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The past century has seen substantial theoretical and empirical progress on the genetic basis of adaptation. Over this same period a pressing need to prevent the evolution of drug resistance has uncovered much about the potential genetic basis of persistence in declining populations. However, we have little theory to predict and generalize how persistence -by sufficiently rapid adaptation -might be realized in this explicitly demographic scenario. Here we use Fisher's geometric model with absolute fitness to begin a line of theoretical inquiry into the genetic basis of evolutionary rescue, focusing here on asexual populations that adapt through de novo mutations. We show how the dominant genetic path to rescue switches from a single mutation to multiple as mutation rates and the severity of the environmental change increase. In multi-step rescue, intermediate genotypes that themselves go extinct provide a 'springboard' to rescue genotypes. Comparing to a scenario where persistence is assured, our approach allows us to quantify how a race between evolution and extinction leads to a genetic basis of adaptation that is composed of fewer loci of larger effect. We hope this work brings awareness to the impact of demography on the genetic basis of adaptation.

of drug resistance (e.g., the expected number and effect sizes of mutations) and would extend our understanding of the genetic basis of adaptation to cases of non-equilibrial demography (i.e., rapid evolution and "eco-evo" dynamics). Despite these gaps in the theory on the genetic basis of evolutionary rescue, there is a wealth of data. For example, the genetic basis of resistance to a variety of drugs is known in many species of bacteria (reviewed in [START_REF] Maclean | The population genetics of antibiotic resistance: integrating 1152 molecular mechanisms and treatment contexts[END_REF], fungi (reviewed in [START_REF] Robbins | Molecular evolu-1197 tion of antifungal drug resistance[END_REF], and viruses (reviewed in [START_REF] Yilmaz | Improving viral protease inhibitors to counter drug resistance[END_REF]. This abundance of data reflects both the applied need to prevent drug resistance and the relative ease of isolating the genotypes that survive (hereafter "rescue genotypes"), e.g., in a Luria-Delbrück fluctuation assay (reviewed in [START_REF] Bataillon | Effects of new mutations on 1078 fitness: Insights from models and data[END_REF]. Assaying fitness in the environment used to isolate mutants (e.g., in the drug) then provides the distribution of fitness effects of potential rescue genotypes. Additional data on the genetic basis of drug resistance arise from the construction of mutant libraries (e.g., [START_REF] Weinreich | Darwinian evolution can follow only very few mutational paths to fitter proteins[END_REF]) and the sequencing of natural populations (e.g., [START_REF] Pennings | Loss and 1194 recovery of genetic diversity in adapting populations of hiv[END_REF]). Together, the data show that resistance often appears to arise by a single mutation (e.g., [START_REF] Maclean | The distribution of fitness 1148 effects of beneficial mutations in Pseudomonas aeruginosa[END_REF][START_REF] Lindsey | Evolution-1143 ary rescue from extinction is contingent on a lower rate of 1144 environmental change[END_REF][START_REF] Gerstein | Parallel genetic 1104 changes and nonparallel gene-environment interactions char-1105 acterize the evolution of drug resistance in yeast[END_REF] but not always (e.g., [START_REF] Bataillon | Cost of adaptation 1081 and fitness effects of beneficial mutations in pseudomonas 1082 fluorescens[END_REF][START_REF] Pennings | Loss and 1194 recovery of genetic diversity in adapting populations of hiv[END_REF][START_REF] Gerstein | Too much of a good thing: the unique and repeated 1109 paths toward copper adaptation[END_REF][START_REF] Williams | Drug resistance evolution in hiv in the late 1990s: hard sweeps, soft sweeps, clonal interference and the accumulation of drug resistance mutations[END_REF]. The data also indicate that the fitness effect of rescue genotypes is more often large than small, creating a hump-shaped distribution of selection coefficients (e.g., [START_REF] Kassen | Distribution of fitness effects 1133 among beneficial mutations before selection in experimental 1134 populations of bacteria[END_REF][START_REF] Maclean | The distribution of fitness 1148 effects of beneficial mutations in Pseudomonas aeruginosa[END_REF][START_REF] Gerstein | Parallel genetic 1104 changes and nonparallel gene-environment interactions char-1105 acterize the evolution of drug resistance in yeast[END_REF][START_REF] Lindsey | Evolution-1143 ary rescue from extinction is contingent on a lower rate of 1144 environmental change[END_REF][START_REF] Gerstein | Too much of a good thing: the unique and repeated 1109 paths toward copper adaptation[END_REF] that is similar in shape to that proposed by [START_REF] Kimura | The neutral theory of molecular evolution[END_REF] (see [START_REF] Orr | The Population Genetics of Adaptation: The 1182 Distribution of Factors Fixed during Adaptive Evolution[END_REF], for more discussion) but with a lower bound that is often much greater than zero.

Theory on evolutionary rescue (reviewed in [START_REF] Alexander | Evolutionary rescue: linking theory for conservation and 1063 medicine[END_REF]) has primarily focused on the probability of rescue rather than its genetic basis. However, a few studies have varied the potential genetic basis enough to make some inference about how evolutionary rescue is likely to happen. For instance, in the context of pathogen host-switching, [START_REF] Antia | The role of evolution in the emergence of infectious diseases[END_REF] numerically explored the probability of rescue starting from a single ancestral individual when k sequential mutations are required for a positive growth rate, each mutation occurring from the previous genotype with the same probability and all intermediate genotypes being selectively neutral. The authors found that rescue became less likely as the number of intermediate mutations increased, suggesting that rescue will generally proceed by the fewest possible mutations. This framework was expanded greatly by Iwasa et al. (2004a), who allowed for arbitrary mutational networks (i.e., different mutation rates between any two genotypes) and standing genetic variation in the ancestral population. Assuming the probability of mutation between any two genotypes is of the same order, they showed that genetic paths with fewer mutational steps contributed more to the total probability of rescue, again suggesting rescue will occur by the fewest possible mutations. Iwasa et al. (2004a) also found that multiple simultaneous mutations (i.e., arising in the same meiosis) can contribute more to rescue than paths that gain these same mutations sequentially (i.e., over multiple generations) when the growth rates of the intermediate mutations are small enough, suggesting that rare large mutations can be the most likely path to rescue when the population is very maladapted or there is a fitness valley separating the wildtype and rescue genotype. This point was also demonstrated by [START_REF] Alexander | Risk factors for the evolu-1059 tionary emergence of pathogens[END_REF], who emphasized that multiple simultaneous mutations become the dominant path to rescue in the most challenging environments.

As a counterpoint, [START_REF] Uecker | The role of recombination in evolutionary rescue[END_REF] showing that, with standing genetic variation, rescue by sequen-118 tial mutations at two loci (two mutational steps) can be more Here we follow the lead of [START_REF] Anciaux | Evolu-1067 tionary rescue over a fitness landscape[END_REF] in allowing 128 the genotypes that contribute to rescue, as well as their fitnesses We map genotype to phenotype to fitness using Fisher's geo-169 metric model, originally introduced by Fisher (1930, p. 38-41) 170 and reviewed by [START_REF] Tenaillon | The utility of Fisher's geometric model in 1211 evolutionary genetics[END_REF] [START_REF] Martin | The fitness effect of muta-1169 tions across environments: Fisher's geometrical model with 1170 multiple optima[END_REF]. This is approximately equal to the selection

= log[W(z )/W(z)] = m(z ) -m(z)
coefficient in discrete time (W(z )/W(z) -1) when selection is weak (W(z ) -W(z) << 1).
To make analytical progress we use the isotropic version of

Fisher's geometric model, where mutations (in addition to selection) are assumed to be uncorrelated across the scaled traits.

Universal pleiotropy is also assumed, so that each mutation affects all scaled phenotypes. In particular we use the "classic" form of Fisher's geometric model [START_REF] Harmand | Fisher's geometrical model and the muta-1121 tional patterns of antibiotic resistance across dose gradients[END_REF], where the probability density function of a mutant phenotype is multivariate normal, centred on the current phenotype, with variance λ in each dimension and no covariance. Using a probability density function of mutant phenotypes implies a continuum-ofalleles [START_REF] Kimura | A stochastic model concerning the mainte-1136 nance of genetic variability in quantitative characters[END_REF], i.e., phenotype is continuous and each mutation is unique. Mutations are assumed to be additive in phenotype, which induces epistasis in fitness (as well as dominance under diploid selection), as fitness is a non-linear function of phenotype. We assume asexual reproduction, i.e., no recombination, which is appropriate for many cases of antimicrobial drug resistance and experimental evolution, while recognizing the value of expanding this work to sexual populations.

An obvious and important extension would be to relax the simplifying assumptions of isotropy and universal pleiotropy, which we leave for future work. Note that mild anisotropy yields the same bulk distribution of fitness effects as an isotropic model with fewer dimensions [START_REF] Martin | The fitness effect of muta-1166 tions across environments: a survey in light of fitness land-1167 scape models[END_REF], but this does not extend to the tails of the distribution. Therefore, whether anisotropy can be reduced to isotropy with fewer dimensions in the case of evolutionary rescue, where the tails are essential, is unknown. In the Discussion we briefly explore the effects of non-Gaussian distributions of mutant phenotypes.

Given this phenotype-to-fitness mapping and phenotypic distribution of new mutations, the distribution of fitness effects (and therefore growth rates) of new mutations can be derived exactly. Let m be the growth rate of some particular focal genotype and m the growth rate of a mutant immediately derived from it.

Then let s o = m maxm be the selective effect of a mutant with the optimum genotype and s = mm the selective effect of the mutant with growth rate m . The probability density function of the selective effects of new mutations, s, is then given by equation 3 in [START_REF] Martin | The fitness effect of muta-1169 tions across environments: Fisher's geometrical model with 1170 multiple optima[END_REF]. Converting fitness effects to growth rate (m = s + m), the probability density function for mutant growth rate m from an ancestor with growth rate m is (cf. equation 2 in [START_REF] Anciaux | Evolu-1067 tionary rescue over a fitness landscape[END_REF])

f (m |m) = 2 λ f χ 2 n 2(m max -m ) λ , 2(m max -m) λ , (1) 
where Let p 0 be the probability that a given wildtype individual is 262 "successful", i.e., has descendants that rescue the population.

f χ 2 n (x,

263

The probability of rescue is then one minus the probability that 264 none of the initial wildtype individuals are successful,

265 P = 1 -(1 -p 0 ) N 0 ≈ 1 -exp (-N 0 p 0 ) , (2) 
where the approximation assumes small p 0 and large N 0 . What 266 remains is to find p 0 .

267

Summary of Results

268

We start with a heuristic explanation of our main results before 269 turning to more detailed derivations in the next section.

270

Rescue by multiple mutations

271

A characteristic pattern of evolutionary rescue is a "U"-shaped (A) Population size trajectories on a log scale. Each line is a unique replicate simulation (100 replicates). Replicates that went extinct are grey, replicates that were rescued are in colour (and are roughly V-shaped). (B) The number of individuals with a given derived allele, again on a log scale, for the yellow replicate in A. The number of individuals without any derived alleles (wildtypes) is shown in grey, the rescue mutation is shown in yellow, and all other mutations are shown in black. Other parameters: n = 4, λ = 0.005, m max = 0.5. first reduced (transitioning to a line with slope m 1 < 0) before the population begins growing (a line with slope m 2 > 0).

As expected, V-shaped log-trajectories are the result of a single mutation creating a genotype with a positive growth rate that escapes loss when rare and rescues the population (Figure 1B), i.e., 1-step rescue. U-shaped log-trajectories, on the other hand, occur when a single mutation creates a genotype with a negative (or potentially very small positive) growth rate, itself doomed to extinction, which out-persists the wildtype and gives rise to a double mutant genotype that rescues the population (Figure 2B), i.e., 2-step rescue. These two types of rescue comprise the overwhelming majority of rescue events observed in our simulations, across a wide range of wildtype decline rates (e.g., Figure 3).

In the text, we focus on low to moderate mutation rates affecting growth rate. With sufficiently high mutation rates rescue by 3 or more mutations comes to dominate (Figure S1). It has recently been suggested that when the mutation rate, U, is substantially less than a critical value, U C = λn 2 /4, we are in a "strong selection, weak mutation" regime where selection is strong enough relative to mutation that essentially all mutations arise on a wildtype background [START_REF] Martin | The nonstationary dynamics of 1172 fitness distributions: asexual model with epistasis and stand-1173 ing variation[END_REF], consistent with the House of Cards approximation [START_REF] Turelli | Heritable genetic variation via mutationselection balance: Lerch's zeta meets the abdominal bristle[END_REF][START_REF] Turelli | Effects of pleiotropy on predictions concerning mutation-selection balance for polygenic traits[END_REF]. Thus in this regime rescue tends to occur by a single mutation of large effect [START_REF] Anciaux | Evolu-1067 tionary rescue over a fitness landscape[END_REF]). In the other ex-treme, when U >> U C , we are in a "weak selection, strong 313 mutation" regime where selection is weak enough relative to 314 mutation that many cosegregating mutations are present within 315 each genome, creating a multivariate normal phenotypic distri-316 bution [START_REF] Martin | The nonstationary dynamics of 1172 fitness distributions: asexual model with epistasis and stand-1173 ing variation[END_REF], consistent with the Gaussian 317 approximation [START_REF] Kimura | A stochastic model concerning the mainte-1136 nance of genetic variability in quantitative characters[END_REF][START_REF] Lande | The genetic covariance between characters main-1141 tained by pleiotropic mutations[END_REF]. Thus in this regime 318 rescue tends to occur by many mutations of small effect (An- 

= -0.3, U = 10 -2 ). (A)
Population size trajectories on a log scale. Each line is a unique replicate simulation (500 replicates). Replicates that went extinct are grey, replicates that were rescued are in colour. Note that the blue and red replicates are cases of 2-step rescue (and roughly U-shaped), while the yellow replicate is 1-step rescue (and therefore V-shaped). (B) The number of individuals with a given derived allele, again on a log scale, for the red replicate in A. The number of individuals without any derived alleles (wildtypes) is shown in grey, the rescue mutations are shown in red, and all other mutations in black. Here a single mutant with growth rate less than zero arises early and outlives the wildtype (solid red). A second mutation then arises on that background (dashed red), making a double mutant with a growth rate greater than zero that rescues the population. Other parameters: n = 4, λ = 0.005, m max = 0.5. around small positive values (m 0; blue curves in Figure 6). 

The probability of

427

The DFE of genotypes that cause 2-step rescue (the combined 428 effect of two mutations) is also clustered at small positive growth 429 rates, but it has a variance that is less affected by the rate of wild-430 type decline (red curves in Figure 6). This is because double p(m, Λ(m)) probability a genotype with growth rate m, itself fated for extinction, has descendants that rescue the population (eq. 3)

p est (m) probability a genotype with growth rate m establishes, i.e., rescues the population (eq. 4)

Λ(m) probability that an individual with growth rate m produces a mutant that has descendants that rescue the population

Λ i (m)
probability that an individual with growth rate m produces a mutant that has descendants with i -1 additional mutations that rescue the population

Λ i 2 (m)
probability that an individual with growth rate m produces sufficiently subcritical (i = " -"), critical (i = 0), or supercritical (i = " + ") firststep mutants that eventually lead to 2-step rescue (eq. 8) 

ψ 2(1 - √ 1 -m/m max ) ψ 0 2(1 - √ 1 -m 0 /m max ) ρ max m max /λ α ρ max ψ 2 0 /4
473 p(m, Λ(m)) = 1 -exp |m| 1 -1 + 2Λ(m) m 2 . ( 3 
)
We can therefore use p 0 = p(m 0 , Λ(m 0 )) as the probability that a 2) is Λ(m 0 ). We break this down by letting Λ i (m) be 477 the rate at which rescue genotypes with i mutations are created;

478 the total probability of rescue is then given by Equation 2with 

479 p 0 = p(m 0 , ∑ ∞ i=1 Λ i (m 0 )).
488 p est (m) ≈ 0 m ≤ 0 1 -exp(-2m) m > 0 . ( 4 
)
This reduces to the 2(s + m 0 ) result in [START_REF] Otto | The probability of fixation 1192 in populations of changing size[END_REF] 489 when m = s + m 0 is small, which further reduces to 2s in a 490 population of constant size, where m 0 = 0 [START_REF] Haldane | A Mathematical Theory of Natural and 1116 Artificial Selection, Part V: Selection and Mutation[END_REF]. Using 491 this, the rate of 1-step rescue is

492 Λ 1 (m 0 ) = U m max 0 f (m|m 0 )p est (m)dm. (5) 
Taking the first order approximation of p(m 0 , Λ 1 (m 0 )) with

493

Λ 1 (m 0 )/m 2 0 small gives the probability of 1-step rescue (equa- 

Λ 2 (m 0 ) = U m max -∞ f (m|m 0 ) [1 -p est (m)] p(m, Λ 1 (m))dm. (6)
Following this logic, we can retrieve the probability of k-step 505 rescue, for arbitrary k ≥ 2, using the recursion

506 Λ k (m 0 ) =U m max -∞ f (m|m 0 ) [1 -p est (m)] p(m, Λ k-1 (m))dm, (7) 
with the initial condition given by Equation 5. The probability of evolutionary rescue as a function of initial maladaptation. Shown are the probabilities of 1-, 2-, 3-, and 4-step rescue (using Equations 2-7), as well as the probability of rescue by up to 4 mutational steps ("total", using

Λ(m 0 ) = ∑ 4 i=1 Λ i (m 0 )).
Circles are individual-based simulation results (ranging from 10 5 to 10 6 replicates per wildtype growth rate). Open circles denote the fraction of simulations where the rescue genotype (see Simulation procedure) had a given number of mutations and closed circles are the sum of these fractions. Parameters: N 0 = 10 4 , U = 2 × 10 -3 , n = 4, λ = 0.005, m max = 0.5.

Approximating the probability of 2-step rescue 508

The probability of 2-step rescue is given by Equation 2 with 509 p 0 = p(m 0 , Λ 2 (m 0 )) (Equations 3-6). We next develop some 5. Thus, for first-step mutants with growth rates ical". Given that U and thus Λ 1 (m) will generally be small, m 566 will also be small at these transition points, meaning we can 567 approximate the transition points as m * = Λ 1 (0)/2 and -m * .

538 satisfying 2/ Λ 1 (m) < 1/|m|, implying m 2 << Λ 1 (m)

568

We then have an approximation for the rate of 2-step rescue,

569 Λ 2 (m 0 ) = Λ (-) 2 (m 0 ) + Λ (0) 2 (m 0 ) + Λ (+) 2 (m 0 ) Λ (-) 2 (m 0 ) = U -m * -∞ f (m|m 0 )Λ 1 (m)/|m|dm Λ (0) 2 (m 0 ) = U m * -m * f (m|m 0 ) [1 -p est (m)] 2Λ 1 (m)dm Λ (+) 2 (m 0 ) = U m max m * f (m|m 0 ) [1 -p est (m)] Λ 1 (m)/|m|dm (8)
where

Λ (i) 2 (m 0 )
is the rate of 2-step rescue through sufficiently 570 subcritical first-step mutants (i = " -"), sufficiently critical 571 first-step mutants (i = 0), or sufficiently supercritical first-step 572 mutants (i = " + "). A schematic depicting the 1-and 2-step 573 genetic paths to rescue is given in Figure 4. 

Λ (0) 2 (m 0 ) ≈ U f (0|m 0 ) 2Λ 1 (0) 2m * = 2U f (0|m 0 )Λ 1 (0). 578 
We can then approximate Λ 1 (m) with Λ1 (m) (Equation 19) and 579 take m → 0 (Equation 20), giving a closed form approximation 580 for the rate of 2-step rescue through critical single mutants in 581

Fisher's geometric model, 582

Λ (0) 2 (m 0 ) ≈ 4U 2 f (0|m 0 ) m max λ/π. ( 10 
)
This well approximates numerical integration of Λ 

2 (m 0 ) ≈ U 2 (1 -ψ 0 /2) (1-n)/2 e -α 2 π , (11) 
where

ψ 0 = 2(1 - √ 1 -m 0 /m max ) < 0 and α = ρ max ψ 2 0 /4.

594

Closed-form approximations for non-critical 2-step rescue

We 19), leaving us with just one integral over 597 the growth rates of the first-step mutations. We then replace 598 f (m|m 0 ) with its approximate distribution over ψ as above.

595 can also approximate Λ 1 (m) in Λ (-) 2 (m 0 ) and Λ (+) 2 (m 0 ) with 596 Λ1 (m) (Equation

599

In the case of subcritical rescue we can then make two con- 

2 (m 0 ) ≈ U 2 (1 -ψ 0 /2) 1-n 1 -ψ 0 /4 e -α log(ψ 0 /ψ * -) π , ( 12 
)
where 20). Second, when the mutational variance, λ, is very 607 small relative to maladaptation, implying that mutants far from 608 m = 0 substantially contribute, we find the rate of subcritical 609 2-step rescue to be nearly

ψ * -= 2(1 - √ 1 + m * /m max ) < 0 and m * = Λ1 (0)/2 606 (Equation
610 Λ (-) 2 (m 0 ) ≈ -U 2 (1 -ψ 0 /2) 1-n 1 -ψ 0 /4 e -α 1 (α/2) 3 π 1/2 . (13)
These two approximations do well compared with numerical in-

611 tegration of Λ (-)
2 (m 0 ) (Equation 8; see Figure 5 and File S2). As 612 expected, we find that Equation 13 does better under fast wild-613 type decline while Equation 12 does better when the wildtype is 614 declining more slowly.

615

For supercritical 2-step rescue, only first-step mutants with 616 growth rates near m * will contribute (larger m will rescue them-617 selves and are also less likely to arise by mutation), and so we 618 can capture the entire distribution with a small m approximation 619 (following the same approach that led to Equation 12). As shown 

Λ (+) 2 (m 0 ) ≈ U 2 (1 -ψ 0 /2) 1-n 1 -ψ 0 /4 e -α log(ψ max /ψ * + ) π , (14) 
with

ψ * + = 2(1 - √ 1 -m * /m max ) and ψ max = 2/ρ max .

627

This approximation tends to provide a slight overestimate of 628

Λ (+)
2 (m 0 ) (Equation 8; see Figure 5 and File S2). scaling with U is stronger when the wildtype is not very mal-637 adapted relative to the mutational variance, i.e., when Equation 63812 is the better approximation for subcritical rescue. The approx-639 imations also show that when initial maladaptation is small, the 640 ratio of supercritical to subcritical contributions (Equation 12641 divided by 14) primarily depends on the range of growth rates 642 included in each regime, while with larger initial maladaptation 643 this ratio (Equation 13divided by 14) begins to depend more 644 strongly on initial maladaptation and mutational variance (α).

645

The effect of maladaptation and mutation rate on the relative 646 contributions of each regime is shown in Figure 5.

647

The distribution of growth rates among rescue genotypes 648

We next explore the distribution of growth rates among rescue 649 genotypes, i.e., the distribution of growth rates that we expect 650 to observe among the survivors across many replicates.

651

We begin with 1-step rescue. The rate of 1-step rescue by 652 genotypes with growth rate m is simply U f (m|m 0 )p est (m). Di-

653

viding this by the rate of 1-step rescue through any m (Equation 6545) gives the distribution of growth rates among the survivors where the mutation rate, U, cancels out. This distribution is 656 shown in blue in Figure 6. The distribution has a mode at small 657 but positive m as a result of two conflicting processes: smaller 658 growth rates are more likely to arise from a declining wildtype 659 but larger growth rates are more likely to establish given they 660 arise. As the rate of wildtype decline increases, the former pro-661 cess exerts more influence, causing the mode to move towards 662 zero and reducing the variance.

655 g 1 (m) = U f (m|m 0 )p est (m) Λ 1 (m 0 ) , ( 15 

663

We can also give a simple, nearly closed-form approximation 664 here using the same approach taken to reach Equation 19. On the 665 ψ scale, the distribution of effects among 1-step rescue mutations

666 is 667 g1 (ψ) = exp(α) √ αρ max [exp(α) √ παErfc( √ α) -1]ψ 0 e -ρ max (ψ-ψ 0 ) 2 /4 ψ, ( 16 
)
implying the ψ are distributed like a normal truncated below 668 ψ = 0 and weighted by ψ. This often provides a very good 669 approximation (see dashed blue curves in Figure 6). 

g 2 (m 2 ) ≈ A(m 2 ) m max 0 A(m 2 )dm 2 A(m 2 ) = m max -∞ f (m|m 0 ) [1 -p est (m)] p(m, U f (m 2 |m)p est (m 2 ))dm. (17)
This distribution, g 2 (m), is shown in red in Figure 6. Because the 676 first-step mutants contributing to 2-step rescue tend to be nearer 677 the optimum than the wildtype, this allows them to produce 678 double mutant rescue genotypes with higher growth rates than 679 in 1-step rescue (as seen by comparing the mode between blue 680 and red curves in Figure 6). The fact that these first-step mutants Λ 2 (m 0 ) (Equation 6) and normalize, giving

694 h(m) = U f (m|m 0 ) [1 -p est (m)] p(m, Λ 1 (m)) Λ 2 (m 0 ) , (18) 
where the first U cancels but the U within Λ 1 (m) does not. This The distribution of growth rates among rescue genotypes under 1-step (blue; Equation 15 solid and 16 dashed) and 2-step (red; Equation 17) rescue for three different levels of initial maladaptation. For comparison, the distribution of random mutations (dashed; Equation 1) and the distribution of beneficial mutations that establish in a population of constant size (solid grey; Equation 1 times Equation 4 and normalized) are shown. Intervals (horizontal lines) indicate the size of the most common fitness effect (s = m 0m) in a population of constant size (grey) and in 1-step rescue (blue). The histograms show the distribution of growth rates among rescue genotypes observed across (A) 10 4 , (B) 10 5 , and (C) 10 6 simulated replicates. Other parameters:

N 0 = 10 4 , U = 2 × 10 -3 , n = 4, λ = 0.005, m max = 0.5. subcritical critical supercritical random established first step 0.3 0.2 0.1 0.0 0.1 m 0 0.1 A 0.3 0.2 0.1 0.0 0.1 m 0 0.2 B 0.3 0.2 0.1 0.0 0.1 Growth rate m 0 0.3 C Figure 7
The distribution of growth rates among first-step mutations that lead to 2-step rescue (black; Equation 18) for three different levels of initial maladaptation. Shading represents our sufficiently subcritical approximation (blue; replacing p(m, Λ 1 (m)) with Λ 1 (m)/|m| in the numerator of Equation 18), our sufficiently critical approximation (red; using U f (0|m 0 ) 2Λ 1 (0) as the numerator in Equation 18), and our sufficiently supercritical approximation (yellow; replacing p(m, Λ 1 (m)) with Λ 1 (m)/|m| in the numerator of Equation 18). The histograms show the distribution of growth rates among first-step mutations in rescue genotypes with 2 mutations observed across (A, B) 10 5 or (C) 10 6 simulated replicates. We hypothesize that the overabundance of supercriticals (especially in panel A) is likely due to us sampling only the most common rescue genotype in each replicate, which is not necessarily the first genotype that rescues. See Figure 6 Figure 7A) or mutation rate is high (e.g., Figure S2C). In contrast,

736

when populations are initially very maladapted (e.g., Figure 7C), the resulting DFEs. As a preliminary investigation of this prediction, we have performed simulations with mutant phenotype distributions having the same expectation and covariances as assumed above under normality, but with truncated (platykurtic) or fat (leptokurtic) tails (Figure S3A). While our qualitative results above hold, the probability of rescue declines slower with wildtype maladaptation when the mutational distribution has fatter tails (compare dotted and solid black in Figure S3C). Fatter tails also reduce the number of mutations contributing to rescue (e.g., 1-step rescue dominates for all wildtype decline rates in Figure S3C). Finally, fatter tails cause the distributions of rescue genotype growth rates following 1-and 2-step rescue to have more variance and become more similar to one another (Figure S4B) and also tend to increase the contribution of supercritical single mutants in 2-step rescue (Figure S5). All told, the genetic basis of rescue is expected to consist of fewer mutations of larger effect, with less consistent effect sizes across replicate populations, as the tails of the mutant phenotype distribution become fatter.

In the numerical examples above we have not varied the number of scaled phenotypic axes, n, i.e., the dimensionality of the phenotypic landscape (although the analytical results apply for arbitrary n). Because increasing the number of dimensions changes the distribution of fitness effects, and in particular decreases the proportion of mutations that are beneficial [START_REF] Fisher | The genetical theory of natural selection[END_REF], this may have cascading influences on our results. As shown in [START_REF] Anciaux | Evolu-1067 tionary rescue over a fitness landscape[END_REF], the probability of 1-step rescue by de novo mutation declines with dimensionality, and is only weakly dependent on dimensionality when initial maladaptation is small (such that Λ 1 (m 0 ) ≈ -m 0 Ug(α), Equation 19).

Here we show that the distribution of fitness effects among 1step rescue mutants is nearly independent of dimensionality for any degree of initial maladaptation (Equation 16 and the blue curves in Figure S6B). Further, as seen by comparing Equations 11-14 to Equation 19, the probability of 2-step rescue depends on dimensionality much like 1-step rescue does, suggesting that while increasing dimensionality may decrease the probability of rescue it may have little effect on the number of steps rescue tends to take. This is demonstrated more generally in Figure S6A, where an order of magnitude increase in the number of dimensions decreases the probability of rescue by roughly an order of magnitude but has little effect on the relative rates of 1-, 2-, 3-, and 4-step rescue. Finally, Figure S6B-C shows that dimensionality has very little effect on the distribution of fitness effects among 2-step rescue genotypes (Equation 17) and among first step mutants leading to 2-step rescue (Equation 18). To conclude, while the probability of rescue declines with the complexity of the organism and its environment, the genetic basis of rescue is expected to be relatively invariant across complexity, as with the genetic basis of adaptation in populations of constant size [START_REF] Orr | The Population Genetics of Adaptation: The 1182 Distribution of Factors Fixed during Adaptive Evolution[END_REF], see also gray curves in Figure S6B,C).

In the numerical examples above we have also focused on a particular value of mutational variance, λ. Clearly, since rescue relies on mutations of large effect, decreasing λ should decrease the probability of rescue, much like decreasing the mutation rate, U, does (Figure S1). While our analysis and numerical results (see File S2) show that this is true, we find that λ and U have very different effects on the genetic basis of rescue (File S2). In particular, given a similar effect on the total probability of rescue, decreasing U generally restricts rescue to fewer mutational steps while decreasing λ forces rescue to occur by more mutations. Further, the distribution of fitness effects of mutations contributing to rescue is nearly independent of 1034 U but a decrease in λ strongly reduces the mode of the DFE.

1035

This demonstrates that populations with similar probabilities of 1036 rescue can vary greatly in the way they achieve it genetically.

1037

119

  likely than rescue by mutation at a single locus (one simulta-120 neous mutational step), particularly when the wildtype is very 121 maladapted, where the single mutants can act as a buffer in 122 the face of environmental change. In summary, current theory 123 indicates that the genetic basis of rescue hinges on the chosen 124 set of genotypes, their fitnesses, and the mutation rates between 125 them. So far these choices have been in large part arbitrary or 126 chosen for mathematical convenience.

  127

129

  and the mutational distribution, to arise from an empirically-130 justified fitness-landscape model[START_REF] Tenaillon | The utility of Fisher's geometric model in 1211 evolutionary genetics[END_REF]. In particular, 131 we use Fisher's geometric model to describe adaptation follow-132 ing an abrupt environmental change that instigates population 133 decline. There are two key differences between this approach 134 and earlier models using Fisher's geometric model (e.g., Orr 135 1998): here 1) the dynamics of each genotype depends on their 136 absolute fitness (instead of only on their relative fitness) and 2) 137 multiple mutations can segregate simultaneously (instead of as-138 suming only sequential fixation), allowing multiple mutations to 139 fix -and in our case, rescue the population -together as a single 140 haplotype (i.e., stochastic tunnelling, Iwasa et al. 2004b). In this 141 non-equilibrium scenario, variation in absolute fitness, which 142 allows population size to vary, can create feedbacks between 143 demography and evolution, which could strongly impact the 144 genetic basis of adaptation relative to the constant population 145 size case. In contrast to Anciaux et al. (2018), our focus here is 146 on the genetic basis of evolutionary rescue and we also explore 147 the possibility of rescue by mutant haplotypes containing more 148 than one mutation. In particular, we ask: (1) How many muta-149 tional steps is evolutionary rescue likely to take? and (2) What 150 is the expected distribution of fitness effects of the surviving 151 genotypes and their component mutations? 152 We first introduce the modelling framework before summa-153 rizing our main results. We then present the mathematical anal-154 yses we have used to understand these results and end with a 155 discussion of our key findings. 156 Data availability 157 Supplementary figures are provided in File S1. Code used 158 to derive analytical and numerical results and produce fig-159 ures (Mathematica, version 9.0; Wolfram Research Inc. 2012) 160 is provided as File S2. These files, as well as code used to 161 run individual-based simulations (Python, version 3.5; Python 162 Software Foundation), have all been deposited at figshare. 163 All these files, as well as simulation data and freely accessi-164 ble versions of File S2 (CDF and PDF), are also available at 165 https://github.com/mmosmond/GeneticBasisOfRescue.
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 1 Figure1Typical dynamics with a relatively slow wildtype decline and a small mutation rate (m 0 = -0.1, U = 10 -4 ). (A) Population size trajectories on a log scale. Each line is a unique replicate simulation (100 replicates). Replicates that went extinct are grey, replicates that were rescued are in colour (and are roughly V-shaped). (B) The number of individuals with a given derived allele, again on a log scale, for the yellow replicate in A. The number of individuals without any derived alleles (wildtypes) is shown in grey, the rescue mutation is shown in yellow, and all other mutations are shown in black. Other parameters: n = 4, λ = 0.005, m max = 0.5.

319Figure 2

 2 Figure 2Typical dynamics with a relatively fast wildtype decline and a large mutation rate (m 0 = -0.3, U = 10 -2 ). (A) Population size trajectories on a log scale. Each line is a unique replicate simulation (500 replicates). Replicates that went extinct are grey, replicates that were rescued are in colour. Note that the blue and red replicates are cases of 2-step rescue (and roughly U-shaped), while the yellow replicate is 1-step rescue (and therefore V-shaped). (B) The number of individuals with a given derived allele, again on a log scale, for the red replicate in A. The number of individuals without any derived alleles (wildtypes) is shown in grey, the rescue mutations are shown in red, and all other mutations in black. Here a single mutant with growth rate less than zero arises early and outlives the wildtype (solid red). A second mutation then arises on that background (dashed red), making a double mutant with a growth rate greater than zero that rescues the population. Other parameters: n = 4, λ = 0.005, m max = 0.5.

  k-step rescue 326 Approximations for the probability of 1-step rescue under the 327 strong selection, weak mutation regime were derived by Anci-328 aux et al. (2018). Here we extend this study by exploring the 329 4 Osmond et al.probability of such events, as well as dissecting the genetic basis 331 of both 1-and 2-step rescue in terms of the distribution of fitness 332 effects of rescue genotypes and their component mutations. evolutionary rescue can be the dominant form of rescue when 336 the wildtype is sufficiently maladapted (Figures 3 and S1). In-337 deed, on this fitness landscape, the probability of producing 338 a rescue genotype in one mutational step mutant drops very 339 sharply with maladaptation (Anciaux et al. 2018); the probabil-340 ity of multi-step rescue declines more slowly as mutants with 341 intermediate growth rates can be a "springboard" -albeit not 342 always a very bouncy one -from which rescue mutants are pro-343 duced. These intermediates contribute more as mutation rates and the decline rate of the wildtype increase (Figures 3 and S1), 345 the former because double mutants become more likely and the 346 latter because the springboard becomes more necessary. With a 347 large enough number of wildtype individuals or a high enough 348 mutation rate (Figure S1), multi-step rescue can not only be more 349 likely than 1-step, but also very likely in an absolute sense. 350 Classifying 2-step rescue regimes 351 2-step rescue can occur through first-step mutants with a wide 352 range of growth rates. As shown below (see Approximating 353 the probability of 2-step rescue), these first-step mutants can 354be divided into three regimes: "sufficiently subcritical", "suffi-355 ciently critical", and "sufficiently supercritical" (we will often 356 drop "sufficiently" for brevity; Figure4). Sufficiently critical first-357 step mutants are defined by having growth rates close enough 358 to zero that the most likely way for such a mutation to lead to 359 2-step rescue is for it to persist for such an unusually long period 360 of time, and accordingly grow to such an unusually large sub-361 population size, that it will almost certainly produce successful 362 double mutants. Sufficiently subcritical first-step mutants are 363 then defined by having growth rates that are negative enough 364 to almost certainly prevent such long persistence times. Instead, 365 these mutations tend to persist for an expected number of gener-366 ations, proportional to the inverse of their growth rate (1/|m|), 367 while maintaining relatively small subpopulation sizes (on the 368 order of one individual per generation

411

  Consequently, the distribution of fitness effects (DFE) among 412 these rescue mutants is shifted to the right relative to mutations 413 that establish in a population of constant size (compare solid 414 blue and gray curves in Figure6), with a DFE beginning at415 s = mm 0 ≥ -m 0 > 0 rather than s = 0 (Kimura 1983).As a 416 result of this increased threshold, the 1-step rescue DFE has a 417 smaller variance than both the DFE of random mutations and 418 the DFE of mutations that establish in a constant population 419 (compare blue and gray curves in Figure 6). Further, while the 420 variance in the DFE of random mutations and of those that 421 establish in a population of constant size increases slightly with 422 initial maladaptation (due to the curvature of the phenotype-to-423 fitness function), the variance in the 1-step rescue DFE decreases 424 substantially (compare panels in Figure 6), as rescue becomes 425 restricted to a rapidly decreasing proportion of the available 426 mutants.

474

  wildtype individual has descendants that rescue the population 475 and what remains in calculating the total probability of rescue 476 (Equation

494 tion 5

 5 of Anciaux et al. 2018), which effectively assumes deter-495 ministic wildtype decline. For completeness we rederive their 496 closed-form approximation in File S2 (and give the results in the 497 Appendix, see Approximating the probability of 1-step rescue).498The probability of 2-step rescue is only slightly more compli-499 cated. Here Λ 2 (m 0 ) is the probability that a mutation arising on 500 the wildtype background creates a genotype that is also fated 501 for extinction but persists long enough for a second mutation 502 to arise on this mutant background, creating a double mutant 503 genotype that rescues the population. We therefore have 504

  Figure 3The probability of evolutionary rescue as a function of initial maladaptation. Shown are the probabilities of 1-, 2-, 3-, and 4-step rescue (using Equations 2-7), as well as the probability of rescue by up to 4 mutational steps ("total", usingΛ(m 0 ) = ∑ 4 i=1 Λ i (m 0 )).Circles are individual-based simulation results (ranging from 10 5 to 10 6 replicates per wildtype growth rate). Open circles denote the fraction of simulations where the rescue genotype (see Simulation procedure) had a given number of mutations and closed circles are the sum of these fractions. Parameters: N 0 = 10 4 , U = 2 × 10 -3 , n = 4, λ = 0.005, m max = 0.5.

  that when the growth rate of a first-step mutation 513 is close enough to zero such that m 2 << Λ 1 (m), we can ap-514 proximate the probability that such a genotype leads to rescue 515 before itself going extinct, p(m, Λ 1 (m)), using a Taylor series, 516 as 2Λ 1 (m) (c.f. equation A.4b inIwasa et al. 2004a, see also 517 File S2). We can also derive this result heuristically by consid-518 ering the probability that a lineage will persist long enough 519 that it will incur a secondary rescue mutation. As shown in the and in generation t since it has arisen has ∼ t/2 individuals 524 (Equation22). Thus, while T < 1/|m| a mutant lineage that 525 persists for T generations will have produced a cumulative num-526 ber ∼ T 2 /4 individuals. Such lineages will then lead to 2-step 527 rescue with probability ∼ Λ 1 (m)T 2 /4 until this approaches 1,528 near T = 2/ Λ 1 (m).Since the probability of rescue increases 529 like T 2 while the probability of persisting to time T declines only 530 like 1/T, most rescue events will be the result of rare long-lived 531 single mutant genotypes. Considering only the most long-lived 532 genotypes, the probability that a first-step mutation leads to 533 rescue is then the probability that it survives long enough to 534 almost surely rescue, i.e., for T ∼ 2/ Λ 1 (m) generations. Since 535 the probability of such a long-lived lineage is 2/T ∼ Λ 1 (m), 536 this heuristic result agrees with our Taylor series approximation 537 of Equation

574

  Closed-form approximation for critical 2-step rescue When U 575 is small m * is also small, allowing us to use m = 0 ), which spans a range, [-m * , m * ], of width 577 2m * ≈ 2Λ 1 (0), giving

2Figure 4

 4 Figure 4 1-and 2-step genetic paths to evolutionary rescue. Here we show an n = 2 dimensional phenotypic landscape. Continuous-time (Malthusian) growth rate (m) declines quadratically from the centre, becoming negative outside the thick black line. The grey zone indicates where growth rates are "sufficiently critical" (see text for details). Blue circles show wildtype phenotypes, red circles show intermediate first-step mutations, and yellow circles show the phenotypes of rescue genotypes.

600

  trasting approximations (see File S2 for details). First, when 601 the ψ (and thus m) that contribute most are close enough to 602 zero (meaning maladaptation is not too large relative to muta-603 tional variance) and we ignore mutations that are less fit than the 604 wildtype, we find the rate of subcritical 2-step rescue is roughly 605 Λ (-)

629

  Comparing 2-step regimes These rough but simple closed-form 630 approximations (Equations 11-14) show that, while the contri-631 bution of critical mutants to 2-step rescue scales with U 2 , the 632 contribution of non-critical single mutants scales at a rate less 633 than U 2 (Figure 5B) due to a decrease in ψ * -(decreasing the 634 range of subcritical mutants) and an increase in ψ * + (decreasing 635 the range of supercritical mutants) with U. This difference in 636

Figure 5

 5 Figure 5The relative contribution of sufficiently subcritical, critical, and supercritical single mutants to 2-step rescue. The curves are drawn using Equations 10-14 (Equation 12 is used for m 0 < 0.2 while Equation 13 is used for m 0 > 0.2). The dots are numerical evaluations of Equation 8. Parameters: n = 4, λ = 0.005, m max = 0.5, (A) U = 10 -3 , (B) m 0 = -0.1.

681

  are closer to the optimum also allows for a greater variance in the 682 growth rates of rescue genotypes than in 1-step rescue. Thus the 683 2-step distribution maintains a more similar mode and variance 684 across wildtype decline rates than the 1-step distribution. Note 685 that because g 2 (m 2 ) depends on U the buffering effect of first-686 step mutants depends on the mutation rate (see The distribution 687 of growth rates among rescue intermediates below for more 688 discussion). 689 The distribution of growth rates among rescue intermediates 690 Finally, our analyses above readily allow us to explore the distri-691 bution of first-step mutant growth rates that contribute to 2-step 692 rescue. Analogously to Equation 15, we drop the integral in 693

695

  Figure 6The distribution of growth rates among rescue genotypes under 1-step (blue; Equation 15 solid and 16 dashed) and 2-step (red; Equation17) rescue for three different levels of initial maladaptation. For comparison, the distribution of random mutations (dashed; Equation1) and the distribution of beneficial mutations that establish in a population of constant size (solid grey; Equation 1 times Equation 4 and normalized) are shown. Intervals (horizontal lines) indicate the size of the most common fitness effect (s = m 0m) in a population of constant size (grey) and in 1-step rescue (blue). The histograms show the distribution of growth rates among rescue genotypes observed across (A) 10 4 , (B) 10 5 , and (C) 10 6 simulated replicates. Other parameters: N 0 = 10 4 , U = 2 × 10 -3 , n = 4, λ = 0.005, m max = 0.5.

  Figure 7The distribution of growth rates among first-step mutations that lead to 2-step rescue (black; Equation18) for three different levels of initial maladaptation. Shading represents our sufficiently subcritical approximation (blue; replacing p(m, Λ 1 (m)) with Λ 1 (m)/|m| in the numerator of Equation 18), our sufficiently critical approximation (red; using U f (0|m 0 ) 2Λ 1 (0) as the numerator in Equation18), and our sufficiently supercritical approximation (yellow; replacing p(m, Λ 1 (m)) with Λ 1 (m)/|m| in the numerator of Equation18). The histograms show the distribution of growth rates among first-step mutations in rescue genotypes with 2 mutations observed across (A, B) 10 5 or (C) 10 6 simulated replicates. We hypothesize that the overabundance of supercriticals (especially in panel A) is likely due to us sampling only the most common rescue genotype in each replicate, which is not necessarily the first genotype that rescues. See Figure6for additional details.
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  most first-step mutations are themselves also very maladapted 738 and thus restricted in the subpopulation sizes they are expected 739 to reach before being lost. All three regimes help to maintain the 740 variance in the distribution of fitness effects among rescue geno-741 types as initial maladaptation increases; meanwhile, in 1-step 742 rescue the variance declines due to ever more extreme sampling 743 of the tail of the mutational distribution (compare blue and red 744 curves in Figure 6).

807

  While under 1-step rescue the fitness effect of the first muta-808 tion increases roughly linearly as wildtype fitness declines, most 809 rescue events will be 2-step for wildtype fitnesses below some 810 value (e.g., at m 0 ≈ -0.25 in Figure 3; this threshold value of 811 m 0 increases with mutation rate, Figure S1). At this junction 812 the effect size of the first mutation will no longer increase as 813 quickly (and potentially even decrease), as it switches from a 814 rescue mutant to an intermediate mutant whose expected fitness 815 begins to decline substantially with the fitness of the wildtype 816 (Figure 7). Thus as rescue switches from dominantly k-step to 817 dominantly (k + 1)-step the genetic basis of adaptation becomes 818 more diffuse, with each mutation having a smaller individual 819 fitness effect as the contributing fitness effects spread over more 820 loci. In the limit of large k (due to large initial maladaptation or 821 high mutation rates), the genetic basis of adaptation should at 822 some point converge to many loci with small effect, as would 823 also be expected in a population of constant size. Indeed, at 824 very high mutation rates the rate of adaptation (the change in 825 mean fitness) is the same under rescue as it is in populations 826 of constant size (

923

  Here we have investigated the genetic basis of evolution-924 ary rescue in an asexual population that is initially genetically 925 uniform. Extending this work to allow for recombination and 926 standing genetic variation at the time of environmental change 927 -as expected for many natural populations -would be valu-928 able. The effect of standing genetic variation on the probability 929 of 1-step rescue is relatively straight-forward to incorporate, 930 depending only on the expected number of rescue mutations 931 initially present and their mean establishment probability (Mar-932 tin et al. 2013). In the case of the fluctuation tests discussed 933 above, where mutations accumulated in the short interval be-934 fore the onset of selection are assumed to be relatively neutral, 935 the effect of standing genetic variance on 1-step rescue might 936 be incorporated by a simple rescaling of N 0 , to account for the 937 additional mutants present in the standing variation. When 938 considering longer periods of time in populations that are not 939 rapidly expanding, mutation-selection balance may be reached 940 before the onset of selection. In this case the probability of 1-941 step rescue from standing genetic variance in Fisher's geometric 942 model was given by Anciaux et al. (2018), whose equations 3 943 and 5 immediately give the distribution of fitness effects among 944 those that rescue. Allowing these standing genetic variants to 945 be springboards to multi-step rescue will help clarify the role of 946 standing genetic variation on the genetic basis of rescue more 947 generally. Recombination can help combine such springboard 948 mutations into rescue genotypes but will also break these com-949 binations apart, as demonstrated in a 2-locus 2-allele model of 950 rescue (Uecker and Hermisson 2016). How recombination af-951 fects the genetic basis of evolutionary rescue when more loci can 952 potentially contribute remains to be seen. Also left unexplored 953 is the effect of density-dependent fitness; for example, competi-954 tion may reduce mutant growth rates and thereby increase the 955 size of mutations that are required for rescue, especially when 956 the wildtype declines slowly. Combining density-dependence 957 and standing genetic variance is known to create complex dy-958 namics in a 1-locus 2-allele model of rescue (Uecker et al. 2014), 959 and adding more potential genotypes is sure to add yet more 960 complexity. 961 Many of our simple closed-form results rely upon knowing 962 the distribution of mutant growth rates (Equation 1), which 963 arises from the assumption that mutant phenotypes are nor-964 mally distributed about their ancestor and Malthusian fitness 965 is a quadratic, on some scaled phenotypic axes. It is clear that 966 deviations from these assumptions will, at least quantitatively, 967 affect our results. For instance, mutant phenotype distributions 968 with truncated or fat tails are likely to lead to smaller or larger 969 mutational steps, respectively, with downstream effects on the 970 probability of rescue, the number of contributing mutations, and 971 12 Osmond et al.

  explored a 116 greater range of fitness values in a two-locus two-allele model,

	117

  We assume that n phenotypic axes can be chosen and scaled such that fitness is described by a multivariate Gaussian function with variance 1 in each dimension, no covariance, and height W max (which can always be done when considering genotypes close enough to an non-degenerate optimum; Martin 2014). Thus the fitness of phenotype z is W( z) = W max exp(-|| z -o|| 2 /2), where || z -o|| = ∑ n i=1 (z io i ) 2is the Euclidean distance of z from the optimum, o. Here we are interested in absolute fit-

. In this model each geno-171 type is characterized by a point in n-dimensional phenotypic 172 space, z. We ignore environmental effects, and thus the phe-173 notype is the breeding value. At any given time there is a 174 phenotype, o, that has maximum fitness and fitness declines 175 2 Osmond et al. monotonically as phenotypes depart from o. ness; we take ln[W( z)] = m( z) = m max -|| z -o|| 2 /2 to be the continuous-time growth rate (m is for Malthusian fitness) of phenotype z. We ignore density-and frequency-dependence in m( z) for simplicity. The fitness effect, i.e., selection coefficient, of phenotype z relative to z in a continuous-time model is exactly s
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	236	
	237	degrees of freedom and noncentrality c > 0 (equation 26.4.25 in
	238	Abramowitz and Stegun 1972).
	239	Lifecycle
	240	We are envisioning a scenario where N 0 wildtype individuals,
	241	each of which have phenotype z 0 , experience an environmental
	242	change, causing population decline, m 0 ≡ m( z 0 ) < 0. Each
	243	generation, an individual with phenotype z produces a Poisson
	244	number of offspring, with mean ln[m( z)], and dies. This pro-
	245	cess implicitly assumes no interaction between individuals, i.e.,
	246	a branching process with density-and frequency-independent
	247	growth and fitness and no clonal interference. Each offspring
	248	mutates with probability U (we ignore the possibility of multi-
	249	ple simultaneous mutations within a single genome), and muta-
	250	tions are distributed as described above (see Fisher's geometric
	251	model).
	252	Simulation procedure
	253	We ran individual-based simulations of the above process to
	254	compare with our numeric and analytic results. Populations
	255	were considered rescued when there were ≥ 1000 individuals
	256	(Figures 1-3) or ≥ 100 individuals (Figures 6-7, S1, and S3) with
	257	positive growth rates (all other replicates went extinct). The
	258	most common genotype at the time of rescue was considered the
	259	rescue genotype, and the number of mutational steps to rescue
		was set as the number of mutations in that genotype.

c) is the probability density function over positive 235 real numbers x of χ 2 n (c), a non-central chi-square deviate with n 260 Probability

  input, lowering the mode and increasing the variance of the first-step DFE (compare panels in Figure7).

	458	
	459	Note that, given 2-step rescue, the growth rate of both the
	460	first-step and second-step mutation may be negative when con-
	461	sidered by themselves in the wildtype background. This poten-
	462	tially obscures empirical detection of the individual mutations
	463	involved in evolutionary rescue.
	464	Mathematical Analysis
		Symbol	Meaning
		n	number of (scaled) phenotypic dimensions
		λ	variance in mutant phenotypes along each di-
			mension
		m max	maximum growth rate
		f (m |m)	distribution of growth rates among mutants
			from a genotype with growth rate m (eq. 1)
		U	per genome mutation probability
		N 0	initial number of wildtype individuals
		m 0	wildtype growth rate
		p 0	probability a wildtype individual has descen-
			dants that rescue the population
		P	probability of rescue (eq. 2)
			438
			439	factors to consider: 1) the probability that a mutation with a
			440	given growth rate arises on the wildtype background but does
			441	not by itself rescue the population and 2) the probability that
			442	such a mutation persists long enough for a sufficiently beneficial
			443	second mutation to arise on that same background and together
			rescue the population. Subcritical mutations conferring growth

431 mutant rescue genotypes are created via first-step mutant geno-432 types that have larger growth rates than the wildtype (i.e., are 433 closer to the optimum), allowing them to create double mutants 434 with a larger range of positive growth rates. 435 Finally, we can also look at the distribution of growth rates 436 among first-step mutations that lead to 2-step rescue, i.e., 'spring-437 board mutants' (Figures 7 and S2). Here there are two main 444 rates closer to zero persist longer but are less likely to arise from 445 the wildtype, creating a trade-off between mutational input and 446 the probability of rescue that can lead to a wide distribution 447 of contributing subcritical growth rates (blue shading in Fig-448 ure 7). In contrast, supercritical mutations with growth rates 449 nearer to zero are more likely arise by mutation, to go extinct in 450 the absence of further mutation, and to persist for longer once conditioned on extinction, together creating a relatively narrow 452 distribution of contributing supercritical growth rates (yellow 453 shading in Figure 7). As explained above, increasing the rate of 454 wildtype decline (or decreasing the rate of mutation) increases 455 the contribution of subcritical first-step mutants and the impor-456 tance of mutational

Table 1

 1 Frequently used notation.Generic expressions for the probability of 1-and 2-step rescue 466 were given by[START_REF] Martin | The probability of evolutionary rescue: towards a quantita-1162 tive comparison between theory and evolution experiments[END_REF], using a diffusion approxima-467 tion of the underlying demographics. The key result that we 468 will use is the probability that a single copy of a genotype with 469 growth rate m, itself fated for extinction but which produces 470 rescue mutants at rate Λ(m), rescues the population (equation 471 S1.5 in[START_REF] Martin | The probability of evolutionary rescue: towards a quantita-1162 tive comparison between theory and evolution experiments[END_REF]. With our lifecycle this is (c.f., equation

	465	The probability of k-step rescue

472

A.3 in

Iwasa et al. 2004a) 

  , which At the other extreme, when the growth rate of a first-step 545 mutation is far enough from zero such that m 2 >> Λ 1 (m), we 546 can approximate p(m, Λ 1 (m)), again using a Taylor series, with 547 Λ 1 (m)/|m| (c.f. equation A.4c inIwasa et al. 2004a, see also File

	542	used to explain why the probability that a neutral mutation seg-regates long enough to produce a second mutation is ∼ √ U in a
	548		
	549	S2). Conditioned on extinction such genotypes cannot persist
	550	long enough to almost surely lead to 2-step rescue. Instead, we
	551	expect such mutations to persist for at most ∼ 1/|m| genera-
	552	tions (Equation 21) with a lineage size of ∼ 1 individual per
	553	generation (Equation 22), and thus produce a cumulative total
	554	of ∼ 1/|m| individuals. The probability of 2-step rescue from
	555	such a first-step mutation is therefore Λ 1 (m)/|m|, and again this
	556	heuristic argument matches our Taylor series approach. This
	557	same reasoning explains why a rare mutant genotype with selec-
	558	tion coefficient |s| >> 0 in a constant population size model is
	559	expected to have a cumulative number of ∼ 1/|s| descendants,
	560	given it eventually goes extinct (Weissman et al. 2009).
	561	The transitions between these two regimes occur when
		Λ 1 (m)/|m| =	2Λ 1 (m), i.e., when |m| =	Λ 1 (m)/2. We
	565		
	541		

539

occur with probability ∼ Λ 1 (m), persistence is long enough 540 to almost certainly ensure rescue. This same reasoning has been 543 population of constant size

[START_REF] Weissman | The rate at which asexual populations cross fitness valleys[END_REF]

.

544 562 call single mutants with growth rates m < -Λ 1 (m)/2 "suf-563 ficiently subcritical", those with |m| < Λ 1 (m)/2 "sufficiently 564 critical", and those with m > Λ 1 (m)/2 "sufficiently supercrit-

  [START_REF] Anciaux | Population persistence under high mutation rate: from 1070 evolutionary rescue to lethal mutagenesis[END_REF], implying that the genetic

			910	mutations required for persistence is, however, often unknown,
	849	these conform even more closely to our expected shape (Kassen	911	making it difficult to compare situations where rescue requires
	850	and Bataillon 2006; Gerstein et al. 2015) while the others appear	912	different numbers of mutations. Experiments with a combina-
	851	to be substantially more clumped around the mode, perhaps	913	tion of drugs may provide a glimpse; for instance, Escherichia
	852	due to a very restricted number of possible rescue mutations in	914	coli populations only evolved resistance to a combination of two
	853	any one circumstance, the size of the experiment, or the way in	915	drugs (presumably through the well-known mutations specific
	854	which growth rates are measured. Finally, Gerstein et al. (2015)	916	to each drug) when mutators were present, despite the fact that
	855	not only provide the distribution of growth rates among rescue	917	mutators were not required for resistance to either drug in isola-
	856	genotypes, but also the growth rates of individual mutations	918	tion (Gifford et al. 2019). In cases where we have less information
	857	that compose multi-step rescue genotypes. In four lines where	919	on the genetic basis of resistance, our model suggests that muta-
	858	multiple mutations were detected and a segregation analysis	920	tors will be more advantageous when initial maladaptation is
	859	performed, one mutation in each line was inferred to have a	921	severe (e.g., higher drug concentrations or a larger number of
	860	minor effect and the other mutation was an amplification of the	922	drugs), as rescue will then be dominated by genetic paths with
	861	copper metallothionein CUP with a major fitness effect. These		more mutational steps.
	862	results are consistent with the minor effect mutations being sub-		
	863	critical mutations that provided a springboard for the larger		
	864	CUP mutations.		
	865	Pinpointing the mutations responsible for adaptation is ham-		
	866	pered by genetic hitchhiking, as beneficial alleles elevate the fre-		
	867	quency of linked neutral and mildly deleterious alleles (Barton		
	868	2000). The problem is particularly severe under strong selection		
	869	and low recombination, and therefore reaches an extreme in		
	870	the case of evolutionary rescue in asexuals, especially if many		
	871	neutral and deleterious mutations are segregating at the time		
		of environmental change. To circumvent this, mutations that		
	882			
	883	fortunately reverse engineering all combinations of mutations		
	884	quickly becomes unwieldy as the number of mutations grows,		
	885	and thus this approach will not be practical under severe initial		
	886	maladaptation and high mutation rates, where we predict rescue		
	887	to occur by many mutations. Interestingly, our simulations show		
	888	that the population dynamics themselves may help differentiate		
		how many mutations contribute to rescue (e.g., V-vs. U-shaped	827	
	890	log-trajectories; Figures 1 and 2), and fitting models of k-step	828	basis of adaptation no longer depends on demography. It is
	891	rescue could produce estimates for the growth rates of the k	829	therefore at intermediate levels of initial maladaptation and low
	892	genotypes.	830	mutation rates, where rescue primarily occurs from a few large
	893 894 895	Environmental change often selects for mutator alleles, which elevate the rate at which beneficial alleles arise and subsequently increase in frequency with them (Tenaillon et al. 2001). When	831 832 833	effect mutations, that the race between adaptation and persis-tence is predicted to have the largest effect on the genetic basis of adaptation.
	896	beneficial alleles are required for persistence, as in evolution-	834	Fluctuation tests (Luria and Delbrück 1943) provide a means
	897	ary rescue, mutator alleles can reach very high frequencies or	835	to generate random mutations and then isolate potential rescue
	898	rapidly fix (e.g., Mao et al. 1997). Consistent with this, mutator	836	genotypes (typically assumed to be 1-step only), whose growth
	899	alleles are often associated with antibiotic resistance in clinical	837	rates can be measured under the selective conditions. These
	900	isolates (see examples in Bell 2017). Further, the more benefi-	838	experiments are designed such that there is substantial standing
	901	cial mutations available the larger the advantage of a mutator	839	genetic variation at the time of exposure to the selective con-
		allele; for a mutator that increases the mutation rate m-fold, its	840	ditions, which should increase the contributions of mutations
			841	with small growth rates (Orr and Betancourt 2001), although
			842	these could be outcompeted by mutations with higher growth
			843	rates and/or be under-sampled. Regardless, consistent with
			844	our theory (Figure 6), the resulting growth rate distributions in
			845	both bacteria and yeast often find modes that are substantially
				greater than zero (as opposed to, say, an exponential distribution;
	909			

872

have risen to high frequency in multiple replicates are often in-873 troduced in a wildtype background, in isolation and sometimes 874 also in combination with a small number of other common high-875 frequency mutations, and grown under the selective conditions 876 (e.g.,

[START_REF] Jochumsen | The evolution of antimicrobial peptide re-1130 sistance in pseudomonas aeruginosa is shaped by strong 1131 epistatic interactions[END_REF][START_REF] Ono | Widespread genetic 1178 incompatibilities between first-step mutations during parallel 1179 adaptation of saccharomyces cerevisiae to a common environ-1180 ment[END_REF]

). As we have demon-877 strated above (e.g., Figure

7C

), however, under multi-step rescue 878 there may be no one mutation that individually confers growth 879 in the selective conditions. Thus, a mutation that was essential 880 for rescue may go undetected or be mistaken as a hitchhiker if 881 the appropriate multiple-mutation genotypes are not tested. Un-902 relative contribution to the production of n beneficial mutations 903 scales as m n

[START_REF] Tenaillon | Mutators, population size, adaptive landscape and the adaptation of asexual populations of bacteria[END_REF]

. Thus, conditions that cause 904 multi-step rescue to be more likely than 1-step rescue should 905 also impose stronger selection for mutator alleles. There are a 906 number of examples where lineages with higher mutation rates 907 acquired multiple mutations and persisted at higher doses of an-908 tibiotics (Couce et al. 2015; San Millan et al. 2017). The number of
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Although requiring a sufficiently beneficial mutation to arise 334 on a rare mutant genotype doomed to extinction, multi-step Appendix (see Mutant lineage dynamics), while t < 1/|m| a 521 mutant lineage with growth rate m that is destined for extinction 522 persists for t generations with probability ∼ 2/t (Equation 21) zero ("sufficiently critical") that rescue is most likely when a mu-725 tation persists for an unusually long period of time and grows to 726 an unusually large subpopulation size, and those with growth 727 rates that are either negative or positive enough ("sufficiently 728 subcritical" or "sufficiently supercritical", respectively) to restrict 729 persistence times and subpopulation sizes, conditioned upon is the minimum number of mutations required for rescue), the 751 probability of rescue declines with the number of mutations.

752

This assumes, however, that the probability of a mutation occur- 

Appendix

Approximating the probability of 1-step rescue

The probability of 1-step rescue in this model has been derived by [START_REF] Anciaux | Evolu-1067 tionary rescue over a fitness landscape[END_REF]. As replicated in File S2 and given by their equation 7, when ρ max = m max /λ is large a simple, nearly closed-form approximation is

where

, and α = ρ max ψ 2 0 /4, with erfc(.) the complimentary error function. When the wildtype declines slowly m 0 and thus ψ 0 is small and Λ 1 (m 0 ) ≈ Ug(α). In the limit m 0 → 0, Equation 19becomes

Mutant lineage dynamics

Here we follow the lead of [START_REF] Weissman | The rate of fitness-valley crossing in sexual populations[END_REF]