
HAL Id: hal-02420598
https://hal.science/hal-02420598v1

Submitted on 23 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal torus exploration by oblivious robots
Stéphane Devismes, Anissa Lamani, Franck Petit, Sébastien Tixeuil

To cite this version:
Stéphane Devismes, Anissa Lamani, Franck Petit, Sébastien Tixeuil. Optimal torus exploration
by oblivious robots. Computing, 2019, 101 (9), pp.1241-1264. �10.1007/s00607-018-0595-8�. �hal-
02420598�

https://hal.science/hal-02420598v1
https://hal.archives-ouvertes.fr

Optimal Torus Exploration by Oblivious Robots

Stéphane Devismes1 Anissa Lamani2 Franck Petit3

Sébastien Tixeuil3
1 VERIMAG, Université Grenoble Alpes, France

2 Kyushu University, Fukuoka, Japan
3 LIP6, UPMC Sorbonne Universités, France

Abstract

We deal with a team of autonomous robots that are endowed with motion actuators and visibility sensors. Those
robots are weak and evolve in a discrete environment. By weak, we mean that they are anonymous, uniform, unable
to explicitly communicate, and oblivious. We first show that it is impossible to solve the terminating exploration of
a simple torus of arbitrary size with less than 4 or 5 such robots, respectively depending on whether the algorithm
is probabilistic or deterministic. Next, we propose in the SSYNC model a probabilistic solution for the terminating
exploration of torus-shaped networks of size ` × L, where 7 ≤ ` ≤ L, by a team of 4 such weak robots. So, this
algorithm is optimal w.r.t. the number of robots.
Keywords: Robots, Torus, Exploration, Obliviouness.

1 Introduction
We consider autonomous robots that are endowed with motion actuators and visibility sensors, but otherwise unable
to communicate. They evolve in a discrete environment, i.e., the space is partitioned into a finite number of locations,
represented by a graph, where the nodes represent the possible locations that a robot can take and the edges the possibility
for a robot to move from one location to another. Those robots must collaborate to solve a collective task despite being
limited with respect to inputs from the environment, asymmetry, memory, etc. In particular, the robots we consider
are anonymous, uniform, yet they can sense their environment and take decisions according to their own ego-centered
view. In addition, they are oblivious, i.e., they do not remember their past actions. Robots operate in cycles that
include three phases: Look, Compute, and Move (L-C-M). The Look phase consists in taking a snapshot of the other
robots positions using visibility sensors. During the Compute phase, a robot computes a destination based on the
previous observation. The Move phase simply consists in moving to the destination using motion actuators. In this
context, typical problems are terminating exploration [3, 6, 7, 8, 9], exclusive perpetual exploration [1, 4], exclusive
searching [5, 4], and gathering [4, 11]. We address the terminating exploration (or simply exploration) problem, which
requires that robots initially placed at different nodes, collectively explore the whole graph and stop upon completion.
We focus on the case where the network is an anonymous unoriented torus (or simply torus). The terms anonymous and
unoriented mean that no robot has access to any kind of device allowing to identify nodes or to determine any (global
or local) direction, such as North-South/East-West.

A question naturally arises: “Why addressing an abstract topology such as torus?” To answer this question, we
emphasize that robots are unable to communicate explicitly and have no persistent memory. So, they are unable to
remember the various steps taken before. Therefore, the positions of the other robots are the only way to distinguish the
different stages of the exploration process. Torus belongs to the class of regular graphs. Such graphs are of particular
interest because they are topologies for which the symmetry of configurations with respect to robot positions is the most
frequently observed, making the exploration problem hard to solve. So far, ring-shaped network is the only regular
topology that has been studied [12, 9, 7]. As a result, an immediate question arises: “Does the increase of the number
of possible symmetries in the network (due to increasing dimensions) make the problem harder to solve?” Terminating
exploration has been also studied in other topologies than rings, namely the tree [8] and grid [6]. However, none of
them are regular networks. Torus can be seen as a 2-dimensional ring. Compared to the ring, the difficulty lies in the

1

additional axes of symmetry. So, it appears to be the most natural candidate among regular graphs to study the impact of
strong topological symmetry on the complexity to solve the problem. Furthermore, as previously stated, the exploration
(with stop) process is intrinsically related to the ability to differentiate consecutive phases of the exploration. More
possible symmetries hint that more robots than in rings are required to complete exploration: As robots have no way to
distinguish and agree on some kind of orientation, e.g., North-South/East-West, somehow the current robot configuration
has to encode consistent information so that robots agree on both axes. Since numerous symmetric configurations induce
a large number of required robots, minimizing the number of robots turns out to be a difficult problem.

Related Work. With respect to the (terminating) exploration problem, minimizing the number of robots for exploring
particular classes of graphs led to contrasted results. The only result available for exploration in general graphs [3]
considers that edges are labeled in such a way that the network configuration is asymmetric. In this extended model,
three robots are not sufficient to explore all asymmetric configurations, and four robots are sufficient to explore all
asymmetric configurations. Note that exploring the set of asymmetric configurations is strictly weaker than exploring
the complete underlying graph, especially when the graph is highly symmetric. The rest of the literature is thus dedicated
to a weaker model, where edges are not labeled. One extreme case in this weak model is the set of tree-shaped networks,
as in general, Ω(n) robots are necessary and sufficient to explore a tree network of n nodes deterministically [8]. The
other extreme case is the set of grid-shaped networks [6], where three robots are necessary and sufficient to explore
deterministically any grid of at least three nodes (except for the grids of size 2× 2 and 3× 3, where four – respectively
five – robots are necessary and sufficient). However, this result is mainly due to the fact that grids are not regular graphs:
they contain nodes of degrees 2, 3, and 4. So, this topological property implies less symmetries.

By contrast, rings and tori are regular graphs, and consequently more intricate. So far, no research explored the
feasibility of exploring a torus-shaped network with a team of k robots. In ring-shaped networks [9], the fact that the
number k of robots and the ring size n must be coprime yields to the lower bound Ω(log n) on the number of robots
required to explore a n-size ring. Indeed, the smallest non-divisor of n evolves as log n in the worst case. However,
notice that Lamani et al. also provide in [12] an algorithm that allows 5 robots to deterministically explore any ring
whose size is coprime with 5. The large number of robots and the constraint on the ratio between the number of
robots and the ring size induced by the deterministic setting in ring-shaped networks hinted at a possible more efficient
solutions when robots can make use of probabilities [7]. As a matter of fact, four robots are necessary and sufficient
to probabilistically explore any ring of size at least four. While the gain in going probabilistic is only one robot when
n is not divisible by 5, a logarithmic factor is obtained in the general case. Aforementioned deterministic solutions
operate in the model ASYNC [10] which assumes that robots execute L-C-M asynchronously, i.e., in a fully independent
manner. However, It is shown in [7] that randomization does not help in ASYNC, i.e., there exists a scheduling such that
random choices are all nullified. So, probabilistic algorithms require more synchronization, typically the model SSYNC
(semi-synchronous) [10], in which robots are asynchronously activated to perform cycles, yet at each activation, a robot
executes one L-C-M cycle atomically.

Contribution. We propose an optimal (w.r.t. the number of robots) solution for the terminating exploration of torus-
shaped networks by a team of k robots. Precisely, we first show the impossibility to explore a simple torus of arbitrary
size with less than four robots, even if the algorithm is probabilistic. If the algorithm is required to be deterministic,
four robots are also insufficient. This negative result implies that the only way to obtain an optimal algorithm is to make
use of randomization, and thus, within SSYNC [7]. We then propose a probabilistic algorithm designed in SSYNC that
uses four robots to explore all tori of size ` × L, where 7 ≤ ` ≤ L. Hence, in such tori, four robots are necessary
and sufficient to solve the probabilistic terminating exploration. As a torus can be seen as a 2-dimensional ring, our
result shows, perhaps surprisingly, that increasing the number of possible symmetries in the network (due to increasing
dimensions) does not necessarily bring an extra cost with respect to the number of robots that are necessary to solve the
problem.

Roadmap. Section 2 defines the model and the exploration problem. Lower bounds are shown in Section 3. Our
algorithm is presented in Section 4 and proven in Section 5. We conclude in Section 6.

2

2 Preliminaries
We consider teams of k autonomous mobile entities called robots evolving in a simple undirected connected graph
G = (V,E), where V is a finite set of n nodes and E a finite set of edges. Nodes represent locations that robots can
take and edges represent the possibility for a robot to move from one location to another. A node is said to be occupied
if at least one robot is located on it, otherwise the node is said to be free. If a node u is occupied by x > 1 robots,
we say that u contains a tower (of x robots). Two nodes u and v are neighbors in G iff {u, v} ∈ E. We assume that
G is an (`, L)-Torus (or a Torus, for short), where ` and L are two positive integers, i.e., G satisfies the following two
conditions: (i) n = `× L and (ii) there exists an order v1, . . . , vn on the nodes of V such that ∀i ∈ [1..n]:
• If i+ ` ≤ n, then {i, i+ `} ∈ E, else {i, (i+ `) mod n} ∈ E.
• If i mod ` 6= 0, then {i, i+ 1} ∈ E, else {i, i− `+ 1} ∈ E.

Given the previous order v1, . . . , vn, for every i ∈ [0..(L − 1)], the sequence v1+i×`, v2+i×`, . . . , v`+i×` is called an
`-ring. Similarly, for every j ∈ [1..`], vj , vj+`, vj+2×`, . . . , vj+(L−1)×` is called an L-ring. Note that when ` = L,
any `-ring is also an L-ring and conversely. More generally, we use the term ring to arbitrarily designate an `-ring or an
L-ring. Nodes are anonymous. Moreover, given two neighboring nodes u and v, there is no explicit or implicit labeling
allowing robots to determine whether u is either on the left, on the right, above, or below v. However, for the purpose of
explanations, we may use indices for nodes or robots. An isomorphism of graphs G and H is a bijection f between the
vertex sets of G and H such that any two nodes u and v of G are neighbors in G iff f(u) and f(v) are neighbors in H .
When G and H are one and the same graph, f is called an automorphism of G. An (`, L)-Torus and an (L, `)-Torus are
isomorphic. Hence, as nodes are anonymous, an (`, L)-Torus cannot be distinguished from an (L, `)-Torus. So, without
loss of generality, we will always consider (`, L)-Tori, where ` ≤ L.

Remark 2.1 Since an (`, L)-torus is a simple graph, every node has four distinct neighbors, and consequently we have:
3 ≤ ` ≤ L and n = `× L ≥ 9.

The robots do not communicate in an explicit way; however they see the positions of all other robots in their ego-
centered coordinate system. Each robot operates according to its (local) program. We call (distributed) algorithm a
collection of k programs, each one operating on a single robot. Robots are uniform and anonymous, i.e., they all have
the same program using no parameter allowing to differentiate them. We assume that robots cannot remember any
previous observation or computation. Such robots are called oblivious. The program of a robot consists in executing
Look-Compute-Move cycles infinitely many times. That is, a robotR first observes its environment (Look phase). Based
on its observation, R then (probabilistically or deterministically) decides to move or stay idle (Compute phase). If R
decides to move, it moves toward its destination during the Move phase. During the Compute phase, the decision
between moving or staying idle is either deterministic or probabilistic. In the latter case,R decides between moving and
staying idle using some fixed probability p ∈ (0, 1), and we say thatR tries to move.

We consider the semi-synchronous model (SSYNC), where time is represented by an infinite sequence of instants
0, 1, 2, . . . No robot has access to this global time. At each instant, a non-empty subset of robots is activated. Every
robot that is activated at instant t atomically executes a full cycle between t and t+ 1. Activations are determined by an
adversary. Remark that, in this model, any robot performing a Look operation sees all other robots on nodes and not on
edges.

We assume that during the Look phase, every robot can perceive whether several robots are located on the same
node. This ability is called (global) multiplicity detection. We shall indicate by di(t) the multiplicity of robots present
in node vi at instant t. We consider two versions of multiplicity detection: the strong and weak multiplicity detections.
Under the weak multiplicity detection, for every node vi, di is a function N 7→ {◦,⊥,>} defined as follows: di(t) is
equal to either ◦, ⊥, or > according to vi contains none, one or several robots at instant t. Under the strong multiplicity
detection, for every node vi, di is a function N 7→ N, where di(t) = x indicates that there are x robots in node vi at
instant t.

To define the notion of configuration,we use an arbitrary order ≺ on nodes. The system being anonymous, robots
do not know this order. Let v1, . . . , vn be the list of the nodes in G ordered by ≺. The configuration at instant t is
d1(t), . . . , dn(t). We denote by initial configurations the configurations from which the system can start at instant 0.
Every configuration from which no robot moves or tries to move if activated is said to be terminal. Two configurations
d1, . . . , dn and d′1, . . . , d

′
n are indistinguishable (resp., distinguishable otherwise) iff there exists an automorphism on

G, f : V 7→ V such that ∀i ∈ {1, . . . , n}, di = d′j where vj = f(vi).

3

The view of robot R at instant t is a labeled graph isomorphic to G, where every node vi is labeled by di(t), except
the node where R is currently located, this latter node vj is labeled by dj(t), ↓. (Indeed, the coordinate system is ego-
centered.) Hence, from its view, a robot can compute the view of each other robot, and decide whether some other robots
have the same view as its own. The views V and V ′ are identical iff there exists an isomorphism f of V and V ′ such that
every node v of V has the same label in V as node f(v) in V ′. Every decision to move is based on the view obtained
during the last Look action. However, it may happen that some edges incident to a node v currently occupied by the
deciding robot look identical in its view, i.e., v lies on a symmetric axis of its view. In this case, if the robot decides
to take one of these edges, it may take any of them. We assume the worst-case decision in such cases, i.e., the actual
edge among the identically looking ones is chosen by the adversary. More generally, if several possible destinations are
selected during the Compute phase, the final destination is also chosen by the adversary.

A scheduling is a list of activation’s choices that can be made by the adversary, i.e., a scheduling is any infinite list
of non-empty subset of robots σ0, σ1, . . ., where ∀i ≥ 0, σi is the set of robots activated at instant i. An infinite list of
configurations γ0, γ1, . . . can be generated from the scheduling σ0, σ1, . . . iff ∀i ≥ 0, γi+1 can be obtained from γi after
each robot in σi is activated at instant i to atomically perform a cycle (in this case, γiγi+1 is step). We call execution
any infinite list of configurations γ0, γ1, . . . that can be generated from an arbitrary scheduling and such that γ0 is a
possible initial configuration. An execution e terminates if e contains a terminal configuration. We restrict the power
of the adversary by assuming that schedulings are fair: a scheduling σ0, σ1, . . . is fair iff for every robot R, for every
instant i, there exists an instant j ≥ i such thatR ∈ σj . An execution e is fair iff e can be generated by a fair scheduling.
A particular case of fair scheduling is the sequential fair scheduling: a scheduling σ0, σ1, . . . that is fair and such that
∀i ≥ 0, |σi| = 1. An execution e is sequential fair if it can be generated from a sequential fair scheduling.

A distributed algorithm A deterministically (resp., probabilistically) solves the exploration problem assuming a fair
scheduling iff every fair execution e of A starting from a towerless configuration1 satisfies: (1) e reaches a terminal
configuration in finite time (resp., with probability one), and (2) every node is visited by at least one robot during e. Note
that the previous definition implies that every initial configuration is towerless. Note also that the problem is not defined
for k > n, and it is straightforward for k = n. Finally, in case of probabilistic exploration, termination is not certain,
however the overall probability of non-terminating executions is 0.

3 Lower bound
We first generalize to arbitrary topologies a result from [7], that was initially given for rings. We then instantiate it to
obtain a lower bound (actually 4) on the number of robots required to solve (deterministic or probabilistic) exploration
in any torus. For purpose of generality, we assume here that the multiplicity detection of robots is strong. Moreover, we
consider any (deterministic or probabilistic) exploration algorithm A using a team of k robots in an arbitrary topology
G = (V,E) of n nodes.

Assume n > k. The exploration is not (trivially) accomplished in an initial configuration. Since robots are oblivious,
any terminal configuration of A in that case should be different from any possible initial configuration. As the set of
possible initial configurations is exactly the set of towerless configurations, we have:

Remark 3.1 If n > k, any terminal configuration of A contains at least one tower and, consequently k > 1.

Lemma 3.1 If n > k, then k > 2 and for every sequential fair execution e ofA that terminates, e has at least n−k+ 1
configurations containing a tower of less than k robots.

Proof. First, by Remark 3.1, k > 1. Then, let e be a sequential fair execution of A that terminates. Consider the last
configuration α without tower that appears in e and all remaining configurations that follow in e (all of them contains a
tower) and form e′ (e′ necessarily exists, by Remark 3.1). By definition, n − k new nodes (remember that k nodes are
already visited in the initial configuration) must be visited before e′ reaches its terminal configuration. Let ββ′ be any
step of e′.

1. If β = β′, then no node is visited during the step.
2. If β 6= β′, then there are three possible cases:

1Obliviousness requires the set of initial configurations to be a proper subset of the set of all configurations to make termination possible in our
model; following the literature [9] we assume that every possible initial configuration is towerless.

4

(a) β contains no towers. In this case, β = α (the initial configuration of e′) and β′ contains a tower. As only
one robot moves in ββ′ to create a tower (e′ is sequential), no node is visited during this step.

(b) β contains a tower and β′ contains a tower of k robots. As e′ is sequential and all robots are located at the
same node in β′, one robot moves to an already occupied node in ββ′ and no node is visited during this step.

(c) β contains a tower and β′ contains a tower of less than k robots. In this case, at most one node is visited in
ββ′ because e′ is sequential.

If k = 2, then Case 2.(c) does not exist and so no node is visited, except the k initially visited nodes. As n > k, e′

terminates without visiting all nodes, contradiction.
Assume now that k > 2. Initially, k nodes are visited. In Case 2.(a), which appears exactly once, β′ contains a

tower of less than k robots. Moreover, Case 2.(c) should appear at least n− k times (only Case 2.(c) allows to visit new
nodes). Hence, e′, and so e, has at least n− k + 1 configurations containing a tower of less than k robots.

2

Lemma 3.2 If n > k and k > 2, then for every sequential fair execution e ofA that terminates, e has at least n−k+ 1
configurations containing a tower of less than k robots and any two of them are distinguishable.

Proof. Consider any sequential fair execution e = γ0, γ1, . . . of A that terminates. As e terminates, e has a finite
number of configurations. Let x be the number of configurations in e containing a tower of less than k robots. By
Lemma 3.1, x ≥ n− k + 1. We now show that (*) if e contains at least two configurations having a tower of less than
k robots that are indistinguishable, then there exists a sequential fair execution e′ that terminates and such that e′ has
x′ configurations containing a tower of less than k robots, where x′ < x.

Assume that there are two indistinguishable configurations γt = dt1, . . . , d
t
n and γt′ = dt

′

1 , . . . , d
t′

n in e having a
tower of less than k robots. Without loss of generality, assume that t′ > t. By definition, there exists an automorphism
f on G such that ∀i ∈ {1, . . . , n}, dti = dt

′

j where vj = f(vi). Then, e′ = γ0, . . . , γt, γ
′
t′+1, γ

′
t′+2, . . . is a sequential

fair execution of A, where ∀z ≥ t′ + 1, we have γ′z = dzg(1), . . . , d
z
g(n) where g is a bijection such that ∀s ∈ [1..n],

f(vs) = vg(s) and γz = dz1, . . . , d
z
n. Moreover, e′ has x′ configurations containing a tower of less than k robots, where

x′ < x.
By (*), if e contains less than n−k+1 distinguishable configurations altogether with a tower of less than k robots, it

is possible to (recursively) construct a sequential fair execution e′ ofA that terminates such that e′ has less than n−k+1
configurations containing a tower of less than k robots, a contradiction to Lemma 3.1. Hence, the lemma holds. 2

From the two previous lemmas, follows:

Theorem 3.1 Considering any (probabilistic or deterministic) exploration algorithm for k robots on a graph of n > k
nodes working under any fair scheduling, we have k > 2 and there exists a set S of at least n − k + 1 configurations
such that:

1. any two different configurations in S are distinguishable, and
2. in every configuration in S, there is a tower of less than k robots.

A direct consequence if the previous theorem is the following:

Corollary 3.1 Assuming fair schedulings, ∀k, 0 ≤ k < 3, there is no algorithm to (deterministically or probabilisti-
cally) explore any torus of n > k nodes using k robots.

The previous corollary excludes that A works with k < 3 robots. Now, let assume that k = 3 and consider any
arbitrary (`, L)-torus (remember that by Remark 2.1, n = ` × L ≥ 9). Then, by Theorem 3.1, we should be able to
exhibit a set S of n − 2 configurations such that: (1) any two different configurations in S are distinguishable, and (2)
in every configuration in S, there is a tower of 2 robots. Such configurations differ according to the relative positions
of the tower and the robot which is alone. Two cases are then possible depending on whether ` = L or ` < L. In the

former case, the size of S is bounded by
∑bL2 c+1

i=2 i =
bL2 c×(b

L
2 c+3)

2 . In the latter case, the size of S is bounded by
(b `2c+ 1)(bL2 c+ 1)− 1.

Let first study the case where ` = L. Then, b
L
2 c×(b

L
2 c+3)

2 should be greater than or equal to n−2, i.e., L2−2. From
this inequality, we have: 7L2 − 6L − 16 ≤ 0. ∆ = 484 > 0, so 7L2 − 6L − 16 = 0 has two solutions: 6−

√
484

14 and

5

6+
√
484

14 ; and 7L2 − 6L − 16 ≤ 0 for L ∈ [6−
√
484

14 ; 6+
√
484

14]. By Remark 2.1, L ≥ 3. Moreover, 6+
√
484

14 = 2. So, we
obtain a contradiction: there is neither probabilistic nor deterministic exploration algorithm in that case, even assuming
a fair scheduling.

5

2

4

1

3

4

0

1

2

1

3

4

2

4

5

4 3 1 3 4

5 4 2 4 5

Figure 3.1: (5, 5)-torus.

Let now study the case ` < L. Then, (b `2c + 1)(bL2 c + 1) − 1 should be greater
than or equal to n − 2, i.e., ` × L − 2. From this, we have: 2` + 2L + 8 ≥ 3` × L.
As 3 ≤ ` < L (Remark 2.1), 2` + 2L + 8 ≥ 3` × L has no solution: there is neither
probabilistic nor deterministic exploration algorithm in that case, even assuming a fair
scheduling.

An example is given in Fig. 3.1 for the case ` = L (the case ` < L is similar).
In this example, for every value i inside a white node, every two configurations where
(1) the black node contains the tower of two robots and (2) any white node of number
i contains the single robot are indistinguishable. In the (5, 5)-torus, the size of S is at
most 5.

Hence, there is neither probabilistic nor deterministic algorithm to explore any torus with 3 robots and, with Corol-
lary 3.1, we can conclude:

Theorem 3.2 Under fair schedulings, ∀k, 0 ≤ k < 4, there is no algorithm to (deterministically or probabilistically)
explore any torus of n > k nodes using k robots.

Consider now the deterministic exploration with k = 4 robots. Assume any (`, L)-Torus such that ` = L and ` is
even. Then, the four robots can be initially placed in such way that they have all identical views and all their possible
destinations looked identical (just form a square whose adjacent sides have length `

2). Then, the adversary can choose
to synchronously activate all robots at each step so that the initial symmetry continues: we obtain a non-terminating fair
execution. Hence:

Theorem 3.3 Under fair schedulings, ∀k, 0 ≤ k ≤ 4, there is no algorithm to deterministically explore all torus of
n ≥ k nodes using k robots.

4 Optimal Algorithm
In this section, we propose a probabilistic distributed algorithm to explore with 4 robots any (`, L)-torus such that
7 ≤ ` ≤ L, assuming weak multiplicity detection. Before describing our algorithm, we first give some definitions.

4.1 Definitions
If v1 and v2 are two neighboring nodes respectively occupied by robots r1 and r2, then r1 and r2 are said to be neighbors.
A block is a maximal elementary path along some ring B = ui, ui+1, . . . , ui+m with m > 0, where each node is
occupied by at least one robot. A robot that does not belong to any block is said to be isolated. A hole is any maximal
non-empty elementary path of free nodes H = ui, ui+1, . . . , ui+m that is along some ring. The size of a block (resp., a
hole) is the number of nodes it contains. A block (resp. a hole) of size x is said to be an x-block (resp., a x-hole). Given
the block B (resp., the hole H), the nodes ui and ui+m are termed as the extremities of B (resp., H). We call neighbor
of a hole (resp. a block) any node that does not belong to the hole (resp. the block) but is neighbor of one of its nodes.
In this case, we also say that the hole (resp. the block) is a neighboring hole (resp. neighboring block) of the node. By
extension, any robot that is located at a neighboring node of a hole (resp. a block) is also called a neighbor of the hole
(resp. the block). A node u is said to be safe if there is at most one robot located within distance one from u. We call
Couple any `-ring that contains exactly two robots.

4.2 Overview of the algorithm
Our algorithm works in three distinct successive phases, respectively called SetUp, Tower, and Exploration. Starting
from any towerless configuration, the aim of the SetUp Phase is to arrange the robots in such a way that they eventually
form a ♦.Configuration (see Fig. 4.2), without creating any tower during the process. This first phase is probabilistic.
A ♦.Configuration is a towerless configuration, where (1) there are two distinct `-rings of the torus that both contain a
2-block, and (2) there are two robots that have two robots in their neighborhood.

6

Figure 4.2: ♦.Configuration.

Once a ♦.Configuration is built, Tower Phase begins. This phase is also probabilis-
tic and aims at creating a tower. Once the tower is created, the locations of robots give
an explicit orientation to the torus; and the last phase, Exploration Phase, begins. This
phase is deterministic. The two isolated robots collaborate together to deterministically
explore the torus and eventually stop.
4.3 SetUp Phase
Phase SetUp is formally described in Alg. 1-6. The behavior of Phase SetUp is driven
by several classes of configurations, which are defined below.
Algorithm 1 SetUp.
1.01 Let C be the current configuration
1.02 if C is Regular
1.03 then try to move to a safe node
1.04 else if C is Double-Trap1
1.05 then Let R be the ring containing the 3-block
1.06 if I am the extremity of the 3-block that has only one neighboring robot
1.07 then move to the ring parallel to R that contains a single robot
1.08 else if C is Double-Trap2
1.09 then if I have one neighboring robot and there is a distance-2 robot r on the same ring
1.10 then move towards r
1.11 else if C is Quadruplet
1.12 then execute Procedure Quadruplet
1.13 else if C is Triplet
1.14 then execute Procedure ♦-Creation
1.15 else if C is Isolated
1.16 then if L = `
1.17 then execute procedure Isolated-1
1.18 else execute procedure Isolated-2
1.19 else if C is Twin
1.20 then execute Procedure Twin

Configurations. A configuration is Double-Trap1 (see Fig. 4.3) if there
R

Figure 4.3: Double-Trap1

u

z

yv=x

Figure 4.4: Double-Trap2

exists an `-ring R that contains a 3-block having exactly one extremity with a neighboring
robot that is not in R. A configuration is Double-Trap2 (Fig. 4.4) if there is one isolated
robot at some node z and two 2-blocks B1 = u, v and B2 = x, y such that (1) v = x, (2)
B1 is on a `-ring, (3) z and y are on a `-ring parallel to the one containing B1, and (4) z
is at distance 2 of both u and y.

A configuration C is Regular if C is towerless and not a ♦.configuration, and the
robots can be split in two pairs {r1, r2} and {r3, r4} such that the views of r1 and r2
(resp. of r3 and r4) are identical. (A particular case of Regular is a configuration where
all robots have identical views.)

A configuration C is Triplet if C is towerless, not a Double-Trap1, and there is an
`-ring R that contains exactly 3 robots. When R contains neither a 3-block nor a 2-block,
we define the Wall to be the ring perpendicular to R that contains the robot not in R, see
Fig. 4.5.

Wall

Figure 4.5: A wall in a Triplet. Figure 4.6: Twin Configuration.

A configuration C is Twin (Fig. 4.6) if
C is towerless, contains a couple, but is nei-
ther Double-Trap1, nor Double-Trap2, nor ♦,
nor Regular, nor Triplet. A configuration C
is Isolated if C is towerless, not Regular, and
there exists at most one robot on each `-ring.

Finally, a configuration C is Quadruplet if C is
not Regular and there exists an `-ring R that con-
tains 4 robots.

Double-Trap1

Triplet

Double-Trap2

Isolated

Twin

Quadruplet

♢-Configuration

Regular

Figure 4.7: Possible transitions during SetUp.

Overview. In Section 5, we prove that the SetUp phase achieves
a convergence from any towerless configuration to a ♦.Configu-
ration with probability one without creating any tower during the
process. This proof actually consists in showing that each tran-
sition in Fig. 4.7 can be made, with positive probability, in finite

7

number of steps. Some of these transitions are deterministic. Note
also that there are many other possible transitions, not shown in
Fig. 4.7. Details about this phase are given in Section 5.
Algorithm 2 Procedure Isolated-1 (Case ` = L).
2.01 if there are several possible smallest enclosing rectangles (SERs)
2.02 then if I am neighbor of a safe node u such that if I move to u and I am the only one to move,
2.03 the number of SERs decreases
2.04 then try to move to u
2.05 else
2.06 Let s the unique smallest rectangle that encloses the four robots
2.07 We call internal robot any robot that is not on any side of s
2.08 if there is exactly one robot that is at a corner c of s
2.09 then if I am internal
2.10 then move towards the closest free node on a side of s having c as extremity
2.11 else if there are exactly two robots at two corners c1, c2 of s
2.12 then if I am a closest internal robot to an occupied corner of s
2.13 then move towards the closest free node on a side of s having c1 or c2 as extremity
2.14 else // there is no robot of any corner of s
2.15 Let d be the minimum distance between any occupied node and a corner of s
2.16 if there is a unique robot r that is at distance d from a corner of s
2.17 then if I am r
2.18 then move towards the closest corner of s
2.19 else if there are two robots r1, r2 that are at distance d from the same corner of s
2.20 then Let r3 and r4 be the two other robots
2.21 For each i ∈ {3, 4}, let di be the distance to unique corner ci that is
2.22 common to the side of s where ri is and the side of s where r1 or r2 are
2.23 Let min ∈ {3, 4} such that dmin = min{d3, d4}
2.24 if I am rmin

2.25 then move towards cmin

2.26 else if I am at distance d from a corner of s
2.27 then move towards the closest corner of s

Algorithm 3 Procedure Isolated-2 (Case ` < L).
3.01 if every L-ring contains at most one robot
3.02 then Let r1, r2, r3, and r4 be the four robots
3.03 if there are several possible smallest enclosing rectangles (SERs)
3.04 then if I am neighbor of a safe node u such that if I move to u and I am the only one to move,
3.05 the number of SERs decreases
3.06 then try to move to u
3.07 else
3.08 Let s the unique smallest rectangle that encloses the four robots
3.09 There are two robots, say r1 and r2, which are on two parallel sides of s that are on `-rings
3.10 Let d be the minimal distance between r3 or r4 and an `-ring which is a side of s
3.11 if I am r3 or r4, and I am at distance d from an `-ring which is a side of s
3.12 then move along my L-ring toward the closest `-ring which is a side of s
3.13 else if there is exactly one L-ring R that contains 2 or 3 robots
3.14 then if I am a robot alone in an L-ring that is closest to R
3.15 then move along my L-ring towards a closest free node having a node of R in its `-ring
3.16 else if there are two L-rings that contain 2 robots
3.17 then if there is a safe neighboring node u outside my current L-ring
3.18 then try to move to u
3.19 else // there is one L-ring R that contains all robots
3.20 Apply Procedure Quadruplet on the unique L-ring R

4.4 Tower Phase
This phase starts from any ♦.Configuration— Fig. 4.2. Let u1 and u2 be the two occupied neighboring nodes having
themselves two occupied neighboring nodes. Let r1 and r2 be the two robots located at u1 and u2, respectively. During
this phase, r1 and r2 try to move towards each other anytime they are activated; the other two robots do not move if
activated. If only one of them is activated, a tower is created. If both are activated simultaneously, there is a positive
probability that only one of those moves; otherwise the system remains in a ♦.Configuration. As the scheduler is fair,
both of them are activated regularly until a tower is created. So, the event “only one robot moves” eventually occurs
with probability one. So, a tower T is created with probability one on either u1 or u2 and the Tower phase is done.

4.5 Exploration Phase
We first need further definitions. Given two nodes u and v, let Ruv be a smallest enclosing rectangle that includes both
u and v. Let αuv (βuv) be the length in terms of hops of one of the smallest (resp., greatest) side of Ruv , Ruv is an

8

Algorithm 4 Procedure Twin.
4.01 if there is a unique Couple C
4.02 then if there is a unique robot r that is outside C and closest to C
4.03 then if I am r
4.04 then move to an adjacent free node on a shortest path to a free node of C
4.05 else if I am outside the Couple
4.06 then let R1 be my ring perpendicular to C
4.07 let R2 be the ring parallel to C which contains the other robot outside C
4.08 try to move to a neighboring free node on R1 which does not belong to C or R2

4.09 else // there are two or three Couples
4.10 if there are two Couples
4.11 if I am in a Couple and neighbor of a safe node u outside any couple
4.12 then try to move to u
4.13 else // there are three Couples
4.14 if I belong to two Couples
4.15 then Let C be the Couple containing the two robots that belong to two Couple
4.16 try to move to a neighboring safe node on C

Algorithm 5 Procedure Quadruplet.
5.01 Let R be the ring that contains the 4 robots
5.02 if R contains exactly one smallest hole
5.03 then if I am neighbor to such a hole
5.04 then move to an adjacent free node outside R
5.05 else if R contains exactly one biggest hole
5.06 then if I am neighbor to such a hole
5.07 then move to an adjacent free node outside R
5.08 else if I am neighbor to the two smallest hole
5.09 then move to an adjacent free node outside R

Algorithm 6 Procedure ♦-Creation.
6.01 Let R be the ring of the torus that contains 3 robots
6.02 if R contains no 3-block
6.03 then if R contains no 2-block
6.04 then if R ∩Wall = Free-Node
6.05 then if I am on R, but not neighbor of Free-Node
6.06 then move along R towards Free-Node
6.07 else // R ∩Wall = Occupied-Node
6.08 if I am not on the Wall
6.09 then move towards the Wall
6.10 else // R contains a 2-block
6.11 if I am on R, but not part of the 2-block
6.12 then move towards the 2-block
6.13 else // R contains a 3-block
6.14 if I am not part of R
6.15 then move towards a free node that closest to an extremity of the 3-block and not part of R

9

(αuv, βuv)-rectangle. The Manhattan metric between two nodes u and v, denoted by Muv , is the tuple (αuv, βuv).
Manhattan metrics are ordered as follows: given four nodes u, v, u′, and v′, Muv ≤ Mu′v′ iff either αuv < αu′v′ or
αuv = αu′v′ and βuv ≤ βu′v′ .

The exploration starts from the initial configuration built during the tower phase. Denote the node holding the
tower by T. The two rings passing through T are called coordinate rings. In the sequel, ’o’ (respectively, ’*’) denotes
the nearest (respectively, farthest) single node (or robot) from T, i.e., MoT < M∗T . Note that our algorithm ensures
that both ’o’ and ’*’ remain the same robots until the end of the exploration. Given a node u, if αTu < βTu and
{αTu, βTu} 6= {b `2c, b

L
2 c}, then there exists an orientation of the coordinate rings such that u = (αTu, βTu). In

the following, when possible, we build a coordinate system over RTu by setting the x-axis (resp. the y-axis) as the
coordinate rings that is parallel to the smallest (resp., greatest) side of RT,∗ and by orienting both axis to have positive
coordinates for u.

The main idea of Phase Exploration is the following: both robots that are not part of the tower collaborate together
in order to explore the whole torus. They alternate between two roles: Explorer and Leader. Leader L allows to build
a coordinate system SL over RTL. The explorer is in charge of deterministically exploring the torus over SL. The
exploration works in three phases, executed in sequence.

Phase 1. Fig. 4.8 illustrates that phase. Robot * (i.e., the farthest robot of T) plays the

*

o

*

o

2

3’

*
3"

o

4

*

5

6

o

T

(1,2)

1

Figure 4.8: First phase of exploration. The inte-
gers show the move order.

role of Leader. Starting from the configuration built by Phase Tower,
Robot * first builds a (1, 2)-rectangle with T by moving along the ring
parallel to the one containing both T and o in the opposite direction to
o, see Move #1 in Fig. 4.8. RT∗ allows to build a coordinate system
S∗, where Robot * occupies Node (1, 2) w.r.t. S∗. Then, Robot o
initiates a spiral-shaped exploration. It visits the nodes that form
the first surrounding square around T and stops at node (−1,−1)—
Move #2. Next, Robot * moves to node (2, 3) passing through node
(1, 3)—Moves #3′ and #3′′ in Fig. 4.8. Then, Robot o visits the
nodes that form the second surrounding square around T and stops
at (−2,−2)—Move #4. Finally, Robot * moves back to (1, 3), fol-
lowed by Robot o that moves back to (−2,−1)—Moves #5 and #6
in Fig. 4.8. Note that our method requires that Robot * must be able
to move at least three lines away from the tower. Furthermore, Robot
o must be able to visit the two squares centered on the tower and the

orientation built by Robot * must be unambiguous. These three conditions constrain the torus to be of size at least
7 × 7.

Phase 2. In this phase, Robot o is the leader. RTo provides a coordinate system So, where Robot o is located at (1, 2).
Robot * now proceeds to the spiral exploration by visiting surrounding squares around T one after another, see Fig. 4.9
and 4.10. Robot * first explores the third surrounding square around T, then the fourth, and so forth, until it visits the
(b `2c − 1)-th square. Then, there are two cases depending on the parity of `: If ` is odd, then Robot * visits the whole
b `2c-th square and finish at the negative (w.r.t So) corner of the square, see Fig. 4.9. Otherwise (` is even), Robot * visits
half of the b `2c-th square only and stops at the positive corner (w.r.t. So) of the square, see Fig. 4.9. In both cases, if
` = L, then the exploration is done.

Phase 3. This last phase is performed only if ` 6= L. In that case, Robot * terminates the exploration by going
alternatively from the left to the right and from the right to the left among the nodes forming the remaining of the
rectangle. If ` is odd, then Robot * progresses towards the negative (w.r.t. So) side of the torus—Fig. 4.9. Otherwise
(` is even), the progression is made on the positive side—Fig. 4.10. In both cases, the exploration ends either on the
positive side or the negative side of the L-th line, depending on either L is odd or even.

10

*

7’

*

7"

*

*

o

T

*

*

*

Figure 4.9: Second and third phase, odd case.

T

*

7’

*

7"

*

*

o

*

**

*

Figure 4.10: Second and third phase, even case.

11

5 Correctness Proof
Our algorithm is made of three phases. The first phase, SetUp, starts from any towerless configuration and ends in a
♦.Configuration. Moreover, this phase contains no configuration with a tower. The second phase, Tower, just consists in
one probabilistic transition (that may require several steps) from a ♦.Configuration to the initial towered configuration
of the Exploration phase. Finally, all configurations that appear during the Exploration phase contain a tower. Hence,
we have the following property:

Remark 5.1 The three phases (SetUp, Tower, and Exploration) are unambiguous.

Assume the system is in a ♦.Configuration. Then, with probability 1, the initial (towered) configuration of the
Exploration phase is eventually reached, see Subsection 4.4. From that configuration, robots * and o explore the torus
in a fully deterministic manner (Subsection 4.5). So, the termination of the exploration phase is certain. Consequently,
starting from a ♦.Configuration, the torus is eventually explored with probability one. Hence, the critical part of the
algorithm is the SetUp phase, which aims at converging from any initial (towerless) configuration to a ♦.Configuration.
We now show that this phase eventually terminates with probability one.

First, the SetUp phase exactly deals with the set of all towerless configurations, and by definition, we have:

Remark 5.2 The set of all towerless configurations is equal to the (disjoint) union of the following configuration sets:
♦.Configurations, Regular, Double-Trap1, Double-Trap2, Twin, Triplet, Quadruplet, and Isolated.

The first part of the proof consists in showing that a ♦.Configuration is deterministically reached in finite time
from any configuration Double-Trap1, Double-Trap2, or Triplet. In the following, we consider an arbitrary towerless
configuration C. The scheduler being fair, we have the following property:

Remark 5.3 Each robot is activated in finite time from C.

Lemma 5.1 If C is Double-Trap2, a ♦.Configuration is reached from C in finite time.

Proof. Immediate from Alg. 1, Lines 1.08-1.10. (See also Fig. 4.4.) 2

Lemma 5.2 If C is Double-Trap1, ♦.Configuration is reached from C in finite time.

Proof. From Alg. 1 (Lines 1.04-1.07), a configuration Double-Trap2 is reached in one step (Fig. 4.3), and we can
conclude by Lemma 5.1. 2

Lemma 5.3 If C is Triplet, a ♦.Configuration is reached from C in finite time.

Proof. Let R be the `-ring that contains three robots in C. We have three main cases:
1. R contains a 3-block. In this case the robot that is not in R is the only one allowed to move (see Alg. 6, Lines

6.13-6.15). Its destination is the adjacent node on the shortest path towards the closest free node neighbor of
one extremity of the 3-block. The target node is reached in finite time and then a Double-Trap1 configuration is
created. By Lemma 5.2, we are done.

2. R contains a 2-block. In this case, the robot that is on R, but not part of the 2-block is the only one allowed
to move (see Alg. 6, Lines 6.10-6.12). Its destination is the adjacent free node on the shortest path towards the
2-block on R. So, we retrieve Case 1 in finite time and we are done.

3. All other cases. (see Alg. 6, Lines 6.03-6.09)
(a) If R ∩ wall = Occupied-Node. According to the choices of the fair scheduler, in finite time either a 3-block

is created and we retrieve Case 1, or a 2-block is created and we retrieve Case 2.
(b) If R ∩ wall = Free-Node, a 2-block is created on R in finite time and by Case 2, we are done.

2

From the other towerless configurations (Regular, Twin, Quadruplet, and Isolated), the convergence to a ♦.Configuration
is probabilistic. Now, when considering any arbitrary fair execution, (1) the topology is fixed with, in particular, a finite
number of nodes and (2) remind that the number of robots is the constant 4. So, the number of towerless configurations

12

is also finite. Now, while a configuration Double-Trap1, Double-Trap2, Triplet, or ♦.Configuration is not reached, the
SetUp phase remains trapped in the finite subset of towerless configurations defined as the distinct union of Configu-
ration Regular, Twin, Quadruplet, and Isolated, by Remark 5.2. So, in order to demonstrate that the system eventually
reaches a ♦.Configuration with probability one, we show below that from any configuration Regular, Twin, Quadruplet,
or Isolated, there always exists a positive probability to reach a configuration Double-Trap1, Double-Trap2, Triplet, or
♦ in finite time despite the choices of the fair scheduler. Then, we can conclude by Lemmas 5.1-5.3.

Lemma 5.4 If C is Twin, with positive probability, a configuration Triplet is reached from C in finite time.

Proof. When the configuration C is Twin, the cases below are possible:
1. C contains a unique couple, R.

(a) If there is a unique robot r that is outsideR and the closest to R, then r is the only robot allowed to move, and
if activated, it moves to an adjacent free node on a shortest path to a free node of R (see Alg. 4, Lines 4.02-4.04).
So, a Triplet configuration is reached, in this case, in finite time.
(b) Otherwise, the two robots that are outside R. Let r be any of those robots. Let Rper be the ring of r
perpendicular to R. Let Rpara be the ring parallel to R which contains the other robot outside R. If activated, r
try to move to a neighboring free node on Rper which does not belong to R or Rpara (see Alg. 4, Lines 4.05-
4.08). Then, at least one of these two robots is eventually activated, and when activated, with positive probability
(actually, a probability greater than or equal to p(1 − p)), exactly one of those robots moves and we retrieve the
previous case. Hence, with positive probability, a configuration Triplet is reached in finite time.

2. C contains two couples. Then, some robots in a Couple have a neighboring safe node outside any couple. Only
these robots are allowed to move (Alg. 4, Lines 4.10-4.12). If activated, they try to move to a neighboring safe
node outside any couple. One of them is activated in finite time and when activated, with positive probability (ac-
tually, a probability greater than or equal to p(1−p)3), exactly one of them moves. In this case, the system reaches
a configuration Twin containing only one couple (Case 1). Hence, with positive probability, a configuration Triplet
is reached in finite time.

3. C contains three couples. (In this case, the torus necessarily satisfies ` = L.) Observe that, in this case, there exist
two robots that belong to two couples. Only those robots are allowed to move. Let C be the Couple containing
these two robots. If activated, they try to move to a neighboring safe node on C (see Alg. 4, Lines 4.13-4.16). At
least one of them is activated in finite time and when activated, with positive probability (actually, a probability
greater than or equal to p(1− p)), exactly one of them moves and the configuration reached is still Twin but with
two couples, that is, one of the previous cases. Hence, we can conclude that, in this case, with positive probability,
a configuration Triplet is reached in finite time.

2

Lemma 5.5 If C is Quadruplet, a configuration either Twin or Triplet is reached from C in finite time.

Proof. Let R be the ring that contains four robots in C. We have the three cases:
(1) If R contains exactly one smallest hole. In this case, the two robots neighbor to such a hole move to an adjacent

free node outside R, if activated (Alg. 5, Lines 5.02-5.04). Then, if both robots move simultaneously, then the reached
configuration is Twin. If only one robot moves, then the reached configuration is Triplet.

(2) If R contains exactly one biggest hole. This case is similar to the previous one, either a Twin or a Triplet
configuration is reached in finite time.

(3) Otherwise, there is one robot that is neighbor to the two smallest holes on R. This robot is the only one allowed
to move. Its destination is the adjacent free node outside R (see Alg. 5, Lines 5.08-5.09). After this step, a configuration
Triplet is reached.

2

By Lemma 5.4, we have the following corollary from the previous lemma:

Corollary 5.1 If C is Quadruplet, with positive probability, a configuration Triplet is reached from C in finite time.

Lemma 5.6 If C is Isolated, with positive probability, a configuration Triplet is reached from C in finite time.

Proof. We split the study into two main cases:

13

1. ` = L. There are two cases:
• There is a unique smallest enclosing rectangle (SER), s. We call internal robot any robot that is not on a

side of s. The following subcases are possible:
(a) There is exactly one robot that is at a corner c of s. So, there is exactly one internal robot. It is the

only robot allowed to move, its destination is the closest free node on a side of s having c as extremity
(Alg. 2, Lines 2.08-2.10). Thus, a Twin configuration is reached in finite time and by Lemma 5.4, we
are done.

(b) There are exactly two robots at two corners c1, c2 of s. The other two robots are internal. The internal
robots that are the closest to an occupied corner of s move towards the closest free node on a side of s
having c1 or c2 as an extremity (Alg. 2, Lines 2.11-2.13). So, a Twin configuration is reached in finite
time and by Lemma 5.4, we are done.

(c) There is no robot at the corner of s. Observe that all robots are located at different sides of s. Let d
be the minimum distance between any occupied node and a corner of s. The following subcases are
possible:

i. There is a unique robot r at distance d from a corner of s. r is the only robot allowed to move. Its
destination is the adjacent free node towards the closest corner (Alg. 2, Lines 2.16-2.18). A Twin
configuration is reached in finite time and by Lemma 5.4, we are done.

ii. There are exactly two robots r1 and r2 at distance d from a corner. If r1 and r2 are the closest to
the same corner c, then let r3 and r4 be the two other robots. For each i ∈ {3, 4}, let di be the
distance to unique corner ci that is common to the side of s where ri is and the side of s where
r1 or r2 are. (n.b., d3 6= d4 otherwise the configuration is regular.) Let min ∈ {3, 4} such that
dmin = min{d3, d4}. Then, rmin moves toward cmin (Alg. 2, Lines 2.19-2.25), and a Twin
configuration is reached in finite time. By Lemma 5.4, we are done.
If r1 and r2 are closest to a corner of s, but not the same, then r1 and r2 are the only robots al-
lowed to move. Their destination is the adjacent free node towards the closest corner (see Alg. 2,
Lines 2.26-2.27). In finite time, either we retrieve case 1(c)i, or the system reaches a configura-
tion Twin (depending on the choices of the scheduler). In the latter case, we can conclude with
Lemma 5.4. In all other cases, we retrieve of the previous cases, and we are done.

iii. There are exactly three robots at distance d from a corner of s. There are either one or three corners
that have only one robot at distance d from them. In the former case, only one robot moves toward
its closest corner (see Alg. 2, Lines 2.19-2.25). After the move, either we retrieve case 1(c)i and we
are done, or the system is a configuration Twin and we conclude by Lemma 5.4. In the latter case,
each of the three robots moves to its closest corner (Alg. 2, Lines 2.26-2.27), now all targets are
different. So, in finite time, we retrieve either Case 1(c)i, or Case 1(c)ii, or a Twin configuration
depending on the choices of the scheduler, and we conclude as in previous cases.

• There are several possible SERs. Some of the robots have a safe neighboring node such that if they move
to that node and they move alone, then the number of SERs decreases. Only these robots are allowed to
move. If activated, they try to move to such a safe node (Alg. 2, Lines 2.01-2.04). At least one of them is
activated in finite time and when activated, with positive probability (actually, a probability greater than or
equal to p(1 − p)3), exactly one of them moves. In this case, either the system reaches configuration Twin
and we are done (Lemma 5.4), or the system is still in a configuration Isolated, yet the number of possible
SERs has strictly decreased.
Hence, in the worst case, the system needs three consecutive sequential moves (which happen with a prob-
ability greater than or equal to p3(1 − p)9) to reach either a Twin configuration, or a configuration Isolated
containing a unique SER. Hence, with positive probability the system reaches in finite time a Twin config-
uration and by Lemma 5.4, we are done.

2. ` 6= L. According to the number of robots on L-rings, we have 5 cases:
(a) Every L-ring contains at most one robot. Let r1, r2, r3, and r4 be the robots.

Assume there is a unique smallest enclosing rectangle (SER), s. Observe that there are two robots, say r1
and r2, that are on two parallel sides of s that are on `-rings. Let d be the minimal distance between r3 or
r4 and an `-ring which is a side of s. If r3 (resp. r4) is at distance d from an `-ring which is a side of s, it is
allowed to move. Note that both r3 and r4 may move simultaneously. If allowed to move, the move is done

14

along the current L-ring toward the closest `-ring which is a side of s (Alg. 3, Lines 3.01-3.12). Hence,
Twin configuration is reached in finite time and by Lemma 5.4, we are done.
If there are several SERs, we proceed as in the case ` = L. Hence, with positive probability the system
reaches in finite time a Twin configuration and by Lemma 5.4, we are done.

(b) There is exactly one L-ring R that contains 2 robots. The robots (one or two robots) that are alone on
their L-ring and closest to R move along their L-ring towards a closest free node having a node of R in
its `-ring (Alg. 3, Lines 3.13-3.15). So, in finite time, the system reaches either a Triplet, or a Twin
configuration depending of the choices of the fair scheduler. In the latter case, with positive probability, a
Triplet configuration is reached in finite time by Lemma 5.4 and we are done.

(c) There is exactly one L-ring R that contains 3 robots. The case is similar to the previous one, see Alg. 3,
Lines 3.13-3.15: in finite time, the system reaches a Twin configuration and by Lemma 5.4, we are done.

(d) There exist two L-rings that contain two robots. In this case, some of the robots (at least one) have a safe
neighboring node outside their current L-ring. Only these robots are allowed to move (Alg. 3, Lines 3.16-
3.18). If activated, they try to move to safe neighboring node outside their current L-ring. One of them is
activated in finite time and when activated, with positive probability (actually, a probability greater than or
equal to p(1− p)3), exactly one of them moves. In this case, we retrieve cases 2b or 2c, and we are done.

(e) There is one L-ring R that contains all robots. Similarly to Lemma 5.5, one or two robots leave R in finite
time, and we retrieve one of the previous cases.

2

Lemma 5.7 If C is Regular, with positive probability, a non-Regular towerless configuration is reached from C in finite
time.

Proof. If C is Regular, then every robot tries to move to a safe node, if activated. Now, in this case, with positive
probability, exactly one of them moves during the next step and a non-Regular towerless configuration is reached. 2

From all previous lemmas and corollary, we can deduce that, with probability one, the SetUp phase eventually
terminates in a ♦.Configuration. Recall also that Phase 1 of the exploration requires that the torus satisfies the condition
7 ≤ ` ≤ L (see page 10). Hence:

Theorem 5.1 The SetUp, Tower, and Exploration phase allows four robots to probabilistically explore on any torus of
size `× L, where 7 ≤ ` ≤ L.

6 Concluding Remarks
While the solution we provided for the torus exploration problem is optimal in terms of number of robots, there remain
challenging open questions. First, we presented an algorithm for all tori of size ` × L, where 7 ≤ ` ≤ L. In [6],
the authors stated that small grids require more robots. Determining if our results can be extended to smaller tori is
an interesting problem. We expect mechanized approaches [2] to be valuable for investigating small size tori. Second,
dealing with higher dimension (e.g., from a ring to a torus) does not necessarily increase the robot number complexity
of the exploration problem. The issue of the d-dimensional tori (with d > 2) remains open.

References
[1] Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: Anonymous graph exploration without collision by mobile robots.

Inf. Process. Lett. 109(2), 98–103 (2008)

[2] Bonnet, F., Défago, X., Petit, F., Potop-Butucaru, M., Tixeuil, S.: Discovering and assessing fine-grained metrics in
robot networks protocols. In: 33rd IEEE SRDS Workshops, Workshop on Self-organization in Swarm of Robots,
pp. 50–59 (2014)

[3] Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: WG,
pp. 208–219 (2010)

15

[4] D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: A unified approach for different tasks on rings
in robot-based computing systems. In: IPDPS Workshops, pp. 667–676 (2013)

[5] D’Angelo, G., Navarra, A., Nisse, N.: Gathering and exclusive searching on rings under minimal assumptions. In:
ICDCN, pp. 149–164 (2014)

[6] Devismes, S., Lamani, A., Petit, F., Raymond, P., Tixeuil, S.: Optimal grid exploration by asynchronous oblivious
robots. In: SSS, pp. 64–76 (2012)

[7] Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots.
Theor. Comput. Sci. 498, 10–27 (2013)

[8] Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: Tree exploration by asynchronous
oblivious robots. Theor. Comput. Sci. 411(14-15), 1583–1598 (2010)

[9] Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: Ring exploration by asyn-
chronous oblivious robots. Algorithmica 65(3), 562–583 (2013)

[10] Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures
on Distributed Computing Theory. Morgan & Claypool Publishers (2012)

[11] Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous obliv-
ious robots on a ring. Theor. Comput. Sci. 411(34-36), 3235–3246 (2010)

[12] Lamani, A., Potop-Butucaru, M., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous
robots. In: SIROCCO, pp. 183–196 (2010)

16

