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Non-European dyed materials other than textiles have received comparatively little systematic analysis, this is
particularly true for objects made with dyed porcupine quills. This paper presents a comprehensive study of a
group of Athapaskan porcupine quill specimens collected in 1862 which are held within the collections of
National Museums Scotland, UK. Due to sampling limitations micro-destructive testing, or non-invasive analysis
using PDA-UPLC, Raman Spectroscopy and PIXEwere used to characterise the dye sources andmetallicmordants.
RBS was used to obtain additional information on the depth-profiling of themordants in the keratin-based quill.
The sensitivity of the quill specimens to photo-degradation was evaluated using Micro Fade Testing (MFT). The
results from this multi-analytical study will be used to inform future display regimes of this unique collection.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Non-European dyed materials other than textiles [1] have received
little systematic study, particularly those made of porcupine quills, a
material used by Native communities across North America and the
Subarctic to decorate garments and basketry [2,3]. Since porcupine
quills are made of a keratinous material similar to that of wool fibres
[4,5], the dyeing processes might be expected to be related, but only
limited information is available about the actual dye sources [6,7] and
dyeing processes used by native North Americans [8]. Northern
Athapaskan artefacts are particularly rare, but significant collections of
these may be found at the Canadian Museum of Civilization and
National Museums Scotland (NMS) [9,10]. It is known that quillwork
decoration was an important element of Athapaskan clothing [11,12]
and the Athapaskans used it to produce complex geometric coloured
patterns [13]. Late 18th century European accounts of Athapaskan
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quillwork mention the use native species including Galium tinctorium
L. Scop. and Helleborus trifolis L. to obtain red and yellow colours
[8,14], while post 1850s Athapaskan work is characterised by the use
of red, blue and white bands [13] but the dye sources for these are not
well documented [8].

In this study, we analysed a unique group of dyed porcupine quills
(Acc. N°: A.848.15) that were collected in 1862 fromNorthern Athapas-
kans (Fig. 1a) [9,15]. The range of colour is extraordinary and includes
various shades of blue, green, orange, yellow, and red; together with
very pale quills that could be either un-dyed or more faded than the
rest of the materials. This range of colours reflects complex dyeing
practices, with combinations of dyestuffs and even the use of additives
(e.g., metallic mordants) to the dyebath.

The characterisation of the dye sources used in porcupine quillwork
is particularly challenging, firstly due to sampling limitations, secondly
as the dyestuff is only adsorbed on the very thin outer cuticle layer,
giving a very small volume to be extracted for analysis (Fig. 1B). To
overcome these limitations, a combination of Photo Diode Array-
Ultra Performance Liquid Chromatography (PDA-UPLC) and Raman
Spectroscopy was used to characterise the dye sources either from
micro samples, or completely non-invasively. This is thefirst application
of PDA-UPLC to analyse quillwork, using a method recently developed
for the study of historical textiles, [16] which provides a limit of
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (a) Specimens of Athapaskan quills exhibiting blue to red colours: from left to right B1 bright blue, B17B dark green, B1 spotted blue, B17A dark green, B3 light green, B4 yellow (1),
B4 yellow (2), B8 orange (1), B8 orange (2), B2 red (1), B2 RED (2), B6 red (1) (Acc. N°: A.848.15), © National Museums Scotland; (b) Stereomicroscopic observation of a section of amod-
ern reference quill dyed with cochineal showing the thin dyed cuticle layer (c. 60 μm) and undyed cortex.
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detection (LoD) in the ng range. The presence of residual metallic mor-
dantswas investigated using a combination of Inductively Coupled Plas-
ma Optical Emission Spectroscopy (ICP-OES), and the non-invasive
techniques Particle Induced X-Ray Emission (PIXE) and Rutherford/
Elastic Backscattering Spectrometry (RBS/EBS). PIXE analysis was used
to identify and quantify minor and trace elements present on the sur-
face of the quills including S, K, Ca, Fe, Cu, Cr and Sn. RBS/EBS analysis
was used to provide depth-resolved information on the distribution of
heavy elements in the light keratinmatrix. Although PIXE and to a lesser
extendRBS techniques arewell established for the study ofmuseumob-
jects, [17–19] their application to organic-basedmaterials ismuchmore
limited [20]. Finally, the sensitivity of the quill specimens to photo-
degradation was evaluated using Micro-Fade Testing (MFT), a tech-
nique which allows the measurement of light-induced colour changes
[21–23]. Aswell as providing new information about the historic dyeing
methods used in the production of these early artefacts, this multi-
analytical study also presents a new approach for the study of quillwork
which can be used to inform future display regimes to ensure the best
long-term preservation of this type of collection.

2. Materials and methods

2.1. Dyeing processes and extraction

2.1.1. Reference specimens
Porcupine quills (Erethizon sp.) purchased from Native American

artist Sarah Tronti were scoured and then dyed with either
(i) cochineal (Dactylopius coccus C.) purchased from DBH Ltd Poole
England, or (ii) turmeric (Curcuma longa L.) purchased from George
Weil & Sons Ltd. Mordants, including alum, copper(II) sulfate, tin(II)
chloride, iron(II) sulfate, chromium(IV) oxide, and cream of tartar
were purchased from George Weil & Sons Ltd. Typically, dry quills
(0.3 g)were dyed in a solution containing dyestuff (33wt.%) andmetal-
lic mordants (25 wt.% alum, or 5–6 wt.% otherwise) for 1 h at 85–90 °C,
as is traditionally reported for wool dyeing [24].

2.1.2. Extraction protocol for dye analysis
Reference and historical dyed porcupine quills (0.1–0.5 mg) were

extracted with 37% HCl:H2O:MeOH [200 μL, 2:1:1 (v/v/v)], at 100 °C
for 10 min. After ambient cooling to room temperature, the extract
was centrifuged for 10 min at 10,000 rpm and then filtered directly
into Waters UPLC vials® using a PTFE Phenomenex syringe filter
(0.2 μm, 4 mm). The extract was then cooled with liquid nitrogen and
dried under vacuum using a freeze drier system. The dry residue was
then reconstituted with H2O:MeOH [40 μL, 1:1 (v/v)] — allowing a
single injection of 10 μL, see [16]. Samples containing turmeric were ex-
tracted with dimethyl sulfoxide (DMSO) [50 μL] at 100 °C for 60 min
followed by filtration using a PTFE Phenomenex syringe filter (0.2 μm,
4 mm) allowing 10 μL injection.

2.1.3. Extraction protocol for ICP-OES analysis
A selection of historical dyed porcupine quills (1.0 ± 0.1 mg) were

extracted with 37% HCl:H2O:MeOH [200 μL, 2:1:1 (v/v/v)], at 100 °C
for 10 min. The extract was filtered with a polyethylene filter (55 μm,
5 mm) from Crawford Scientific™. The frit was rinsed with methanol
(200 μL) and the combined filtrates were then diluted using a solution
of 37% HCl:H2O [ca. 5 mL, 2:98 (v/v)] to give a final mass of 5.0000 g
solution. The diluted extracts of the selected samples were analysed in
triplicate and the mean concentration of Sn and Cu in each solution
(per mg of quill) was calculated.

2.2. Dyestuff analysis

2.2.1. Reagents and calibration
All the standards were purchased from Sigma-Aldrich and

ExtraSynthese, France with a dye content ranging between 90 and 97%.
Calibration was achieved using a selection of flavonoid and isoflavonoid
dyes, see [16] and additionally: (a) a solution of carminic acid (1)
(1.00 ± 0.01 mg) in H2O:MeOH [25 mL, 1:1 (v/v); equivalent to
40 μg mL−1]; (b) a solution containing juglone (2) and curcumin (7)
(0.50 ± 0.01 mg of each standard) in H2O:MeOH [25 mL, 1:1 (v/v);
equivalent to 20 μg mL−1]; (c) a solution containing alizarin (6) and
purpurin (8) (0.20 ± 0.01 mg of each standard) in H2O:MeOH [10 mL,
1:1 (v/v); equivalent to 20 μgmL−1]. Diluted solutions at concentrations
of 20, 10, 5, 1, 0.5, 0.1, 0.05, 0.02 and 0.01 μg mL−1, were prepared using
calibrated micro-pipettes.

2.2.2. Ultra performance liquid chromatography PDA-UPLC
AWaters Acquity UPLC® systemwas usedwith aWaters PDAdetec-

tor (250 to 500 nm). Data were collected and processed by Waters
Empower 2 software and Origin 8.5 (OriginLab, Northampton, MA,
USA). The method used a PST BEH C18 (130 Å) reverse phase column,
1.7 μm particle size, 150 × 2.1 mm (length × i.d.), set-up with inline fil-
ter. The total run timewas 37.33min at a flow rate of 250 μLmin−1 and
the columnwasmaintained at 55 °C. A binary solvent system, was used;
A: 0.02% aqueous HCOOH (pH 3), B: MeOH. The elution program was
isocratic for 3.33 min (77A: 23B) then a linear gradient from 3.33 min
to 29.33 min (10A: 90B) before recovery of the initial conditions over
1 min and equilibration over 7 min. For details of the experimental



Table 1
Dye components used to calibrate the UPLC system with calculated limits of detection
(LoD), limits of quantification (LoQ) and UV/Vis maximum absorptions in
Methanol:Water. (Rt = retention time; sh = shoulder).

Component Rt

(min)
λ
(nm)

LoD [LoQ]
(ng)

λmax (MeOH:H2O) (nm)

Carminic acid (1) 5.80 254 1.9 [5.9] 276, 312 (sh), 493
Juglone (2) 12.10 254 2.2 [6.6] 249, 330 (sh), 408 (sh), 424
Luteolin (3) 13.47 254 0.9 [2.6] 252, 291 (sh), 349
Genistein (4) 14.03 254 0.5 [1.6] 260, 332 (sh)
Apigenin (5) 15.26 254 1.9 [5.7] 267, 300 (sh), 338
Alizarin (6) 17.70 254 0.8 [2.3] 230 (sh), 248, 280, 433
Curcumin (7) 20.41 450 4.0 [12.1] 264, 429
Purpurin (8) 20.77 254 5.1 [15.3] 256, 296, 456, 481, 515 (sh)
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conditions used to extract reference and historical dyed porcupine
quills, see [16].

2.2.3. Raman spectroscopy
Historical blue quills were further analysed with a Horiba XploRa

Raman-Microscope equipped with three lasers working at 532, 638
and 785 nm. An edge filter prevents the laser wavelength entering the
CCD detector. The 785 nm laser with 90 nW was used with its power
reduced to 1% by filters, unless otherwise stated. A × 50 magnification
objective was used to visualise the sample and to focus the laser
on the object surface. A multi window acquisition mode was used;
acquiring 3 × 2 spectral region for 600 s. Background subtraction and
a smoothing filter were then applied to the spectra.

2.3. Mordant analysis

2.3.1. Particle induced X-ray emission and Rutherford backscattered spec-
trometry (PIXE/RBS)

Analyses were performed at the external beamline of the AGLAE fa-
cilitywith a 3MeV proton beamand a final analytical spot of 50 μm, two
Si(Li) detectors for PIXE analysis (no filter for the low energy detector;
125 μm Be filter and 28.5 mm air for High Energy detector) and a PIPS
charged particle detector in IBM geometry, with a scattering angle of
150° for RBS analysis. Measurementswere undertaken inHe-rich atmo-
sphere. To reduce beamdamage, a beam current of 3–6 pAwas used and
an area of 100 × 500 μmwas scanned for an average of 4–5 min. Quan-
titative analysis was performed in trace mode using GUPIXWIN 2.1 [25]
and TRAUPIXE [26] software,modelling a thick layer of keratin using the
elements C, H, N, O, S in proportion to their reported relative wt% [27].
Because of the detector geometry and larger active area (30 mm2), the
High Energy detector provided better statistical data, allowing the
quantification of elements above S (Z = 16) present in the reference
and historical porcupine quill specimens. Due to the lower statistical
data obtained with the Low Energy Detector (10 mm2), the quantifica-
tion of Na (Z = 11) and Al (Z = 13) are not discussed in this paper. A
Dr-N certified standard was used to improve the quantification on the
Low and High Energy detectors. RBS spectra were simulated with
SIMNRA V6.5 software [28] and non-Rutherford reactions for the light
elements in keratin (C, N, O)were added to the SIMNRA simulation [20].

2.3.2. Inductively coupled plasma optical emission spectroscopy (ICP-OES)
A selection of historical quills were analysed by ICP-OES using a

Perkin Elmer Optima 5300 DV, employing an RF forward power of
1400 W, with argon gas flows of 15, 0.2 and 0.75 L min−1 for plasma,
auxiliary, and nebuliser flows, respectively. Using a peristaltic pump,
sample solutions were taken up into a Gem Tip cross-Flow nebuliser
and Scotts spray chamber at a rate of 1.50 mL min−1. The system was
calibrated using two standard solutions, one of copper and the other
one tin, both at 1000 μgmL−1. Calibration curves were obtained by pre-
paring a range of concentrations with calibrated micro-pipettes,
allowing the analysis of concentrations ranging between 200 and
0.02 μg mL−1. Two wavelengths were selected: 327.393 nm for the
analysis of copper(II) and 283.994 nm for the analysis of tin(II). Three
replicates were run per sample.

2.4. Micro-fade testing (MFT)

An Oriel® Fading Test System (model 80190) was used with a mod-
ified probe head that was upgraded by an endoscope camera for better
sample positioning. For irradiation of the sample under 0° (angle to the
surfacenormal), a 75Wxenon arc lampwasused. The reflection spectra
were taken at 45° and were recorded with a photodiode array detector
(control development, model PDA-512). The light line is via fibre optics.
The irradiated area has a diameter of ca. 0.4mm. The intensity of light at
the illuminated spot was approximately 3–4 Mlx. The reflected light
was measured constantly with an integration time of 6 ms and 10
spectra were averaged. From these spectra colour values in the CIELAB
colour space where calculated using an illuminant and observer combi-
nation of D65 and 2°, respectively. The colour difference to the initial
(unfaded) measurement was given in colour difference value of CIE
ΔE 2000 according to the recommendation of the International Com-
mission on Illumination (Commission Internationale de l'Éclairage —
CIE) [29].

The fading results were compared to ISO blue wool (BW) standard
materials which have a known light fastness on a scale from BW 1 to
BW 8, with BW 1 being the most light-sensitive. All samples were mea-
sured for 60 min in an environment of about 50–55% RH and 20–24 °C.

3. Results and discussion

Porcupine quills have a similar structure to other fibres, such aswool
or hair, which are based on hard α-keratin [4,5]. X-ray diffraction stud-
ies have shown that porcupine quills have a highly crystalline structure,
with the external layer of the quill (cuticle) being less ordered com-
pared to the internal layer of the quill [30]. Although there are extensive
studies on the properties of wool and hair fibres, or feathers, especially
with regard to their uptake of dyes and metal ions [31–34], there are
only a very limited number of studies on porcupine quills and their dye-
ing properties [6,7]. In contrast to wool fibres, where the dyestuff in
evenly distributed through the fibre, generally only the thin cuticle
layer of quills interacts with the dyebath (Fig. 1b) and adsorbs the dye-
stuffs and metal ions. Similarly to wool and hair fibres, this cuticle layer
is reported to be slightly richer in sulfur [35] and can range from 30–
100 μm depending on the size of the quills (ESI 3).

3.1. Dye analysis

Prior to the analysis of historical artefacts, a UPLC method for dye-
stuff identification in quillworkwas developed,whichwould accommo-
date the limitations of sample size and volume. The UPLC method
included dye sources which were anticipated to be found in these late
19th century specimens such as alizarin, purpurin, indigo and the tan-
nin juglone, all characterised in Eastern Woodlands quillwork; [6,7]
the dyes carminic acid and curcumin, which are included in the NMS
purchase records for these specimens; [15] and the flavonoids luteolin,
apigenin and genistein, which are present in a wide range of flavonoid
dye sources [1,16,36].

For all the dye standards the average variation in retention time in
12 measurements by PDA-UPLC ranged between 0.04–0.06%. The limits
of detection (LoD) and limits of quantification (LoQ) were calculated
based on the average value of the baseline noise (Hnoise) of several sol-
vent blanks, considering all data points. The baseline of the UV detector
at 254 nm averaged (9 ± 1) × 10−4 AU, resulting in detection limits
ranging from 0.5 ng for genistein (4) to 5.1 ng for purpurin (8) for an in-
jection volume of 5 μL, while the LoD of curcumin (7) was calculated at
450 nm and averaged 4.0 ng. (Table 1)
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A reference quill dyed with American cochineal (Dactylopius coccus
Costa) and 18 red and orange coloured Athapaskan porcupine quills
were acid hydrolysed for PDA-UPLC analysis. In all these samples
carminic acid (1) was found associated with the dye components dcII,
dcIV, dcVII and flavokermesic acid that are known to occur in cochineal
species from South America [36–39]. An unknown red dye component
(Fig. 2a) was additionally observed in most of the historical samples. A
complementary Mass Spectrometric study would be necessary to sug-
gest a structure for this component, but UV–Vis spectra indicate that it
is related to flavokermesic acid. (ESI 1) The relative amounts of dcII
and carminic acid were found to be quite variable in the historical sam-
ples, which could possibly relate to dyeing practices, as has been ob-
served in the over-dyeing of textiles with flavonoid dye sources [16].
A reference quill dyed with turmeric (Curcuma longa L.) and 12 yellow,
orange and green coloured Athapaskan porcupine quills were extracted
with DMSO. The presence of bisdesmethoxycurcumin (7b),
desmethoxycurcumin (7a) and curcumin (7) in these samples was
characterised by PDA-UPLC (Fig. 2a and ESI 2); aswith the acidic extrac-
tion conditions (HCl:H2O:MeOH), carminic acid (1) was also found in
the orange samples. In all these samples bisdesmethoxycurcumin (7b)
was observed to be the main dye component extracted. This varied
from data published for turmeric rhizomes from India and China, [40,
41] which exhibit higher levels of curcumin (7). The differences ob-
served could reflect a higher affinity of bisdesmethoxycurcumin for
the quill substrate (Fig. 2c). The brighter shades of green and blue
Fig. 2. (a) (i) Acid hydrolysed extract of a red quill with the identification of dcII, carminic acid (1
yellow quill with the identification of bisdesmethoxycurcumin (7b), desmethoxycurcumin (7a
(turmeric) and have been offset for clarity; (b)Raman spectra recordedwith 785 nm laser of (i)
(c) Ternary diagram of the relative amounts (% 450 nm) of bisdesmethoxycurcumin (7a), desm
Athapaskan quills, compared to the rhizome composition of Curcuma Longa L. from China, Bur
from reference and historical quills cluster.
were obtained by an over-dyeing process with the sulfonated indigo
carmine dye which was evidenced by Raman Spectroscopy (Fig. 2b).

The exclusive use of American cochineal instead of madder species,
and of indigo carmine instead of indigo is in sharp contrast to results ob-
tained in previous studies on pre-1850s Eastern Woodlands quillwork
[6]. The semi-synthetic dye indigo carmine would have been traded
from Europe, where it was available and used for textile dyeing from
1770 until the beginning of the 20th century [42]. Since indigo carmine
does not require a vat dyeing process it would have been easier to use
than indigo, allowing the production of more intense shades of blue.
The highly variable diarylheptanoid content [40,41] combined with
the unknown affinity of the dyestuff components for the quill substrate,
meant that it was not possible to attribute the turmeric compositions to
a specific source (ESI 2), although it is likely that the turmeric originated
from India [1,24] and reached the Athapaskans via trade into Europe.

3.2. Metallic mordants

Applications of PIXE to organic based materials are limited and thus
it was necessary to evaluate the thickness of keratin being analysed and
the limit of detection (LoD) of variousmetallicmordants to be detected.
The range of the beam in the matrix of keratin was determined as
136 μmusing TRIM software (SRIM2003 version), [44] and the effective
depth values for S, K, Ca, Cr, Fe, Cu, Zn, Sn, As and Hg were calculated
with GUCSA program in the GUPIXWIN 2.1 software package and vary
), dcIV, Flavokermesic acid (Fk) and an unknowndye component (*); (ii)DMSOextract of a
) and curcumin (7). Chromatograms were monitored at 430 nm (cochineal) and 450 nm
a blue historical quill and (ii) indigo carmine reference. Spectra have been offset for clarity;
ethoxycurcumin (7b) and curcumin (7) characterised in DMSO extracts of reference and

ma and India (wt%) [40,41,43]. The red circle indicates where the composition of extracts



Table 2
Effective depth values calculated with the GUCSA program of the GUPIXWIN 2.1 software package [25], representing the thickness in μm from which 95% of the detected X-rays are pro-
duced and associated limit of detection (LoD) calculatedwithGUPIXWIN for eachelement analysed in thequills,modelling a thick target of keratin [27,45]. PIXE conditions: 3MeVprotons,
125 μm Be filter and 28.5 mm air for High Energy Si(Li) detector.

Keratin (1.3 g cm−3)
C (50.5 wt.%), O (22 .0 wt.%), N (16.5 wt.%), H (6.8 wt.%), S (3.7 wt.%)

Element S
(Kα)

K
(Kα)

Ca
(Kα)

Cr
(Kα)

Fe
(Kα)

Cu
(Kα)

Zn
(Kα)

Sn
(Kα)

Sn
(Lα)

Hg
(Lα)

As
(Lα)

Effective depth (μm) 52 68 73 79 79 79 78 72 70 80 77
LoD (ppm) 32 23 31 6 3 5 5 520 110 13 6
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between a minimum of 52 μm for S (Kα) and a maximum of 80 μm for
Hg (Lα) (Table 2). Since the average thickness of the cuticle was deter-
mined as 58 μm by SEM analysis (ESI 3), these effective depth values
show that the concentration of mordant determined by PIXE experi-
ments represents the average value of the cuticle layer. In some cases
however, where the cuticle is thinner, PIXE values will be averaged
from the contribution of both the cuticle and the cortex. The LoD of
each element was averaged from 70 measurements using GUPIXWIN
2.1 software [25] and ranged between 3 ppm for Fe (Kα), 110 ppm for
the Sn (Lα) and 520 ppm for the Sn(Kα) lines. The quantification of Sn
was therefore undertaken using the Sn(Lα) line, which presented
lower LoD and better statistical data. The unfolding of Sn(La) and
K(Ka) was achieved by GUPIXWIN 2.1 software.

A small set of modern quills prepared with dyebaths containing
combinations of creamof tartar, alum, Cr, Fe, Cu and Snwere investigat-
ed by PIXE. Traces of Znwere detected in all themodern quills, including
a scoured one, at an average concentration of 50 ppm, possibly corre-
sponding to contamination. The levels of Swere found to range between
2 and 4 wt.%, as would be expected in keratin. K levels were found to be
significantly increased (2000 to 4000 ppm) for the quills where cream
of tartar was added to the dyebath, while traces of Cr, Fe, Cu and Sn
were detected at concentrations ranging from ~100 ppm to
N1000 ppm, allowing differentiation between the individual dyebath
processes (Table 3).

Around 70 historical quills were analysed, covering all the different
colours observed in the specimens (Fig. 3a). The elemental data for a se-
lection of quills is presented in Table 3. The S level was generally found
Table 3
PIXE elemental data obtained with High Energy detector for a selection of modern quills and h
ppm) obtained by ICP-OES are presented for comparison. PIXE analysis entries marked “–” cor

PIXE

Entry S
(wt%)

K
(ppm)

Ca
(ppm)

Cr
(ppm)

Fe
(ppm)

Zn
(pp

Modern reference quills
Scoured quill 2.8 – 350 – 10 68
Al, K, Cr 1.6 3944 379 1280 8 87
Al, K, Sn 2.3 4173 702 – 8 55
Cu 3.1 380 111 – – 32
K, Fe 4.0 2460 109 – 101 18

Athapaskan quills (A.848.15)
B1 bright blue 1.8 1353 458 – 39 25
B1 spotted blue 3.4 1138 140 – 66 –
B2 red (1) 1.6 69 125 – 688 16
B2 red (2) 1.3 160 220 – 70 45
B3 light green 1.8 350 230 – 115 31
B4 yellow (1) 1.4 2040 480 – 815 37
B6 red (1) 1.8 509 546 – 71 17
B6 red (2) 1.7 254 653 – 68 41
B8 orange (1) 1.6 365 137 – 59 52
B8 orange (2) 1.3 230 224 – 69 40
B9A bright blue 2.2 1388 508 – 222 16
B11A colourless 2.0 772 261 – 62 32
B12A colourless 1.9 419 372 – 90 61
B17A dark green 2.8 6779 1406 – 358 100
B17B dark green 2.2 8038 942 – 444 150
to range between 1.5 and 2.5 wt.%. A few green and blue quills exhibit
up to 4.0 wt.% of S (Fig. 3b), which might be related to the presence of
the sulfonated indigo carmine dye or to the use of sulfur-containing
mordants such as alum. Traces of Znwere also identified at a concentra-
tion below 100 ppm.

For the coloured historical quills, Fe, Cu and Sn were identified in
varying amounts, while levels of K were found to be higher in blue, yel-
low and green hues reaching4000 ppm,with levels as high as 8000 ppm
for two of the darker green quills (Fig. 3b). These results are in sharp
contrast to earlier EasternWoodlands quillwork,where XRF analysis re-
vealed the presence of only Fe (and sometimes Cu) residues in a few ob-
jects [7]. In theAthapaskan samples, Cuwas found predominantly in the
darker shades of blue and green to a maximum concentration of
6000 ppm, while Fe was in generally below 200 ppmwith a few excep-
tions where it reached ~1000 ppm (Fig. 3c & d). The level of Sn was
found to be significantly higher in the red and oranges hues and one
bright blue quill, ranging from4000 to 15000 ppm(Fig. 3d). These levels
are significantly higher than the levels observed in modern quills pre-
pared with 5–6 wt.% of mordant. In order to confirm these ranges of
concentrations, a selection of samples were additionally analysed by
ICP-OES, a technique routinely used for the characterisation of metals
in textile materials [46]. The values obtained cannot be directly com-
pared to PIXE values, as surface heterogeneity is an important consider-
ation and a standard mass of quills (1 mg) was extracted for ICP
analysis. However, the values showed some correlation for both
Cu and Sn analysis, with the level of Sn reaching 2.9 × 104 μg g−1

(or ppm) for the most concentrated samples.
istorical quills. In addition, the concentrations of Cu(II) and Sn(II) expressed in μg g−1 (or
respond to a level below LoD; ICP-OES entries marked “–” were not analysed.

ICP-OES

m)
As
(ppm)

Hg
(ppm)

Sn
(ppm)

Cu
(ppm)

Sn(II)
(μg g−1)

Cu(II)
(μg g−1)

– – – – -- --
– – – 5 -- --
– – 480 7 -- --
– – – 224 -- --
– – – – -- --

– – 592 859 -- --
– 122 580 404 -- --
– – 7133 980 1.7 × 104 3.0 × 103

– – 14900 200 2.9 × 104 2.0 × 103

– – 1791 252 -- --
– – 826 1725 1.4 × 104 3.0 × 103

– – 2492 288 9.0 × 103 2.0 × 103

10 42 1801 380 1.0 × 104 1.0 × 103

– – 4315 250 1.1 × 104 2.0 × 103

– 71 7965 239 1.4 × 104 1.0 × 103

– – 1012 323 2.0 × 103 4.0 × 102

– – 537 958 -- --
– 30 990 432 -- --
– 78 563 1551 5.0 × 103 1.0 × 103

– 171 14500 5780 1.2 × 104 5.0 × 103



Fig. 3. (a)High Energy PIXE spectrum for the B2 red (1) historical sample: Athapaskan quill (red line)with Gaussian fit obtained byGUPIXWIN (dotted line) identifying the presence of Fe,
Cu and Sn; (b) comparison of the level of K (wt%) expressed as a function of S (wt%); (c) comparison of the level of Fe (wt%) expressed as a function of Cu (wt%); (d) comparison of the level
of Sn (wt%) expressed as a function of Cu (wt%). For all graphics data were obtained with high energy detector and the Athapaskan quills are classified by colour.
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The analysis of “colourless” quills also exhibited traces of Sn and Cu
suggesting that either these quills were pre-mordanted or that these
were previously dyed and are now extremely faded. Finally, As and Hg
were found in only a few quills, with most analyses falling below the
LoD, indicating that, in contrast tomany organic collections inmuseums
of this period, these specimenswere unlikely to have been treated in the
past with inorganic pesticides containing mercury and arsenic [47,48].

The quills were simultaneously analysed by RBS which provided ad-
ditional information on the depth-profiling of themordant in the cuticle
layer. The RBS spectra were treated independently to the PIXE data. For
the majority of the samples (modern and historical) a two-layered
model was used for simulation with SIMNRA software comprising a
thin layer of keratin containing traces of heavy metals (Layer 1) over
an infinite layer of keratin (Layer 2) (Fig. 4a). The thickness of Layer 1
was evaluated to ~80,000 × 1015 Atoms cm−2 which is equivalent to
9 μm considering the atomic composition and density of the keratin
(ESI 4). This model showed a good correlation for the RBS spectra ob-
tained from scoured (Fig. 4b) and mordanted modern quills, as well as
dyed Athapaskan quills (Fig. 4c). For all the samples, the composition
of Layers 1 & 2was found to closely match the expected atomic concen-
trations for keratin with the addition of traces of mordant (ESI 4). In all
the samples analysed, the level of S andmordantwas found to be higher
in Layer 1 (4 to 5wt.% for S) than the average values determined by PIXE
(1.5 to 2.5 wt.% for S), see ESI 4. While a higher level of S is expected in
the outer cuticle, [35] the higher levels of mordants could possibly cor-
respond to a deposition on the surface of the cuticle. Finally, for a few
blue and greenquills a three-layeredmodelwasused (Fig. 4d), compris-
ing of a very thin layer of keratin rich in Swith traces of Sn and Cu (Layer
1, 1–2 μm), a second layer with a lower level of S and traces of Cu only
(Layer 2, 3 μm) over an infinite layer of keratin (Layer 3), see ESI 4.
These samples showed a clear increase in S level at the surface (up to
13 wt.% in Layer 1), confirming the observations made by PIXE and
supporting the hypothesis that there is either indigo carmine dye or
the deposition of a sulfur-containing mordant on the surface of the cu-
ticle. The presence of Sn in Layer 1 onlymight reflect the use of multiple
dyebathswith different mordants combinations, resulting in the forma-
tion of successive thin layers at the surface of the quill.

3.3. Micro-fade testing

A selection of coloured quills were tested for their photo-sensitivity
by Micro-Fade Testing (MFT), as shown in Fig. 5a and Table 4. The MFT
determines the photosensitivity of the measured spot as a colour
change as perceived by the human eye (andnot as a change of colourant
concentration). The photo-sensitivity not only depends on the
colourant and supporting materials but can also be influenced by mor-
dant, surface particularities, chemical environment (air pollutants, oxy-
gen level humidity) and colourant concentration. As a result MFT
measurements are variable and require multiple repeats to obtain re-
producible results which may be accurately interpreted. Table 4 sum-
marises the MFT measurements; the results of one sample, B1 Spotted
blue, have been omitted since the repeat variability was unusually
high, probably due to the heterogeneity of the surface which was al-
ready visually observable by the speckled colour effect of the quill.

It can be seen that, with the exception of B2 red (2), all the quills fall
into (or very close to) the Blue Wool class 1 to 3. Materials of this class
are considered to be highly responsive to light following the categories
given in CEN/TS 16163:2014 [49] and CIE 157:2004 [50]. It is
advised that such materials should be illuminated at a maximum
recommended-level of 50 lx and only for a limited time span not ex-
ceeding 15,000 lx h in a year.

It was observed that the concentration or type ofmordant did not af-
fect the MFT results as much as the type of dyestuffs used. As expected,
indigo carmine and turmeric coloured quills [B1 blue, B3 blue, B4 yellow
(1)] show the highest photo-sensitivity due to the low colourfastness of
these colourants [22]. In mixtures the colours tend to be slightly more



Fig. 4. (a) Two-layered model used for SIMNRA simulation; with atomic compositions and layer thicknesses in Atoms cm−2 provided by the SIMNRA simulation (Layer 1 roughness of
40,000 equivalent in × 1015 Atoms cm−2); (b) RBS spectrum and SIMNRA simulation using the two-layeredmodel for a scoured modern quill; (c) RBS spectrum and SIMNRA simulation
using the two-layeredmodel for the B1 red (2) historical quill confirming the presence of Cu and Snmordants; (d) RBS spectrum and SIMNRA simulation using a three-layeredmodel for
the B1 Spotted Blue historical quill, showing the presence of a thin S and Sn-rich layer at the surface.
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stable as can be seen for samples B3 light green and B8 orange (1). In B8
orange (1), the turmeric ismixedwith themore stable red American co-
chineal which results in a colour that falls in the BW 3 class and may be
categorised as amedium light responsivematerial. The photosensitivity
of quill B8 orange (1) therefore lies between quills dyed with one of
these colourant, i.e., American cochineal [B2 red (2) and B6 red (1)]
and turmeric [B4 yellow (1)]. As the American cochineal is less respon-
sive, a colour shift from orange to red results from the MFT process as
indicated in Fig. 5b because the more responsive yellow turmeric
fades first. The reason for the smaller colour change of the mixed dye
Fig. 5. (a) Colour change (Delta E) expressed as a function of time (min) for the Athapaskan qui
(2); (3) B3 Light green; (4)B3 blue; (6) B4 yellow (1); (7)B8 orange (1); (8)B17Adark green; (
and (7) B8 orange (1) during fading.
is probably not a stabilising effect of the American cochineal on the tur-
meric, but the result of a smaller perceptual colour change due to the
persisting colour of the American cochineal.

4. Conclusion

This study of Athapaskan quillwork, using a combination of tech-
niques, has provided important new information on the dyeing process-
es used in the Subarctic in the 1860s. Firstly PDA-UPLCwas successfully
applied to micro-samples of porcupine quillwork allowing the dye
lls investigated byMFT. Sample codes correspond to Table 4, and are as follows: (2) B2 red
b) binary diagram showing the colour changes in samples (6) B4 yellow (1), (5) B6 red (1),



Table 4
Dye source, mordant and MFT analysis for a selection of coloured Athapaskan quills. MFT results are the average of 3 measurements obtained after 60 min fading.

MFT entry Description Dye source(s)
UPLC & Raman

Principal mordant(s)
PIXE

Fading after 60 min.
CIELAB ΔE 2000

Blue wool category

Athapaskan quills A.848.15
1 B1 blue Indigo carmine K, Sn, Cu 3.1 2–3
-- B1 spotted blue Unidentified K, Ca, Sn, Cu Inconsistent results --
2 B2 red (2) Cochineal Fe, Sn, Cu 0.5 4
3 B3 light green Turmeric & Indigo carmine K, Ca, Fe, Sn, Cu 2.9 3
4 B3 blue Indigo carmine Not analysed 4.6 2
5 B6 red (1) Cochineal K, Ca, Fe, Sn, Cu 1.6 3–4
6 B4 yellow (1) Turmeric K, Fe, Sn, Cu 4.0 2
7 B8 orange (1) Turmeric & Cochineal K, Sn, Cu 2.0 3
8 B17A dark green Unidentified K, Ca, Fe, Sn, Cu 0.9 3–4
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sources to be characterised. This revealed the unexpected use of
imported European dyes in the Athapaskan quillwork, in sharp contrast
to the local dye sources found in Eastern Woodlands quillwork pre-
dating 1856 [6,7]. Secondly the combined use of PIXE and RBS allowed
the concentrations of various mordants (K, Ca, Fe, Cu and Sn) in the
quills to be determined, providing an alternative non-destructivemeth-
odology for the study of keratin-based materials. RBS was applied for
the first time to the investigation of quillwork and it allowed additional
information on the depth-profiling of mordants at the surface of the
quills to be obtained. Several quills presented a more complex layered
systemwhen analysed by RBS,whichmight be related to theuse ofmul-
tiple dyebaths with different mordant combinations, resulting in the
formation of successive thin layers containing metallic residues at the
surface of the quill. These results present a promising opportunity for
the study of quillwork and related keratinous materials, and would
need to be further investigated by analysing modern quills prepared
with successive dyebaths.

In all the Athapaskan specimens investigated, two to three metallic
mordants (Fe, Cu, Sn) were found to be combined, and by changing
the concentrations of thesemordants brighter anddarker hueswere ob-
tained from the same dyestuff combination. The high levels of metallic
mordants observed in several of the specimens suggest that the effect
of the mordants was appreciated and that they were deliberately
added to the dyebath to change the property of the dyestuffs. This trans-
fer of European dyeing practices might not be surprising given that
there is evidence that European dyes and mordants were traded to
Nova Scotia from the 1830s, [51] suggesting that by 1862 these mate-
rials would also have been available in the Northern territories. Finally,
the data obtained from theMFT confirmed previousfindingswhich doc-
ument the photosensitivity of Subarctic Athapaskan artefacts [21]. We
expect that the combination of techniques presented in this paper will
be adopted for the study of quillwork and related collections.
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