2 + ρe and p ≡ p(ρ, e) is the state law. It leads to the following diffusive
approximation of the Euler system

∂tρ + ∇ · (ρu) = ε∇ ·
((a

b
− 1

)
∇p

)
,

∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = ε∇ ·

((a
b
− 1

)
u ⊗ ∇p +

ab − ρ2c2

ρ
∇ · u Id

)
,

∂tE + ∇ · (Eu + pu) = ε∇ ·

((a
b
− 1

) E + p
ρ
∇p +

ab − ρ2c2

ρ
u∇ · u

)
.

(76)
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We observe that the diffusion operator in (76) involves fluxes proportional to the gradient of the
pressure and the divergence of the velocity. Consequently, as in the 1d case, since a/b − 1 is
bounded, ab−ρ2c2 is of the order of 1/M2 and according to (8), (9), p remains bounded whereas
∇ · u is of the order of M2, one has that all the viscous terms in (76) remain bounded. Thus the
relaxation approximation does not introduce excessive diffusion in the low-Mach regime.

The numerical scheme to solve (75) is the direct extension of the one-dimensional one. It is
based to the same splitting method. The first splitting step is the convection step, which consists
in solving 

∂tρ + ∇ · (ρv) = 0,

∂t(ρu) + ∇ · (ρu ⊗ v) + E2(t)∇Π = 0,

∂tE + ∇ · (Ev) + E2(t)∇ · (Πv) = 0,

∂tΠ + v · ∇Π + φλ2
c ∇ · v = 0,

∂tv + v · ∇v +
E2(t)
φ
∇Π = 0,

(77)

where a and b are still chosen satisfying (62)-(65). This system is solved using the one di-
mensional finite volume fluxes presented in Subsection 4.3.1 to compute the flux in the normal
direction at each interface between two discretization cells. From the data (ρn

j , (ρu)n
j , E

n
j ,Π

n
j , v

n
j)

at time tn and for all cell j, we denote (ρ∗j , (ρu)∗j , E
∗
j ,Π

∗
j , v
∗
j) the values obtained at the end of this

first substep.
Then we solve the acoustic system

∂tρ = 0,

∂t(ρu) +
(
1 − E2(t)

)
∇Π = 0,

∂tE +
(
1 − E2(t)

)
∇ · (Πv) = 0,

∂tΠ +
(
1 − E2(t)

)
φλ2

a ∇ · v = 0,

∂tv +

(
1 − E2(t)

)
φ

∇Π = 0.

(78)

As in the 1D case, we consider an implicit θ-scheme for the elliptic equation satisfied by
Π obtained after plugging the v equation into the Π equation. Here, we also restrict our-
selves to uniform Cartesian meshes in both spatial directions and consider second-order cen-
tered discretizations of the divergence and the gradient. Performing the same manipulations
as in Subsection 4.3.2, we obtain the same numerical scheme (70), (71), (72), (73) to get
(ρ∗∗j , (ρu)∗∗j , E

∗∗
j ,Π

∗∗
j , v

∗∗
j ) from (ρ∗j , (ρu)∗j , E

∗
j ,Π

∗
j , v
∗
j). We first solve the following discrete el-

liptic equation with constant coefficients

Π∗∗j − θ
2 ∆t2

(
1 − E2(t)

)2
λ2

a Divh(∇hΠ∗∗j ) = R(Π∗j , v
∗
j),

with

R(Π∗j , v
∗
j) = Π∗j + θ(1 − θ) ∆t2

(
1 − E2(t)

)2
λ2

a Divh(∇hΠ∗j) − ∆t
(
1 − E2(t)

)
φλ2

a Divh v∗j ,
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where Divh and ∇h are the standard finite difference second-order discretizations of the diver-
gence and the gradient operators. Then we compute Πn+ 1

2 = (1− θ) Π∗ + θΠ∗∗ and we obtain v∗∗
with

v∗∗j = v∗j − ∆t
(
1 − E2(t)

) 1
φ
∇hΠ

n+ 1
2

j , (79)

and compute vn+ 1
2 = (1 − θ) v∗ + θ v∗∗. Finally (ρu)∗∗ and E∗∗ are obtained by

(ρu)∗∗j = (ρu)∗j − ∆t
(
1 − E2(t)

)
∇hΠ

n+ 1
2

j , (80)

E∗∗j = E∗j − ∆t
(
1 − E2(t)

)
Divh(Π

n+ 1
2

j vn+ 1
2

j ). (81)

After that, the relaxation step is identical to the one-dimensional one (74).

6 Numerical results

In this section we carry out several test cases to evaluate the numerical properties of our new
semi-implicit scheme. It will be referred as the SI two-speed method (semi-implicit two-speed
method).

We start with one-dimensional test-cases in Subsections 6.1, 6.2, 6.3 that show that the
scheme well captures the material wave in the low-Mach regime. We compare the results
with the schemes presented in the introductory section 2: implicit Jin-Xin method and SI Suli-
ciu method (semi-implicit Suliciu method). We also compare these schemes with an explicit
method.

Then we consider two-dimensional test-cases in Subsections 6.4 and 6.5. In two dimensions,
the low-Mach regime is more difficult to capture as the velocity field is no longer necessarily
constant but is approximately divergence free.

6.1 Contact waves (1d)

Steady contact wave. We first consider a steady contact discontinuity given by

ρ(t, x) = 1Ix<x0 + 0.1 1Ix>x0 , u(t, x) = 0, p(t, x) = 1,

where x0 belongs to the computational domain and 1I denotes the characteristic function of a set.
It is a steady solution to the Euler system. We consider the perfect gas law: p = (γ − 1)ρe with
γ = 1.4. We solve the system on the time interval [0,T f ] with T f = 10.

For all the numerical schemes except the implicit Jin-Xin scheme presented in Subsection
2.1, the timestep is computed by the CFL condition associated with the explicit convection
part of the scheme: ∆t = 0.5 h

supx λmax(x) , where h is the space step and λmax(x) the maximal

characteristic speed of the system. For the implicit Jin-Xin scheme we take ∆t = 20 h
λmax

. The
relaxation parameters are chosen as follows:

Implicit Jin-Xin: λ = 3.8,

Semi-implicit Suliciu: λc = 1.2, λa = 0.8,

Semi-implicit two-speed: λc = 3.5, λa = 2.6, φ = 0.099,
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and the splitting parameter E2(t) is computed with (17), with Mmin = 10−4. We choose the
classical first-order scheme ω = 1 and θ = 1.

We compare the accuracy of the different schemes in Table 1. We observe that the explicit
Rusanov and the implicit Jin-Xin scheme are not accurate compared with the other schemes.
Both the semi-implicit Suliciu (SI Suliciu) and the semi-implicit two-speed relaxation (SI two-
speed) with the Rusanov solver for the explicit convection step provide better results. Using
the linear acoustic flux splitting (FVS) or the Godunov scheme, we capture exactly the contact
discontinuity.

In Table 2 we provide the timestep associated with the different schemes.We notice that since
the velocity vanishes, E(t) takes the minimal value. This shows that the SI schemes allow to use
larger timesteps than the implicit Jin-Xin method with a similar or higher accuracy. We observe
also that the SI two speed relaxation scheme allows to use on this test case a timestep three times
larger than the SI Suliciu method. This difference comes from to the eigenvalues. The factor
1
ρ in the maximal wave speed of the Suliciu relaxation model induces difficulties for strongly
varying density with low density. We also remark that as expected the Xin-Jin implicit scheme
is very diffusive since the time scheme admits an error homogeneous to c on the density.

In Table 3 we compare the condition numbers of the matrices associated with the elliptic
equations solved in the acoustic steps of the SI Suliciu and the SI two-speed relaxation schemes.
For the test-case considered so far, the condition number is actually slightly larger for the SI
two-speed (4.25e7) than for the SI Suliciu (3.75e7) but this is because the timestep is 3.5 larger.
We obtain the same condition number for the two methods with a timestep 3 times larger for
the SI two-speed relaxation method. For the same timestep, the condition number of the SI
two-speed method is ten times smaller. Furthermore, since the matrix has constant coefficients
in the SI two-speed relaxation method, it enables us to avoid assembling the matrix at each time
iteration. This result shows that for this test case, the SI two-speed relaxation method is more
efficient than the SI Suliciu one.

Smooth contact wave. The second test is a moving smooth contact, with initial condition

ρ(0, x) = 0.1 +
1

5σ
√
π

e−(x−x0)2/σ2
, u(0, x) = 0.002, p(0, x) = 1,

with σ = 0.02. We consider two different pressure laws: the perfect gas law and the stiffened
gas law p = (γ − 1)ρe − γp∞ with p∞ = 10 and γ = 1.4. In both cases, the exact solution is the
advection of the density at constant velocity u = 0.002. We solve the system up to the final time
T f = 2.

The timestep is chosen as described in the previous test-case. The relaxation parameters are
taken as follows:

(perfect gas law) (stiffened gas law)

Semi-implicit Suliciu: λc = 3.2, λa = 2.2, λc = 10, λa = 6,

Semi-implicit two-speed: λc = 3.6, λa = 3.2, φ = 0.098, λc = 12, λa = 9, φ = 0.098.

As before we use ω = 1 and θ = 1.

26



N=250 N=500 N=1000 N=2000

Explicit (Rusanov)
error 0.31 0.26 0.22 0.18
order - 0.25 0.24 0.29

Explicit (FVS)
error 0.0 0.0 0.0 0.0
order - - - -

Implicit Jin-Xin
error 0.62 0.63 0.61 0.55
order 0 0 0 0.15

SI Suliciu (Rusanov)
error 3.8E−2 3.2E−2 2.6E−2 2.2E−2

order - 0.25 0.3 0.24

SI two-speed (Rusanov)
error 3.4E−2 3.0E−2 2.6E−2 2.2E−2

order - 0.25 0.23 0.24

SI two-speed (FVS)
error 0.0 0.0 0.0 0.0
order - - - -

SI two-speed (Godunov)
error 0.0 0.0 0.0 0.0
order - - - -

Table 1: (Stationary contact wave) Numerical error (L2 norm) as function of the number of cells
N for the different schemes.

λmax ∆t
Explicit max

(
|u − c|, |u + c|

)
2.7E−4

Implicit Jin-Xin - 0.0052
SI Suliciu max

(
|u − E(t)λc/ρ|, |u + E(t)λc/ρ|

)
0.83

SI two-speed max
(
|v − E(t)λc|, |v + E(t)λc|

)
2.8

Table 2: (Stationary contact wave) Maximal characteristic speed λmax of the explicit part and
timesteps ∆t used in the stationary contact wave test-case for the different schemes.

∆t condition number
SI Suliciu 0.83 3.75E7

SI two-speed 2.8 4.25E7

SI two-speed 2.5 3.5E7

SI two-speed 0.82 3.7E6

Table 3: (Stationary contact wave) Condition numbers of the matrices of the discrete elliptic
equations for the semi-implicit relaxation schemes.

Tables 4 and 5 show that the SI two-speed and the SI Suliciu method capture the transported
density with the same accuracy as the explicit scheme with the FVS solver. Like Lagrange-
remap solvers, the FVS solver has been actually constructed to accurately resolve the material
wave. These results are obtained with the timestep showed in Table 6. For the SI two-speed
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method, the timestep is 1000 times larger than for the explicit scheme. We remark that it is
also seven times larger that the timestep used by the SI Suliciu scheme. In Table 7 we show the
condition numbers of the matrices associated with the elliptic equations in the implicit step of
the semi-implicit schemes, when the number of cells is 1000. We observe that using the same
timestep, the condition number of the SI two-speed method is ten times smaller than for the
SI Suliciu method. For the SI Suliciu method, the condition number is worsened by the large
variation of the density (between 0.1 and 6) in this test case.

For the SI two-speed relaxation method, we now consider different values of the initial ve-
locity u0. We take the final time as T f = 0.05/u0. Consequently the density moves over the
same distance for all initial velocities. The scheme can be considered as uniformly accurate in
the low-Mach regime if the numerical error remains bounded as u0 tends to 0. Table 8 shows
that the scheme is uniformly accurate and that the number of iterations is constant. The CPU
cost is nearly constant as the Mach number decreases. Only the condition number of the implicit
step and consequently the number of iterations of the linear solver may increase as the timestep
increases. Indeed the elliptic operator is the sum of the identity and the Laplacian. When the
Mach number tends to zero the operator tends to the Laplacian. Thus the condition number de-
pends on the Mach number but is bounded by that of the Laplacian. However, using appropriate
preconditioning like the multi-grid method, we could expect a uniform CPU cost whatever the
Mach number is.

N = 250 N = 500 N = 1000 N = 2000

Explicit (Rusanov)
error 0.77 0.67 0.53 0.38
order - 0.2 0.34 0.48

Explicit (FVS)
error 1.63E−2 8.3E−3 4.1E−3 2.0E−3

order - 0.96 1.02 1.03

SI Suliciu (Rusanov)
error 5.0E−2 2.54E−2 1.3E−2 6.55E−3

order - 0.97 0.98 0.99

SI two-speed (Rusanov)
error 1.1E−1 6.5E−2 3.4E−2 1.7E−2

order - 0.76 0.93 1.0

SI two-speed (FVS)
error 1.55E−2 7.8E−3 3.9E−3 2.0E−3

order - 0.99 1.0 1.0

SI two-speed (Godunov)
error 1.54E−2 7.8E−3 3.9E−3 2.0E−3

order - 1.0 1.0 1.0

Table 4: (Smooth contact wave, Perfect Gas law) Numerical error (L2 norm) as function of the
number of cells N for the different schemes with the perfect gas law.

6.2 Acoustic waves (1d)

In this section we evaluate how the SI two-speed scheme captures acoustic waves.
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N = 250 N = 500 N = 1000 N = 2000

Explicit (Rusanov)
error 0.88 0.83 0.75 0.64
order - 0.1 0.15 0.23

Explicit (FVS)
error 1.63E−2 8.3E−3 4.1E−3 2.0E−3

order - 0.97 1.02 1.03

SI Suliciu (Rusanov)
error 4.85E−2 2.4E−2 1.2E−2 6.25E−3

order - 1.01 1.0 0.95

SI two-speed (Rusanov)
error 0.1 5.8E−2 3.0E−2 1.56E−2

order - 0.78 0.95 0.95

SI two-speed (FVS)
error 1.5E−2 7.8E−3 3.9E−3 1.95E−3

order - 0.94 1.0 1.0

SI two-speed (Godunov)
error 1.5E−2 7.8E−3 3.9E−3 1.97E−3

order - 1.0 1.0 1.02

Table 5: (Smooth contact wave, Stiffened Gas law) Numerical error (L2 norm) as function of the
number of cells N for the different schemes with the stiffened gas law.

Scheme λmax ∆t (PG law) ∆t (SG law)
Explicit max(|u − c|, |u + c|) 1.3E−4 2.7E−5

SI Suliciu max(|u − E(t)λc/ρ|, |u + E(t)λc/ρ|) 0.0038 0.004
SI two-speed max(|v − E(t)λc|, |v + E(t)λc|) 0.029 0.03

Table 6: (Smooth contact wave) Maximal characteristic speed λmax of the explicit part and
timesteps ∆t used in the smooth contact wave test-case for the different schemes with the perfect
gas law (PG law) and the stiffened gas law (SG law).

Weakly colliding pulses. We consider the collision between two acoustic pulses in the low
Mach regime. The initial condition is taken as

ρ(t = 0, x) = 0.955 + Mref

(
1 − cos

(
2πx
L

))
,

u(t = 0, x) = − sign(x)
√
γ

(
1 − cos

(
2πx
L

))
,

p(t = 0, x) =
1

M2
ref

(
1 + γMref

(
1 − cos

(
2πx
L

)))
,

over the domain [−L, L] with L = 2
Mref

, Mref = 1
11 and a perfect gas law with γ = 1.4. Here it is

interesting to recall a particular property of the gas dynamics equations. Denoting p̃ = p− p and
ẽ = e + p/ρ with p a constant, the gas dynamics equations for the state law p(ρ, e) is equivalent
to the gas dynamics equations for the state law p̃(ρ, ẽ). When the state law p(ρ, e) is a perfect
gas law, one has that p̃(ρ, ẽ) is a stiffened gas law with p∞ = p. Here taking p = 1/M2

ref,
this algebraic transformation removes the constant value 1/M2

ref in the pressure, and we see that
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Schemes ∆t condition number
SI Suliciu 0.0038 23000

SI two-speed 0.029 23000
SI two-speed 0.0038 380

Table 7: (Smooth contact wave) Condition numbers of the matrices of the discrete elliptic equa-
tions for the semi-implicit relaxation schemes (with 1000 cells).

SI two-speed (Rusanov) SI two-speed (FVS)/(Godunov)
Error ∆t Error ∆t

u0 = 0.1 0.26 6.0E−4 0.046 6.0E−4

u0 = 0.01 0.26 0.006 0.046 0.006
u0 = 0.001 0.26 0.06 0.046 0.06

Table 8: (Smooth contact wave) Numerical errors (1000 cells).

this test case can be better interpreted in terms of a stiffened gas law. The initial data are not
well-prepared, thus non-negligible acoustic waves are emitted. We take ω = 1 and θ = 1 as
previously, and the relaxation parameters are taken as

Semi-implicit Suliciu: λc = 12.5, λa = 8.5,

Semi-implicit two-speed: λc = 12.0, λa = 8.0, φ = 0.99,

In Figure 1 (left) we compare the SI two-speed and the SI Suliciu methods computed with 1100
cells with the explicit Rusanov solution and a reference. We note that the two schemes capture
the solution correctly. However the two relaxation semi implicit schemes are more diffusive
that the explicit one. This numerical diffusion comes from the pressure derivative term ∂x p
that appears in the diffusion operator on the three unknowns in (25), and that is not bounded
here since the data are not well-prepared. In Figure 1 (right) we observe that the semi-implicit
schemes for both Suliciu and two-speed relaxation methods allow to use timesteps 3 and 10
times larger than their explicit versions. Thus the use of semi-implicit schemes allows to reduce
the CPU time. For this test case the CPU time for the explicit scheme is 8 s compared to 2.4 s
for both semi-implicit schemes.

Acoustic waves. We now consider a similar test case but with a larger Mach number. The
initial data is given by

ρ(t = 0, x) = 2.0+
1

20
√
σ

e−(x−x0)2/σ2
, u(t = 0, x) = 0, p(t = 0, x) = 1.0+

1
10
√
σ2

e−(x−x0)2/σ2
2 ,
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Figure 1: (Weakly colliding pulses.) Left: Density at time t = 1.63 for the SI Suliciu (red), the SI
two-speed method (blue) and for the explicit Rusanov (orange) with 2200 cells. Right: Evolution
of the timestep ∆t over iterations for the explicit scheme (orange) and the semi-implicit Suliciu
scheme (red) and semi-implicit two-speed scheme (blue).

on the domain [0, 2] with σ = 0.02 and σ2 = 0.08. We take 800 cells, ω = 1, θ = 1 and the
relaxation parameters

Semi-implicit Suliciu: λc = 2, λa = 1.4,

Semi-implicit two-speed: λc = 0.8, λa = 0.55, φ = 1.98.

At initial time the Mach number vanishes. It then increases and stabilizes around the value 0.6.
If the parameter Mmin in (17) is chosen too small, large timesteps are induced and the dynamics
may not be well captured at the beginning. Thus we take Mmin = 0.1. In Figure 2 we compare the
SI Suliciu and SI two-speed relaxation schemes with the explicit Rusanov scheme. We observe
on the density, velocity and pressure values that the two semi implicit schemes are a little more
dissipative on acoustic waves. Thi is again because the schemes add dissipation in time on such
waves. But the acoustic waves are captured with a good accuracy at the end. We also remark
that the contact wave on density is captured with a very good accuracy compared to the classical
explicit Rusanov scheme as expected. For this simulation the CPU time is 2.42 s for Rusanov,
1.85 s for Suliciu and 1.63 s for the two speed relaxation scheme. At the end for a CPU time
divided by 1.5 the new scheme captures much better the contact wave and on the acoustic waves
it has almost the same accuracy as the classical scheme. We remark also for this test case that
the new relaxation method is a little bit more accurate than the Suliciu one.

6.3 Shock tube test-case (1d)

Mach variation. We consider a shock tube test-case with initial data

ρ(t = 0, x) = 1Ix<0 + 0.125 1Ix>0, u(t = 0, x) = 0, p(t = 0, x) = 1Ix<0 + (1 − M) 1Ix>0,

on the domain Ω = [−1, 1] with the perfect gas law (γ = 1.4). As in the previous test case, one
could also interpret the data as a stiffened gas law by removing the constant 1 to the pressure.
The initial data are again not well prepared. We consider the following values of the Mach
number: M = 0.9, 0.2, or 0.05. We solve the Euler system up to the final time T f = 0.3 for
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Figure 2: (Acoustic waves) Left Top: Density at time t = 0.8 (800 cells). Right Top: velocity
at time t = 0.8 (800 cells). Left Bottom: Pressure at time t = 0.8 (800 cells). Right Bottom.
∆t evolution. Black: fine solution, orange: Rusanov solution, red: SI Suliciu solution, blue: SI
two-speed solution.

M = 0.9 and T f = 0.15 in the other cases (we reduce the final time because the waves go faster).
For the semi-implicit Suliciu and two-speed relaxation schemes, we take Mmin = M/2. We
choose ω = 1 and θ = 1.

Tables 9 (M = 0.9), 10 (M = 0.2) and 11 (M = 0.05) show the numerical errors obtained
for the different schemes on the three unknowns ρ, u and p when varying the number of cells N.
The first remark is that, as in the previous test-cases, the classical Rusanov scheme is the less
accurate scheme for the density while the relaxation schemes are the most accurate (especially
the schemes based of FVS or Godunov solvers for the two-speed relaxation). Table 12 gives the
timestep used for the different schemes.

Contrary to the contact wave test-cases (Subsection 6.1), the solution involves pressure and
velocity discontinuities, which tend to be smoothed by the implicit part of the schemes. For
M = 0.2 in Table 10, we remark that the SI two-speed schemes (FSV and Godunov) and the
explicit FVS scheme are 1.8 times more precise than the explicit scheme (Rusanov). They are
approximately 45% less accurate on the velocity and 20% for the pressure but they use a timestep
6 times larger. For M = 0.05 (Table 11), the SI two-speed schemes (FSV and Godunov) and the
explicit FVS scheme are 3 times more precise on the density than the explicit scheme (Rusanov).
They are approximately twice less accurate on the velocity and twice less for the pressure but
this is using a timestep 25 times larger.

The SI two-speed scheme has the expected behavior. In the low-Mach regime, as the
timestep is large compared to the time scale of the acoustic waves, these latter are not well
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resolved and large errors are made on the velocity and the pressure. Nevertheless we still keep
a good accuracy on the density. These results show that the scheme allows to filter the fast scale
dynamics while keeping a good accuracy on the slow scale one.

For a Mach number close to 1 (M = 0.9) in Table 9, the SI two-speed method (Go-
dunov/FVS) has almost the same accuracy as the explicit (Rusanov) scheme. We also note that
the SI Suliciu (Rusanov) and SI two speed (Rusanov) have the same accuracy on the density.
The SI Suliciu (Rusanov) is yet more accurate on the pressure and less accurate on the velocity.
However, the solution with the SI Suliciu scheme uses a timestep 3 times smaller.

Table 13 shows the condition numbers of the matrices involved in the implicit part of the
schemes. As for the contact wave test-case, the condition number is smaller for the SI two-
speed method than for the SI Suliciu one at equal timestep. This implies a reduction of the
number of iterations of the iterative solvers of the associated linear system. Conversely, taking
the same number of iterations, this enables to use larger timesteps.

Finally, concerning the spatial solver, the results indicate that in low-Mach regime (M =

0.05), the SI two-speed with FVS is more accurate that the SI two-speed with Godunov or
Rusanov solvers. However, it seems a little bit less stable. For a Mach number close to one,
using the Godunov solver leads to a better accuracy.

Explicit Suliciu Two speed relaxation
Rusanov FVS Rusanov Rusanov Godunov FVS

N = 250
ρ 3.66E−2 3.34E−2 4.55E−2 4.81E−2 3.37E−2 3.53E−2

u 1.02E−1 1.00E−1 1.92E−1 1.58E−1 1.16E−1 1.18E−1

p 3.70E−2 3.6E−2 4.93E−2 5.37E−2 3.7E−2 3.93E−2

N = 500
ρ 2.73E−2 2.40E−2 3.54E−2 3.65E−2 2.49E−2 2.62E−2

u 6.70E−2 6.65E−2 1.50E−2 1.21E−1 9.36E−2 9.53E−2

p 2.48E−2 2.37E−2 3.52E−2 3.81E−2 2.58E−2 2.75E−2

N = 1000
ρ 2.01E−2 1.75E−2 2.67E−2 2.70E−2 1.79E−2 1.88E−2

u 5.09E−2 4.91E−2 1.05E−1 8.00E−2 5.78E−2 5.88E−2

p 1.65E−2 1.5E−2 2.24E−2 2.59E−2 1.68E−2 1.80E−2

Table 9: (Shock tube, M = 0.9) Numerical errors (L2 norm) at final time T f = 0.3. For the SI
two-speed method: λc = 3.2, λa = 2.6 and φ = 0.099. For the SI Suliciu method: λc = 1.5,
λa = 1.2.

High-order extension In the previous test-case, we observe that the SI two-speed scheme
computes less accurately the acoustic dynamics in the low-Mach regime. This mainly results
from the errors generated by the first-order in time schemes for the relaxation and acoustic parts
as well as the use of a large timestep. The two processes induce diffusion errors in time on the
acoustic waves.

In order to better capture the acoustic dynamics, we implement the following higher-order
extension of the SI two-speed method. The explicit transport part is solved with a SPP-RK2
scheme and a MUSCL strategy [1, 18]. For the implicit acoustic part, the parameter θ is taken
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Explicit SI Suliciu SI two speed
Rusanov FVS Rusanov Rusanov Godunov FVS

N = 250
ρ 8.29E−2 4.64E−2 6.31E−2 6.15E−2 5.32E−2 5.17−2

u 1.61E−1 1.55E−1 2.68E−1 2.51E−1 2.44E−1 2.15E−1

p 1.03E−2 9.83E−3 1.19E−2 1.56E−2 1.48E−2 1.37E−2

N = 500
ρ 6.83E−2 3.48E−2 4.94E−2 4.92E−2 3.61E−2 3.57E−2

u 1.29E−1 1.24E−1 2.22E−1 2.05E−1 1.99E−1 1.74E−1

p 8.13E−3 7.83E−3 9.46E−3 1.24E−2 1.21E−2 1.12E−2

N = 1000
ρ 5.72E−2 2.94E−2 4.12E−2 4.12E−2 2.97E−2 2.95E−2

u 1.00E−1 9.60E−2 1.79E−2 1.62E−1 1.57E−1 1.36E−1

p 6.30E−3 6.05E−3 7.53E−3 1.00E−2 9.74E−3 9.00E−3

Table 10: (Shock tube, M = 0.2) Numerical errors (L2 norm) at final time T f = 0.15. For the
SI two-speed method: λc = 3.0, λa = 2.5 and φ = 0.099. For the SI Suliciu method: λc = 1.5,
λa = 1.2.

Explicit SI Suliciu SI two-speed
Rusanov FVS Rusanov Rusanov Godunov FVS

N = 250
ρ 9.02E−2 4.25E−2 5.25E−2 5.24E−2 5.54E−2 5.25E−2

u 1.49E−1 1.43E−1 3.06E−1 3.09E−1 3.19E−1 3.21E−1

p 2.71E−3 2.63E−3 4.59E−3 5.56E−3 6.70E−3 6.10E−3

N = 500
ρ 7.44E−2 2.50E−2 3.74E−2 3.67E−2 2.54E−2 2.49E−2

u 1.07E−1 1.03E−1 2.41E−2 2.27E−1 2.28E−2 2.08E−1

p 2.15E−3 2.09E−3 3.52E−3 4.40E−3 4.40E−2 4.15E−3

N = 1000
ρ 6.23E−2 2.21E−2 3.11E−2 3.10E−2 2.11E−2 2.21E−2

u 7.35E−2 7.12E−2 1.71E−2 1.58E−1 1.59E−1 1.41E−1

p 1.75E−3 1.7E−3 2.84E−3 3.68E−3 3.67E−3 3.42E−3

Table 11: (Shock tube, M = 0.05) Numerical errors (L2 norm) at final time T f = 0.15. For the
SI two-speed method: λc = 3.2, λa = 2.6 and φ = 0.099. For the SI Suliciu method: λc = 1.5,
λa = 1.2.

λmax ∆t (M = 0.9) ∆t (M = 0.2) ∆t (M = 0.05)
Explicit max(|u − c|, |u + c|) 9.12E−4 6.3E−4 6.0E−4

SI Suliciu max(|u − E(t)λc/ρ|, |u + E(t)λc/ρ|) 2.2E−4 1.4E−3 6.0E−3

SI two-speed max(|v − E(t)λc|, |v + E(t)λc|) 5.2E−4 5.5E−3 1.6E−2

Table 12: (Shock tube) Timesteps ∆t for the different Mach number M and for the different
schemes for N = 500 cells.

as 0.5 6 θ < 1. For θ = 0.5 we get the second-order Crank-Nicolson scheme. Finally, for the
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∆t Condition number Nb iterations for convergence

M = 0.2
SI Suliciu 1.4E−3 45-50 70-85

SI two-speed 5.5E−3 40-55 70-85
SI two-speed 1.5E−3 3-3.6 19-22

M = 0.05
SI Suliciu 6.0E−3 570-700 290-700

SI two-speed 1.6E−2 250-350 210-520
SI two-speed 6.0E−3 35-52 75-90

Table 13: (Shock tube) Condition numbers and number of iterations to reach convergence for
the two semi-implicit relaxation schemes.

relaxation part, the parameter ω can be taken strictly larger than 1.

However, when approaching second-order accuracy with θ < 1 and ω > 1, the scheme
generates oscillations, that are larger for larger timesteps. These oscillations may induce insta-
bilities. Consequently, taking a smaller timestep is necessary if one wants to capture low Mach
acoustic waves.

In Figure 3 we compare the second-order explicit scheme (with SPP-RK2/MUSCL), the SI
two-speed scheme with only a second-order explicit transport part and the SI two-speed scheme
with second-order explicit transport part and θ = 0.7, ω = 2. We consider the previous Shock
Tube test-case with M = 0.05. In order to get a smaller timestep we take Mmin = 0.2. Conse-
quently the solution obtained with the semi-implicit scheme uses a 5 times larger timestep than
the explicit scheme instead of 20 times in the results of Table 11.

All three schemes correctly capture the contact wave. The explicit scheme is the most ac-
curate on the acoustic waves. The full second-order SI two-speed scheme is almost as accurate
as the explicit scheme but the result is obtained with 5 times less time iterations. As regards the
CPU time, this scheme is three times faster than the explicit one while obtaining a similar accu-
racy. Indeed the implicit solver converges quite fast at each iteration and the main cost comes
from the explicit MUSCL part.

Note that the scheme is not fully second-order accurate since θ = 0.7 instead of 0.5. Consid-
ering smaller values of θ generates a lot of oscillations. However, considering the scheme with
intermediate θ and taking a smaller timestep but still larger than what the CFL condition would
demand, we get a numerical method that is able to capture the acoustic waves and which is less
costly than the explicit one .

6.4 Smooth contact wave (2d)

The first two-dimensional test case concerns the resolution of contact waves in the low-mach
regime.
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Figure 3: (Shock tube, M = 0.05, high-order extension) Left: Second-order explicit scheme
with FVS solver (ρ, u and p). Right: SI two-speed scheme with second-order Godunov solver
(ρ, u and p). Parameters: θ = 1, ω = 1. Bottom: Semi-implicit second order Godunov scheme
(ρ, u and p). Parameters: θ = 0.7, ω = 2.0. Relaxation parameters: λc = 3.2, λa = 2.6 and
φ = 0.099. Computed with N = 500 cells.

With a constant velocity field. We first consider a moving smooth contact wave with constant
velocity. The initial data are given by

ρ(t = 0, x) = 0.1 +
1

5σ
√
π

e−‖x−x0‖
2/2σ2

, u1(t = 0, x) = u2(t = 0, x) = 0.01, p(t = 0, x) = 1,

on the domain Ω = [0, 1]2 with σ = 0.05 and the perfect gas law (γ = 1.4). The solution to this
problem consists in the advection of the density at constant velocity u0. The numerical solution
is computed up to time T f = 1. As for the 1D case we use θ = 1 and ω = 1. For the relaxation
parameters we take

Semi-implicit Suliciu: λc = 1.8, λa = 1.3,

Semi-implicit two-speed: λc = 3.2, λa = 2.5, φ = 0.099.
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In Table 14 we compare the numerical errors obtained with the explicit, the SI Suliciu and the
SI two-speed schemes. The results are very similar to those obtained in the one-dimensional
test-cases. The SI schemes are able to capture the slow density transport and the schemes with
the flux splitting solver (FVS) are the most accurate.

As in 1D test-cases we also observe in Table 15 that for a similar accuracy the SI two-speed
scheme enables us to take a 40 times larger timestep than the one of the explicit scheme and 1.5
times larger than the one of the SI Suliciu.

Table 16 shows that we get the same kind of result as in the 1D case concerning the condi-
tions numbers of the matrices of the implicit elliptic solver. By removing the spatial dependency
on the density in the elliptic solver, the SI two-speed relaxation method enables a division by 3.3
of the condition number (at given timestep).

Explicit SI Suliciu SI two-speed
Rusanov FVS Rusanov Rusanov FVS

N Error Order Error Order Error Order Error Order Error Order
100 0.078 - 0.045 - 0.19 - 0.22 - 0.042 -
200 0.71 x 0.023 x 0.10 x 0.13 x 0.021 x
400 0.58 x 0.011 x 0.051 x 0.071 x 0.011 x
800 0.41 x 0.0058 x 0.026 x 0.038 x 0.0055 x

Table 14: (Smooth contact wave, constant velocity, 2d) Numerical errors (L2 norm) for the
different schemes.

λmax ∆t
Explicit max(|(u,n) − c|, |(u,n) + c|) 2.1E−3

SI Suliciu max(|(u,n) − E(t)λc/ρ|, |(u,n) + E(t)λc/ρ|) 0.056
SI two-speed max(|(v,n) − E(t)λc|, |(v,n) + E(t)λc|) 0.088

Table 15: (Smooth contact wave, constant velocity, 2d) Maximal characteristic speed λmax of
the explicit part and timestep ∆t used for the different numerical schemes, for N = 200 cells.

∆t conditioning
SI Suliciu 0.0575 2400

SI two-speed 0.088 1750
SI two-speed 0.057 720

Table 16: (Smooth contact wave, constant velocity, 2d) Condition numbers for the two semi-
implicit relaxation scheme for N = 200 cells.
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With a divergence free velocity field. We now consider a moving smooth contact with a
divergence free velocity field. The initial data is given by



ρ(t = 0, x) = 0.1 +
1

5σ
√
π

e−‖x−x0‖
2/2σ2

,

u1(t = 0, x) = −0.001(y − y0)
1

σ
√
π

e−‖x−x0‖
2/2σ2

,

u2(t = 0, x) = 0.001(x − x0)
1

σ
√
π

e−‖x−x0‖
2/2σ2

,

p(t = 0, x) = 1,

(82)

on the domain Ω = [0, 2]2, with σ = 0.4, (x0, y0) = (0.5, 0.5) and the ideal gas law (γ = 1.4). As
in the previous case the aim is to capture the slow transport dynamics of the density. Moreover
we would like to evaluate the preservation of the divergence free property on the velocity field.
As time evolves the solution behaves as follows: the velocity remains constant in time and the
density is simply advected at velocity u(t, x) = u(t = 0, x) = (u1(t = 0, x), u2(t = 0, x)). The
Mach number is about 10−3. The final time is T f = 1 and we consider 200 × 200 cells. For the
relaxation parameters we take

Semi-implicit Suliciu: λc = 1.8, λa = 1.4,

Semi-implicit two-speed: λc = 3.2, λa = 2.7, φ = 0.099.

In Table 17 we observe that the explicit (Rusanov) scheme is not accurate on the density as in the
one dimensional test-cases. In the 2d case this scheme is also not accurate on the velocity due to
a numerical diffusion error proportional to ∆u . The explicit (FVS) scheme behaves similarly.

Then we note that the semi-implicit schemes are able to accurately capture both the density
and the velocity since they use central fluxes in the implicit acoustic part of the scheme. The
SI two-speed scheme with the FVS flux is the most accurate. These results are obtained with a
2000 times larger timestep than the one of the explicit scheme and 4 times larger than the one
of the SI Suliciu scheme. This demonstrates the great benefit of the SI two-speed method for
computing steady low Mach flows.

In Figure 4 are plotted the density and the 2D norm of the velocity field at final time in the
2D plots. These two quantities should remain close to invariant over time and there is no visible
dissipation of the solution. In 1D plots are compared the initial data in red and the solution at
time t = 1. The results clearly show that the SI two-speed (wih FVS) has less numerical diffusion
for both density and velocity.

6.5 Gresho vortex (2d)

We now consider the Gresho vortex test-case which is a classical test case for low Mach flows.
Contrary to the previous test-case, the initial pressure involves a non-homogeneous spatial per-
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Explicit SI Suliciu SI two-speed
Rusanov FVS Rusanov Rusanov FVS

ρ 0.25 9.9E−5 2.7E−4 3.8E−4 3.8E−5

u 0.62 0.33 x4.1E−3 2.1E−4 1.7E−4

p 3.9E−7 2.4E−7 1.45E−6 1.6E−7 1.6E−7

∆t 1.3E−3 1.3E−3 1.0 (1.1 max) 1.0 (4.3 max) 1.0 (4.3 max)

Table 17: (Smooth contact wave, divergence free velocity, 2d) Numerical errors (L2 norm) and
timestep ∆t for the different schemes.

Figure 4: (Smooth contact wave, divergence free velocity, 2d) Density and 2D norm of the
velocity for the different schemes (Explicit Rusanov scheme, Explicit Lagrange-Remap, Semi
Implicit relaxation). 2D plots: at time T f = 1. 1D plots: one dimensional cut of the solution at
initial data in red, at time T f = 1 in blue.

turbation. The initial condition is given by

ρ(t = 0, x) = 1, u(t = 0, x) =


5r eφ, for r 6 0.2,
(2 − 5r) eφ, for 0.2 < r 6 0.4,
0, for r > 0.4,

(83)

p(t = 0, x) =


pc + 25

2 r2, for r 6 0.2,
pc + 4 ln(5r) + 4 − 20r + 25

2 r2, for 0.2 < r 6 0.4,
pc + 4 ln 2 − 2, for r > 0.4,

(84)
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on the domain Ω = [0, 1]2 with r = ‖ x − x0 ‖, x0 = (0.5, 0; 5) and pc = 1
γM2

0
− 1

2 with a perfect
gas law with γ = 1.4. The parameter M0 denotes the Mach number and will take the values 0.5,
0.1, 0.01 or 0.001. As in the test-case of weakly colliding pulses we can remove the constant
1/γM2

0 in the pressure law and recover a stiffened gas law with bounded initial pressure. Then
since ∇·u0 = 0 the initial data is well-prepared. Indeed the above initial data is a steady solution
to the incompressible Euler system, as well as a steady solution to the compressible system.

We compare the SI two-speed scheme with the classical Rusanov scheme with 120 × 120
cells. As usual we take θ = 1 and ω = 1, and for the relaxation we take φ = 0.98.

Figure 5 (resp. 6) shows 2D plots of the norm of the velocity at final time T f = 1 as well
as 1D cuts of the final density and initial density obtained with the explicit Lagrange-Remap
explicit scheme (resp. SI two-speed scheme with the FVS flux) for different Mach numbers. We
observe that with a larger time-step independent of the Mach number, the SI two-speed scheme
preserves the structure of the velocity field, contrary to the explicit scheme. More precisely, the
accuracy of the classical scheme decreases with the Mach number and the CPU cost increases
since the timestep decreases. Concerning the SI two-speed scheme, the accuracy on the density
is almost the same whatever the Mach number is, and the CPU cost remains almost constant
as the timestep is not modified. The CPU cost can be still impacted by the condition number
of the implicit operator, but as already mentioned, a multigrid preconditioning technique could
mitigate this weakness.

In Figure 7 are plotted the three variables (density, norm of the velocity and pressure) ob-
tained with the SI two-speed scheme, for M = 0.01 and for two different mesh sizes: 120 × 120
cells and 240 × 240 cells. We clearly observe the convergence on the three variables. To com-
plete the analysis of this test case we propose to focus on the pressure. On Figure 7 we observe
that the scheme captures the pressure perturbation but we also see oscillations on coarse grids.
These oscillations come from the central derivative used in the implicit spatial part and the fact
that the coefficient in front of this central derivative (λa∆t) is very large. Indeed in this case
the implicit operator is close to discrete divergence and gradient operators that admit spurious
modes. If we decrease the Mach number the oscillations increase. Compared to the total size of
the pressure the error remains small and these do not induce visible oscillations on the velocity.
In order to avoid this problem of oscillations on the pressure, we shall investigate in the future
structure-preserving methods for the implicit part, such as staggered finite differences.

6.6 Kelvin-Helmholtz instability (2d)

Finally, we consider a Kelvin-Helmholtz test case as proposed in [23]. The initial data is given
by

ρ(t = 0, x) =


ρ1 − ρm exp( y−0.25

L ), if 0 ≤ y < 0.25,
ρ2 + ρm exp( 0.25−y

L ), if 0.25 ≤ y < 0.5,
ρ2 + ρm exp( y−0.75

L ), if 0.5 ≤ y < 0.75,
ρ1 − ρm exp( 0.75−y

L ), if 0.75 ≤ y < 1,

(85)

with ρ1 = 1, ρ2 = 2, ρm = 1
2 (ρ1 − ρ2) and L = L = 0.025. The velocity ux(t = 0, x) has the same

structure as the density with u1 = 0.5, u2 = −0.5 and the pressure is constant: p(t = 0, x) =
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Figure 5: (Gresho vortex, explicit Lagrange+remap scheme) Norm of the velocity (2D plot) at
final time T f = 1 and initial (red) and final (blue) density for the explicit Rusanov scheme.
From left to right: M0 = 0.5 (∆t = 1.4E−3), M0 = 0.1 (∆t = 3.5E−4), M0 = 0.01 (∆t = 3.5E−5),
M0 = 0.001 (∆t = 3.5E−6).

2.5/M2
0 . We consider a perturbation uy(t = 0, x) = 0.01 sin(2πkx) with k ∈ N∗.

First we compare the explicit Lagrange-Remap scheme with the results obtained with the SI
two-speed relaxation scheme with FVS flux at time T f = 3 for k = 1 (first mode) and M0 = 0.1.
On Figure 8, we remark that the explicit LR scheme with 360 cells by direction (second picture)
and the SI two-speed scheme with 42 cells by direction (third picture) show similar results.
With 120 cells, the SI two-speed scheme is able to capture the instability, which is completely
smoothed out by the explicit scheme with the same resolution. This result shows the accuracy
of the SI two-speed scheme compared to the explicit scheme. In addition, the time step for the
SI two-speed scheme, equal to 3.5E−3, is larger than the one used for the explicit scheme, equal
to 1.0E−4.

In Fig. 9, we show the results obtained with the SI two-speed scheme for k = 2 and M0 =

0.01 with grids of size 120 × 120 and 240 × 240. This shows that the scheme is still accurate
when the Mach number is smaller. Moreover, for the 120 × 120 grid size, we observe that the
timestep is identical to the one used for the Mach number M0 = 0.1. This is made possible by a
stability that is independent of the Mach number.

7 Conclusion

We have introduced a semi-implicit two-speed relaxation scheme to solve the compressible Euler
equations in the low Mach regime. The scheme is based mainly on two ingredients. The first
is to use a relaxation system with two speeds, already introduced in [13] in the barotropic case,
that generalizes the Suliciu system. It is entropy satisfying and has a numerical viscosity well-
adapted to low Mach flows. Having two speeds enables us to optimize their choice. The second
ingredient is a dynamical Mach number dependent splitting, similar to the one proposed in [6],
but here at the level of the relaxation system. Stability conditions define the range of admissible
relaxation and splitting parameters. We then resolve separately the advection part of the splitting
by an explicit method, and the acoustic part by an implicit method. The relaxation speeds are
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Figure 6: (Gresho vortex, SI two-speed. Norm of the velocity (2D plot) at final time T f = 1 and
initial (red) and final (blue) density for the SI two-speed scheme. From left to right: M = 0.5
(λc = 2.2, λa = 1.8), ∆t = 2.5E−3, M = 0.1 (λc = 11, λa = 8.5), ∆t = 2.5E−3, M = 0.01
(λc = 120, λa = 100), ∆t = 2.5E−3, M = 0.001 (λc = 1150, λa = 950), ∆t = 2.5E−3.

Figure 7: (Gresho vortex, SI two-speed) Density and norm of the velocity at time T f = 1 (2D
plots and initial (red) / final (blue) density, velocity, pressure (1D cuts). Left: 120 × 120 cells.
Right: 240 × 240 cells. M0 = 0.01.

chosen so that the implicit system fully linearizes the acoustics and requires just to invert an
elliptic operator with constant coefficients.

The numerical results show that the scheme is able to capture the slow scale of the low Mach
dynamics, that is the leading incompressible Euler equations, with large timesteps adapted to
the slow scale and not to the fast one. Moreover it is able to compute transient acoustic waves
with a good accuracy relatively to the chosen timestep. The property to have a linear system
with constant coefficients allows fast computations since the there is no matrix assembling at
each timestep, and the condition number is not worsened by the space variations. Our method
compares favorably with respect to other tested methods, in particular when strong relative vari-
ations of density occur. Although the implicit part of the scheme uses a timestep that is too
large compared to the scale of the fast acoustic dynamics, it would be interesting to improve
the accuracy of the fast acoustic dynamics. For doing that second-order schemes should be
considered, but this extension is still difficult. Indeed the implicit second-order scheme in time
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Figure 8: (Kelvin-Helmholtz) Density at time T f = 3, k = 1, M0 = 0.1. Explicit Lagrange-
Remap scheme with 120 × 120 (left) and 360 × 360 cells (middle left), SI two-speed relaxation
scheme (λc = 17, λa = 14, φ = 0.98) with 42 × 42 (middle right) and 120 × 120 cells (right).

Figure 9: (Kelvin-Helmholtz) Density at time T f = 3, k = 2, M0 = 0.01 with SI two-speed
relaxation scheme (λc = 180, λa = 150, φ = 0.98). Left: 120×120 cells. Right: 240×240 cells.

and space generates oscillations that can trigger instabilities. Future work will be dedicated to
this real challenge. One possible way could be to apply the strategy developed in [17]. Such a
method could also be very useful for solving hyperbolic problems for which there exists a slow
scale dynamics around an equilibrium, with large timesteps. This kind of problem occurs for the
Euler or Shallow water equations in the low-Mach regime with external source terms or in the
Magneto-HydroDynamics (MHD) equations around a plasma equilibrium.

Appendix

A Scheme based on the Suliciu relaxation system

We give here the details of the method proposed in Subsection 2.2, that is a variant of the one
of [6]. We split the convection step, the acoustic step and the relaxation step as (14), (15), (16).
Each substep is performed as follows.
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A.1 Convection step

We use the finite volume scheme

ρn+1
j − ρn

j + ∆t
∆x

(
Fρ

j+ 1
2
− Fρ

j− 1
2

)
= 0,

(ρu)n+1
j − (ρu)n

j + ∆t
∆x

(
Fρu

j+ 1
2
− Fρu

j− 1
2

)
= 0,

En+1
j − En

j + ∆t
∆x

(
FE

j+ 1
2
− FE

j− 1
2

)
= 0,

(ρΠ)n+1
j − (ρΠ)n

j + ∆t
∆x

(
FρΠ

j+ 1
2
− FρΠ

j− 1
2

)
= 0,

with the local Lax- Friedrichs flux

Fρ

j+ 1
2

= 1
2 ((ρu) j + (ρu) j+1) − 1

2 S j+ 1
2
(ρ j+1 − ρ j),

Fρu
j+ 1

2
= 1

2 ((ρu2 + E2(t)Π) j + (ρu2 + E2(t)Π) j+1) − 1
2 S j+ 1

2
((ρu) j+1 − (ρu) j),

FE
j+ 1

2
= 1

2 ((Eu + E2(t)Πu) j + (Eu + E2(t)Πu) j+1) − 1
2 S j+ 1

2
(E j+1 − E j),

FρΠ

j+ 1
2

= 1
2 ((ρΠu + λ2

cu) j + (ρΠu + λ2
cu) j+1) − 1

2 S j+ 1
2
((ρΠ) j+1 − (ρΠ) j),

with S j+ 1
2
≥ max

(
|u j + E(t)λc

ρ j
|, |u j − E(t)λc

ρ j
|, |u j+1 + E(t) λc

ρ j+1
|, |u j+1 − E(t) λc

ρ j+1
|
)
. The associated

CFL condition is then S j+ 1
2
∆t ≤ ∆x. We observe that for the original model the diffusion

parameter S is max(|u− c|, |u + c|), whereas here we replace c by E(t)λc
ρ where λc has to be large

enough in terms of ρc. We see that when the density admits a strong gradient and is close to
zero somewhere in the domain, the new coefficient E(t)λc

ρ can be very large compared to the
classical one. Consequently we get a more diffusive method in this case (strong density gradient
and small values of the density), that is stable under a stronger CFL condition. This is however
softened by the factor E(t).

A.2 Acoustic step

The acoustic step (15) is performed by the implicit time discretization (19). The result is that
we compute the variables one after the other. We have ρn+1 = ρn and we compute un+1 via the
elliptic equation

un+1 − ∆t2(1 − E2(t))2 1
ρn ∂x

(
λ2

a

ρn ∂xun+1
)

= un − ∆t(1 − E2(t))
1
ρn ∂xΠ

n.

Then we set

Πn+1 = Πn − ∆t(1 − E2(t))
λ2

a

ρn ∂xun+1 = 0

and
En+1 = En − ∆t(1 − E2(t))∂x(Πn+1un+1).

In these equations we use centered finite differences in space.
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A.3 Relaxation step

The relaxation step is performed classically by
ρn+1 = ρ,

(ρu)n+1 = ρu,
En+1 = E,
Πn+1 = Π + ω(p − Π),

with 1 ≤ ω ≤ 2 to allow over-relaxation [16].

B Numerical fluxes for the convection step of the two speed relax-
ation scheme

We give here the different numerical fluxes used for the convection step of our scheme, as pro-
posed in Subsection 4.3.1.

B.1 Local Lax Friedrichs flux

The first possible choice is simple and classical: the local Lax-Friedrichs numerical flux, which
is the sum of a centered term and a diagonal viscosity term with the local maximum eigenvalue
as coefficient. The numerical flux for (67) is thus given by
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with
S j+ 1

2
= max(|v j − E(t)λc|, |v j + E(t)λc|, |v j+1 − E(t)λc|, |v j+1 + E(t)λc|),

and for the nonconservative fluxes we use

Fπ
j = max(v j, 0)(Π j − Π j−1) + min(v j, 0)(Π j+1 − Π j),

Fv
j = max(v j, 0)(v j − v j−1) + min(v j, 0)(v j+1 − v j).

(86)

The associated CFL condition is then S j+ 1
2
∆t ≤ ∆x.

B.2 Linear acoustic flux splitting (FVS)

The idea of [24], [9] introduced previously in [22] consists in splitting the fluxes in several terms
related to acoustic waves. Adapting the idea we propose to split (46) in three parts: conservative
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terms, advection of pressure and velocity terms and acoustic terms:
∂x(ρv)

∂x(ρuv + E2(t)Π)
∂x(Ev + E2(t)Πv)

0
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︸         ︷︷         ︸
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.

These are called conservative terms "c", nonconservative terms "nc" and linear acoustic terms
"la’. Let us describe the schemes for each part of this flux splitting. For the nonconservative part
we use the nonconservative numerical fluxes (86). For the linear acoustic part we propose to use
classical upwind acoustic fluxes. For that we diagonalize the linear acoustic part to obtain ∂t

(
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)
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)
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We apply the upwind scheme to each of these equations and get
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We thus obtain conservative fluxes for which v and π are evaluated according to v j+ 1
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(87)

To finish we have to choose a scheme for the conservative part. We propose to use the values
(87) for the relaxed pressure terms. For the advection at velocity v we use an upwind scheme
with the velocity given by (87). Finally, gathering the fluxes for the three parts we obtain the
global fluxes
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where v j+ 1
2
, Π j+ 1

2
are defined by (87). These have to be put in (67) with the nonconservative

fluxes (86).
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B.3 Godunov scheme

The Godunov scheme can used to solve system (C) i.e. (46). Indeed the system has all its
characteristic fields linearly degenerate, thus we can compute the solution to the Riemann prob-
lem explicitly. As mentioned previously, (46) identifies with the original relaxation system (20)
without right-hand side, in which we replace Π by Π̃ = E2(t)Π, a by ã = E(t)

√
χca and b by

b̃ = E(t)
√
χcb.

Let us therefore consider (20) (without right-hand side relaxation terms). This system iden-
tifies with the system of [13] except for the addition of a new unknown E, or equivalently e or
ê, that satisfies (41), (42). We deduce the solution to the Riemann problem as follows. Consider
left and right values of ρ, u, e, Π, v, a, b. Then the solution has three speeds

σL = vL −
aL

ρL , σ] = v], σR = vR +
aR

ρR , (88)

where v] is defined below. They are correctly ordered (σL < σ] < σR) as soon as the sub-
characteristic condition is satisfied. These speeds determine two regions σL < x/t < σ] and
σ] < x/t < σR in which the solution takes values denoted by L] and R] respectively. These
intermediate states are computed by

ΠL] = ΠR] ≡ Π] =
bRΠL + bLΠR + bLbR(vL − vR)

bL + bR ,

vL] = vR] ≡ v] =
bLvL + bRvR + ΠL − ΠR

bL + bR ,

1
ρL]

=
1
ρL +

bR(vR − vL) + ΠL − ΠR

aL(bL + bR)
,

1
ρR]

=
1
ρR +

bL(vR − vL) + ΠR − ΠL

aR(bL + bR)
,

uL] = uL +
bL

aL(bL + bR)
(
bR(vR − vL) + ΠL − ΠR),

uR] = uR +
bR

aR(bL + bR)
(
bL(vL − vR) + ΠL − ΠR), (89)

eL] = eL +
(Π])2 − (ΠL)2

2aLbL +
(v] − uL])2 − (vL − uL)2

2( aL

bL − 1)
,

eR] = eR +
(Π])2 − (ΠR)2

2aRbR +
(v] − uR])2 − (vR − uR)2

2( aR

bR − 1)
,

aL] = aL, aR? = aR, bL? = bL, bR? = bR.

Since (20) is in conservative form for ρ, ρu, E, the corresponding numerical fluxes are ρv,
ρuv + Π, Ev + Πv evaluated on the L, L], R], R states in accordance with the value x/t = 0
(in other words we take the value L if 0 ≤ σL, L] if σL ≤ 0 ≤ σ], R] if σ] ≤ 0 ≤ σR,
and R if σR ≤ 0). For the Π and v variables, a possible choice is to consider the variables
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ρΠ/ab and ρvb/a, that satisfy conservative equations. Their fluxes ρΠv/ab + v, ρv2b/a + Π

are thus evaluated at x/t = 0 as the other conservative variables. This allows to compute the
updated average values of ρΠ/ab and ρvb/a. We can compute similarly the updated average
values of ρ/ab and ρb/a, and define the new values of Π and v by taking the ratios of averages
(ρΠ/ab)/(ρ/ab) and (ρvb/a)/(ρb/a). Notice that according to the description of Subsection 4.2,
a and b are reinitialized after the convection step. In the previous description of the Riemann
problem and numerical fluxes, a, b are not yet reinitialized.

Another way of updating Π and v is to directly average in space the Π and v equations of
(22). We then have nonconservative terms and we have to proceed carefully, as in [14, section
5.3].

For our problem (46) we replace in the previous formulas Π by Π̃ = E2(t)Π, a by ã =

E(t)
√
χca and b by b̃ = E(t)

√
χcb. Then according to Subsection 4.2, the values of ãL, ãR, b̃L,

b̃R are
ãL = E(t)ρLλc, ãR = E(t)ρRλc, b̃L = b̃R = E(t)φλc. (90)

The extreme propagation speeds (88) become

σ̃L/R = vL/R ∓ E(t)λc. (91)
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