

Sensorimotor conflicts alter metacognitive and action monitoring

Nathan Faivre, Laurène Vuillaume, Fosco Bernasconi, Roy Salomon, Olaf

Blanke, Axel Cleeremans

► To cite this version:

Nathan Faivre, Laurène Vuillaume, Fosco Bernasconi, Roy Salomon, Olaf Blanke, et al.. Sensorimotor conflicts alter metacognitive and action monitoring. Cortex, 2019, 10.1016/j.cortex.2019.12.001 . hal-02420592

HAL Id: hal-02420592 https://hal.science/hal-02420592v1

Submitted on 7 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0010945219304010 Manuscript_13a903ae891d127d2ef4e0b0c1020e28

Sensorimotor conflicts alter metacognitive and action monitoring

Nathan Faivre^{1,2,3,*}, Laurène Vuillaume^{4,5,6,*}, Fosco Bernasconi^{1,2}, Roy Salomon⁷, Olaf Blanke^{1,2,8,**}, Axel Cleeremans^{4,5,6,**}

* these authors contributed equally to this work

** these authors contributed equally to this work

1 Laboratory of Cognitive Neuroscience, Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland

2 Center for Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland

3 Université Grenoble Alpes, CNRS, LPNC UMR 5105, Grenoble, France

- 4 Consciousness, Cognition & Computation Group (CO3), Université Libre de Bruxelles (ULB), Brussels, Belgium
- 5 Center for Research in Cognition & Neurosciences (CRCN), Université Libre de Bruxelles (ULB), Brussels, Belgium
- 6 ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium

7 Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel

8 Department of Neurology, University Hospital Geneva, Geneva, Switzerland

Keywords: Sensorimotor conflict, metacognitive monitoring, metacognition, action monitoring, intentional binding

Author contribution: NF, AC, OB: Conceptualization; NF, LV: Data curation; NF: Formal analysis; OB, AC: Funding acquisition; NF, LV, FB, RS: Investigation; NF, LV, FB, RS: Methodology; NF, OB, AC: Project administration; OB, AC: Resources; NF, LV, FB: Software; OB AC, Supervision; NF: Visualization; Roles/Writing - NF: original draft; Writing - All authors: review & editing.

The authors declare no competing interests.

Corresponding author: Nathan Faivre nathanfaivre@gmail.com Laboratoire de Psychologie et NeuroCognition CNRS UMR 5105 UGA BSHM 1251 Avenue Centrale 38058 Grenoble

1 Abstract (123)

2 While sensorimotor signals are known to modulate perception, little is known about their influence on 3 higher-level cognitive processes. Here, we applied sensorimotor conflicts while participants performed 4 a perceptual task followed by confidence judgments. Results showed that sensorimotor conflicts 5 altered metacognitive monitoring by decreasing metacognitive performance. In a second experiment, 6 we replicated this finding and extended our results by showing that sensorimotor conflicts also altered 7 action monitoring, as measured implicitly through intentional binding. In a third experiment, we 8 replicated the same effects on intentional binding with sensorimotor conflicts related to the hand rather 9 than to the trunk. However, effects of hand sensorimotor conflicts on metacognitive monitoring were 10 not significant. Taken together, our results suggest that metacognitive and action monitoring may involve endogenous, embodied processes involving sensorimotor signals which are informative 11 12 regarding the state of the decider.

13 Introduction

14 The self is a multifaceted construct that minimally entails an organism's ability to distinguish its 15 constituents from the surrounding environment. It is defined at different levels of complexity (Rochat, 16 2003), ranging from fundamental biological mechanisms (e.g., homeostasis, immunological 17 tolerance), to bodily representations (e.g., peripersonal space), to more abstract cognitive functions 18 such as self-recognition or autobiographical memory. At the cognitive level, the sense of self includes 19 metacognitive monitoring, defined as the capacity to monitor and control one's own mental states 20 (Koriat, 2006; Fleming & Frith 2012), and to compute the likelihood of being correct given sensory 21 evidence during perceptual tasks (Pouget, Drugowitsch, & Kepecs, 2016). The cognitive self also 22 includes the capacity to monitor and control one's own actions, notably to predict the sensory 23 consequences of a motor command (Blakemore and Frith, 2003; Haggard, 2017). The present study 24 aims at assessing the possibility that cognitive functions such as metacognitive and action monitoring 25 may rely on bodily signals, and more specifically on sensorimotor processes. In support of this view, 26 action-related signals were shown to modulate metacognition: confidence relates to sub-threshold 27 motor activity (Gadjos et al., 2018) and alpha desynchronization over the sensorimotor cortex (Faivre 28 et al., 2018), and is disrupted when transcranial magnetic stimulation pulses are applied to the premotor cortex before or after a visual task disrupt subsequent confidence judgements (Fleming et al., 29 30 2015). Plus, metacognitive performance is better for committed vs. observed decisions, suggesting that 31 committing to a decision through a motor action informs confidence (Pereira et al., 2018). Together, 32 these studies suggest that interoceptive and action-related signals from the body may play a role for 33 metacognition (see Filevich et al., 2019 for a critical discussion of these effects).

34 Here, we sought to investigate the role of sensorimotor processes on high-level cognitive functions by 35 measuring the quality of metacognitive monitoring in healthy subjects while their bodily 36 representation was systematically manipulated through the application of sensorimotor conflicts. 37 Participants were asked to perform tapping movements with a robotic device situated in front of them, 38 while another robot connected to the front device applied corresponding tactile stimuli on their back 39 (synchronous condition). In the asynchronous condition, a constant temporal delay between the 40 movement of the participant and the tactile stimulation delivered by the back robot was introduced, 41 which has the effect of increasing prediction errors regarding the sensory consequences of a motor 42 command. Such manipulations are also known to induce alterations of bodily self-consciousness such 43 as changes in self-location (Blanke et al., 2014). Assuming that the mechanisms enabling 44 metacognitive and action monitoring relate to those enabling bodily self-consciousness, we expected alterations of self-location induced by sensorimotor conflicts to induce impairments of metacognitive 45 46 and action monitoring. In Experiment 1, we quantified the capacity of participants to monitor their 47 performance on an auditory temporal order judgment task while actuating the robot synchronously or 48 asynchronously. Experiment 2 aimed at replicating the results found in Experiment 1 with a new 49 group of participants, and further quantified their capacity to monitor action consequences during the 50 synchronous vs. asynchronous condition. Finally, Experiment 3 aimed at determining whether effects 51 on metacognitive and action monitoring were specific to sensorimotor conflicts impacting full-body 52 representations (Blanke et al., 2014), or whether they could also be induced by similar conflicts 53 impacting limb-representations only. Together, these three experiments show that metacognitive 54 monitoring is altered by sensorimotor conflicts centered on the trunk impacting full-body 55 representations, while action monitoring is altered by sensorimotor conflicts impacting both full-body 56 and limb representations. This indicates that bodily-representations may serve as a scaffold for 57 complex cognitive functions including metacognitive and action monitoring.

58

59 Method

60 The experimental paradigm and analysis scripts are available together with anonymized data on the61 open science framework (https://osf.io/386az/).

62

63 Participants

64 A total of 54 different participants were recruited: 18 in Experiment 1 (10 females, mean age 22.7 65 years, SD 4.5 years), 18 in Experiment 2 (12 females, mean age 23.7 years, SD 4.2 years) and 18 in 66 Experiment 3 (12 females, mean age 24.1 years, SD 4.2 years). Two participants had to be excluded 67 due to a technical issue during data recording (one in Experiment 1 and one in Experiment 2) as they 68 could not perform the temporal order judgment task). All participants were right-handed, had normal 69 hearing and no psychiatric or neurological history, and participated in exchange for a monetary 70 compensation (20 CHF per hour). They were naive to the purpose of the study and gave informed 71 consent, in accordance with institutional guidelines and the Declaration of Helsinki. The study was 72 approved by the cantonal ethics committee in Geneva. The sample size in Experiment 1 was 73 predefined based on a pilot study, and was kept constant in Experiment 2 and 3.

74 Apparatus and stimuli

Robotic System: we used a system composed of a commercial haptic interface (Phantom Omni, SensAble Technologies), coupled with a three degree-of-freedom robot in the back (see Fig. 1 and Hara et al., 2011; Blanke et al., 2014 for details). Participants were standing and controlling the front robot situated directly in front of them with their right index finger (excepted in the baseline condition of Experiment 1 in which it was controlled by the experimenter). The back robot was placed directly behind their back and reproduced with virtually no delay the movements produced with the front robot in the synchronous condition, and with 500 ms delay in the asynchronous condition. Participants were

82 asked to perform tapping movements in every direction to touch their back on a 200 mm x 250 mm

surface. In Experiment 3, the same setup was used except that the back robot was adjusted to point in
the vertical axis so to touch the participants hand instead of their back. Participants could again
perform any tapping movements they wanted as long as the robot touched the back of their hand.

86 Auditory stimuli: all experimental sounds were sinusoidal pure tones, with 1 ms rise/fall time and 87 44100 Hz sampling rate, generated using MATLAB (MathWorks, Natick, MA) with the 88 Psychophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner, Brainard, Pelli 2007). Auditory stimuli 89 used for the temporal order judgement task were 600 Hz pitch pairs of sounds, played for 10 ms via 90 headphones either to the left and then to the right ear (Left-Right or LR) or to the right and then to the 91 left ear (Right-Left or RL), with a variable stimulus onset asynchrony (SOA) that was adjusted 92 throughout the experiment using an adaptive one-up two-down staircase procedure (Levitt, 1971). The 93 initial SOA was set to 80 ms, and varied in 5 ms steps between 5 ms and 150 ms. Cue sounds (400 Hz 94 pitch, 100 ms duration,) served as indicators of the beginning and the end of each trial. White noise 95 was played in both ears during the whole experiment to isolate the participant from external noises. 96 The sound pressure level was adjusted before the experiment individually at a comfortable level with 97 the auditory stimuli volume always four times higher than the white noise volume.

98 Procedure

Experiment 1.

100 Prior to the experiment, participants were told about the general experimental procedure, and were 101 instructed in the use of the robot. After filling in a questionnaire for demographic data, participants 102 were equipped with headphones and blindfolded. While standing, they were asked to insert their right 103 index finger into the front device and perform tapping movements, which lead the back robot to 104 deliver tactile pokes on their back. They were allowed to move the front device in any direction along 105 the vertical and horizontal axes, which resulted in pokes applied to different parts of their back. The 106 main task was as follows: each trial started with a cue sound indicating to start the tapping movements 107 with the right index finger. After 10 s of tapping, a second cue sound was played, indicating to stop 108 moving. Following a random interval between 1000 and 1500 ms duration, participants were presented 109 with two successive sounds and were asked to indicate by means of keypress with the left hand 110 whether they perceived an LR or RL pair (temporal order judgment, Bernasconi et al., 2010). This first 111 response defined performance for the first order task, for which no feedback was provided. 112 Subsequently, as a second-order task, participants were asked to report the confidence they had in their 113 response by pressing a key with their left hand between 1 (very unsure) to 6 (very sure). A random 114 inter-trial interval between 1000 and 1500 ms was enforced. The experiment contained three main 115 conditions grouped in blocks. In the synchronous condition, the back device responded to the front 116 robot actuated by the participants with virtually no temporal delay (Hara et al., 2011). In the 117 asynchronous condition, a delay of 500 ms was set between the front and the back devices, so that 118 participants felt a poke on their back 500 ms after moving the front device. The asynchronous 119 condition resulted in a spatiotemporal sensorimotor conflict between the right hand actuating the front 120 robot and the back receiving tactile feedback. Such condition is known to induce global changes in 121 bodily self-consciousness, notably in terms of self-location (Blanke et al., 2014). In the baseline 122 condition, participants passively received tactile feedback while the front robot was actuated by the 123 experimenter. While actuating the front robot in the synchronous and asynchronous conditions, participants received a somatosensory force feedback on their right index finger each time the back 124 125 robot touched their back, so to mimic the effect of physical resistance. The experiment was divided in blocks of 30 consecutive trials of the same condition, with a total of 9 blocks (3 in succession per 126 127 condition) counterbalanced across participants. A training phase of 12 trials was enforced before 128 starting the experiment. At the end of the first block of each condition, participants were asked to fill 129 in a questionnaire composed of 10 Likert scale items: 1) I felt as if I had no body. 2) I felt as if I was 130 touching my body. 3) I felt as if I was touching someone else's body. 4) I felt as if I was in front of my 131 body. 5) I felt as if I was behind my body. 6) I felt as if I had more than one body. 7) I felt as if 132 someone else was touching my body. 8) I felt as if I was touched by a robot. 9) I felt as if someone 133 was standing behind my body. 10) I felt as if someone was standing in front my body. The experiment 134 lasted 120 minutes and ended with an individual debriefing. No part of the study procedures or 135 analyses was pre-registered prior to the research being conducted.

136

137 Figure 1: A. Experimental setup: Participants were standing and controlling the front robot situated directly in front of them with their right index finger. The back robot was placed directly behind their 138 139 back and reproduced with virtually no delay the movements produced with the front robot in the synchronous condition, and with 500 ms delay in the asynchronous condition. B. Experimental 140 141 procedure: After actuating the front robot and receiving synchronous or asynchronous tactile feedback 142 for 10 s, participants were asked to perform one of two tasks. In the auditory task (upper row) 143 participants had to indicate whether they heard a sequence of two sounds starting in the left and ending 144 in the right ear or vice versa (i.e., temporal order judgment task). They were then asked to report how 145 confident they were in their response. Both responses were given using the left hand. In the intentional 146 binding task (lower row) participants were asked to press a key with the left hand, and report verbally the delay with which a subsequent effect tone was played. 147

Experiment 2

150 Experiment 2 was divided into two sessions. The first session followed the exact same procedure as 151 Experiment 1 (i.e., first and second-order tasks), except that it contained no baseline condition, and 152 therefore lasted 80 min instead of 120 min. The second session relied on the classical intentional 153 binding task (Haggard, Clark & Kalogeras, 2002; Wenke & Haggard, 2009), in which participants 154 were asked to press a key with their left hand whenever they felt the urge to do so. The keypress 155 triggered a target tone (600 Hz pitch, 200 ms duration) after a temporal delay of 200 ms, 500 ms or 156 800 ms. Participants were told that the target tone could occur after a random delay between 1 ms and 157 1000 ms following key press, and were asked to report verbally their best estimate for this delay. After 158 reporting their estimate, they had to press a key to start the next trial. Participants were actuating the 159 front robot with their right hand for the entire trial duration. Session 2 contained a synchronous and 160 asynchronous condition like session 1. Participants completed two blocks of 30 trials per condition, 161 corresponding to 10 repetitions for each temporal delay. The order of conditions was counterbalanced 162 across participants, and remained identical within participant for sessions 1 and 2. The order of 163 temporal delays was randomized across trials. A training phase of 12 trials was enforced before 164 starting session 2. It ended with an individual debriefing and its total duration was about 70 min. A 165 break of 30 min was allowed between session 1 and 2. At the end of session 2, participants were asked 166 to actuate the robot for 1 minute (Synchronous and Asynchronous in the same order as in session 1 167 and 2), and then filled in the same questionnaires as in Experiment 1 (see below). This was performed 168 at the very end of the experiment to avoid demand characteristics effects (Orne, 1962).

169 Experiment 3

Experiment 3 was identical to Experiment 2, except that participants were seated and that the strokingwas applied on the back of their left hand instead of on their back.

172

173 Questionnaire

174 Participants were asked to rate specific aspects of the subjective experience they had in the different 175 experimental conditions. The questions were based on a previous study (Blanke et al., 2014, see 176 supplementary data) and investigated in particular the subjective feeling of touching oneself ("I felt as 177 if I was touching my body"; self-touch) or of touching somebody else's body ("I felt as if I was 178 touching someone else's body"; other-touch). Other questions investigated the subjective sensation of 179 corporeal displacement (i.e. "I felt as if I was in front of my body") and the feeling of a presence (i.e. 180 "I felt as if someone was standing behind my body."). Other items served as control questions for 181 suggestibility (i.e. "I felt as if I had no body"). Ratings were reported on a Likert scale from 0 (Not at 182 all) to 6 (Very strong) and transformed into Z-scores prior to statistical analysis.

183

184 Data analysis

We report how we determined our sample size, all data exclusions, all inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to data analysis, all manipulations, and all measures in the study. Reaction times for temporal order judgments longer than 3 s and shorter than 300 ms were discarded (corresponding to 6.2 % of total trials in Experiment 1, 6.4 % in Experiment 2, and 11.4 % in Experiment 3). Reaction times for confidence judgements longer than 6 s and shorter than 300 ms were discarded (corresponding to 3.0 % of total trials in Experiment 1, 2.0 % in Experiment 2, and 4.7 % in Experiment 3).

192 Metacognitive performance was analysed with two different approaches. First, we performed mixed 193 effects logistic regressions between accuracy and confidence, and considered the regression slope as 194 an indicator of metacognitive performance (that is, the capacity for a participant to adapt confidence to 195 performance), and the lower asymptote as a measure of confidence bias (that is, the capacity to report 196 low confidence estimates when perceptual evidence is low). This approach is agnostic regarding the 197 signals used to compute confidence estimates (i.e., decisional vs. post-decisional locus, see Yeung & 198 Summerfield, 2012; Pleskac & Busemeyer, 2011), and the mixed model framework allows analysing 199 raw confidence ratings even if they are unbalanced (e.g., in case participants do not use all possible 200 ratings) (Rausch et al., 2015). Second, relying on signal detection theory, we quantified metacognitive 201 sensitivity with meta-d' (Maniscalco & Lau, 2012, 2014), which reflects the amount of perceptual 202 evidence available when performing confidence judgments. Contrary to the logistic regression 203 approach, signal detection theory assumes that confidence judgments are informed by perceptual 204 evidence only, with no contribution of post-decisional processes. The resulting measure of 205 metacognitive sensitivity (meta-d') shares the same dimension as perceptual sensitivity (d'), which 206 allows normalizing one by the other, and deriving an index of metacognitive performance independent 207 of task performance, called metacognitive efficiency (meta-d'/d'). Meta-d' was computed following a 208 resampling of confidence ratings: for a given participant and condition, confidence ratings used in less 209 than 10 trials were merged with the superior rating (e.g., if one participant gave a confidence rating of 210 1 in 6 trials, and of 2 in 18 trials, we merged the two categories in 24 trials with a confidence rating of 211 2). This ensured that the fit by maximum likelihood estimation involved in the computation of meta-d' 212 was performed on a sufficient number of points (Maniscalco & Lau, 2012, implemented in R by 213 Rausch et al., 2015). The tendency to report high or low confidence ratings independently of task 214 performance was quantified with confidence bias, based on the type 2 receiver operating characteristic 215 curve (ROC) which determines the rate of correct and incorrect responses at each confidence level. 216 Specifically, the area between the ROC and major diagonal was divided by the minor diagonal, and 217 confidence bias was defined as the log ratio of the lower and upper area (Kornbrot, 2006).

218 Response times in the intentional binding task were analysed using linear mixed effects regressions, 219 with condition and delay as fixed effects, intercepts for subjects as random effects, and a by-subject 220 random slope for the effect of condition and delay. Reaction times below or above 2 standard 221 deviations away from the mean were discarded for each subject and each delay (corresponding 222 respectively to 3.7% and 4.2% of total trials in Experiment 2 and 3). As response times were not 223 normally distributed, they were considered as ordinal data and rank-transformed before linear mixed 224 modelling (Conover & Iman, 1981). All analyses were performed with R (2016), using notably the 225 afex (Singmann et al., 2015), BayesFactor (Morey et al., 2015), ggplot2 (Wikham, 2009), lme4 (Bates 226 et al., 2014), ImerTest (Kuznetsova, Brockhoff & Christensen, 2015), and effects (Fox, 2003) 227 packages. In all ANOVAs, degrees of freedom were corrected using the Greenhouse-Geisser method.

228

229 **Results**

230 Metacognitive monitoring

231 *Experiment 1*

232 Regarding the first-order task (temporal order judgment), an analysis of variance revealed that the 233 SOA corresponding to perceptual threshold differed across conditions (F(1.83,27.39) = 8.02, p = 234 0.002, $\eta_{\rm p}^2 = 0.35$), with lower SOA in the baseline (mean SOA = 45 ms, SD = 13 ms) vs. synchronous 235 condition (mean SOA = 53 ms, SD = 14 ms; paired t-test: p = 0.020) and in the baseline vs. 236 asynchronous condition (mean SOA = 56 ms, SD = 15 ms; paired t-test: p < 0.001), but no difference 237 between the synchronous and asynchronous conditions (paired t-test: p = 0.36, BF = 0.37). This 238 implies that the task was easier in the baseline compared to the synchronous and asynchronous 239 conditions, which is expected considering that participants performed no tapping movement in the 240 baseline condition. Despite these differences in terms of task difficulty, task performance was equated 241 with the staircase procedure we used (Levitt, 1971), and no effect of condition on sensitivity (d': 242 F(1.65,24.78) = 0.93, p = 0.39, $\eta_{p}^{2} = 0.06$), criterion (F(1.56,23.39) = 0.74, p = 0.46, $\eta_{p}^{2} = 0.05$), or 243 reaction times (F(1.78,26.71) = 1.48 p = 0.24, $\eta_{\rm F}^2$ = 0.09) was found, revealing that task performance 244 was adequately controlled across conditions. Regarding the second order task, we found no effect of 245 condition on raw confidence ratings (F(1.94,29.16) = 1.12, p = 0.34, $\eta_{\rm P}^2$ = 0.07), confidence bias 246 $(F(1.65,24.68) = 2.4, p = 0.12, \eta_{\rm P}^2 = 0.14)$, or reaction times for providing confidence ratings $(F(1.96,29.37) = 0.65, p = 0.53, \eta_{e}^{2} = 0.04)$, revealing that the production of confidence estimates per 247 248 se was not impacted by our manipulation.

Next, we assessed how confidence ratings tracked first order accuracy, by fitting a mixed effects
logistic regression on task accuracy, with condition and confidence as fixed effects, intercept for
participants as random effects, and a by-subject random slope for the effect of confidence. First, the

252 model revealed higher intercepts in the asynchronous compared to the baseline condition (estimate = 253 0.46, Z = 1.99, p = 0.047), and similar intercepts between the baseline and the synchronous condition 254 (estimate = -0.12, Z = -0.12, p = 0.60). This indicates that in the asynchronous condition participants 255 had a higher first-order accuracy when reporting guessing than in the synchronous and baseline 256 conditions. Crucially, the model revealed that the relation between confidence and accuracy differed in 257 the asynchronous vs. baseline condition (estimate = -0.16, Z = -2.48, p = 0.013), but not between the 258 synchronous and baseline condition (estimate = -0.02, Z = -0.26, p = 0.80). As can be seen on Fig. 2, 259 this is reflected by a slope of smaller magnitude in the asynchronous compared to the synchronous and 260 baseline conditions, which indicates a decrease in the capacity to adapt confidence to task 261 performance, while task performance was similar across conditions. Importantly, this effect on 262 metacognitive performance cannot be explained by the difference in SOA reported above, as no slope 263 difference was found between the synchronous and baseline conditions, while SOA differed between 264 these two conditions. Plus, another mixed effects logistic regression comparing only the synchronous and asynchronous conditions revealed different intercepts (estimate = 0.55, Z = 2.36, p = 0.018) and 265 266 slopes (estimate = -0.14, Z = -2.16, p = 0.031), confirming that metacognitive performance was lower 267 in the asynchronous vs. synchronous conditions, this despite an equal SOA between the two 268 conditions. We conclude that a specific decrease in metacognitive performance occurred in the 269 asynchronous condition.

Figure 2: Mixed logistic regression between task accuracy and confidence in the baseline (blue), asynchronous (red), and synchronous condition (green) in Experiment 1. Each dot represents the group-average accuracy for a given level of confidence, with dot size representing the number of total trials in that specific condition. The shaded area around each fit represents the 95% confidence interval. The inset plot represents the estimated slope in logit unit in the asynchronous (red) and

- synchronous (green) conditions, with respect to the baseline condition (horizontal dashed line). Error bars represent the 95% confidence interval.

279 *Experiment 2*

We then sought to replicate these findings in Experiment 2. Compared to Experiment 1, a direct comparison between the synchronous and asynchronous conditions was performed, with no additional baseline. Analyses of variance revealed no difference in task performance for the temporal order judgments between the synchronous condition and the asynchronous condition. There was no effect of condition on SOA (F(1,16) = 1.35, p = 0.26, $\eta_p^2 = 0.08$), sensitivity (F(1,16) = 0.02, p = 0.88, $\eta_p^2 =$ 0.00), criterion (F(1,16) = 0.88, p = 0.36, $\eta_p^2 = 0.05$), or reaction times (F(1,16) = 2.96, p = 0.10, $\eta_p^2 =$ 0.16).

287 Regarding confidence ratings, we found no effect of condition on confidence (F(1,16) = 0.47, p = 288 0.50, $\eta_{\rm P}^2 = 0.03$), confidence bias (F(1,16) = 0.37, p = 0.55, $\eta_{\rm P}^2 = 0.02$), or reaction times for 289 confidence ratings (F(1,16) = 3.12, p = 0.10, η_{e}^{2} = 0.16). The same mixed effects logistic regression as 290 in Experiment 1 was then used to assess how confidence ratings tracked first order accuracy. The 291 model revealed similar intercepts between the synchronous and the asynchronous conditions (z = -292 1.57, p = 0.12) and an effect of condition on the relation between confidence and accuracy (z = -2.05, 293 p = 0.040) (see Fig. 3). Similarly to Experiment 1, this indicates a decrease in metacognitive 294 performance in the asynchronous condition independently of any change in task performance. The fact 295 that intercepts did not differ between conditions indicates that unlike what we found in Experiment 1, 296 the tendency to report low confidence (i.e., error detection) was not modulated by our manipulation. 297 This difference was not expected and will require further investigation.

Figure 3: Mixed effects logistic regression between task accuracy and confidence in the asynchronous (red), and synchronous condition (green) in Experiment 2. Each dot represents the group-average accuracy for a given level of confidence, with dot size representing the number of total trials in that specific condition. The shaded area around each fit represents the 95% confidence interval. The inset plot represents the estimated slope in logit unit in the asynchronous vs. synchronous condition (horizontal dashed line). Error bars represent the 95% confidence interval.

305 As an alternative to logistic regressions, we attempted to replicate our findings relying on signal 306 detection theory to assess metacognitive performance. Specifically, we used the ratio of meta-d'/d' as 307 an index of metacognitive efficiency, that is the amount of perceptual evidence available to perform 308 confidence judgements. Lower metacognitive efficiency in the asynchronous vs. synchronous 309 condition was confirmed in Experiment 1 (one-tailed paired t-test: t(15) = 2.21, p = 0.02) and in 310 Experiment 2 (one-tailed paired t-test: t(16) = 1.88, p = 0.04) (Figure 4). These results based on signal 311 detection theory confirm our previous results that metacognition is altered in the presence of 312 sensorimotor conflicts, and rule out any possible confound in terms of first-order task performance.

313

Figure 4: Metacognitive efficiency in the asynchronous vs. synchronous condition for each participant
 in Experiment 1 (empty dots) and 2 (full dots). Dots lying below the diagonal reflect lower
 metacognitive efficiency in the asynchronous condition. The red dot corresponds to the average across
 all participants, error bars represent 95% confidence interval.

318

319 *Experiment 3*

320 To further define the nature of sensorimotor conflicts susceptible of altering metacognition, we ran a321 third experiment identical to Experiment 2, except that the back robot touched the left hand instead of

the trunk, thereby inducing a more local, hand-related, sensorimotor conflict between the right hand

actuating the front robot and the left hand receiving tactile feedback. Following the same analysis

strategy, we first ran an ANOVA on participant's temporal order judgments which revealed no difference in task performance. There was no effect of condition on SOA (F(1,17) = 4.02, p = 0.06, η_p^2 = 0.19), first order sensitivity (F(1,17) = 0.27, p = 0.61, η_p^2 = 0.02), criterion (F(1,17) = 0.27, p = 0.61, η_p^2 = 0.02) or reaction times (F(1,17) = 0.95, p = 0.34, η_p^2 = 0.05).

328 There was no effect of condition on raw confidence ratings (F(1,17) = 0.3, p = 0.59, $\eta_{\rm P}^2 = 0.02$), 329 confidence bias (F(1,17) = 1.29, p = 0.27, $\eta_{\rm F}^2$ = 0.07), or reaction times for confidence ratings (F(1,17) 330 = 0.3, p = 0.59, $\eta_{\rm p}^2$ = 0.02). To assess how confidence ratings tracked first order accuracy, the same 331 mixed effects logistic regression as in Experiment 1 and 2 was used. It revealed similar intercepts (z =332 -0.94, p = 0.35) and similar slopes (z = 1.19, p = 0.23) between the synchronous and the asynchronous 333 conditions (see Fig. 5). Likewise, metacognitive efficiency did not differ across conditions (F(1,17) =334 0.2, p = 0.66, $\eta_{\rm p}^2$ = 0.01, BF = 0.27). This indicates that metacognitive monitoring was not impacted 335 when similar sensorimotor conflicts altered limb-based representation instead of trunk-based body 336 representation.

337

Figure 5: Mixed effects logistic regression between task accuracy and confidence in the asynchronous (red), and synchronous condition (green) in Experiment 3. Each dot represents the group-average accuracy for a given level of confidence, with dot size representing the number of total trials in that specific condition. The shaded area around each fit represents the 95% confidence interval. The inset plot represents the estimated slope in logit unit in the asynchronous vs. synchronous condition (horizontal dashed line). Error bars represent the 95% confidence interval.

345 Action monitoring

363

346 In addition to metacognitive monitoring, we examined the link between sensorimotor conflicts and 347 action monitoring, commonly referred to as the sense of agency (Blakemore and Frith, 2003; 348 Gallagher, 2000; Moore and Obhi, 2012). The sense of agency was quantified using intentional 349 binding (Haggard, Clark, Kalogeras, 2002), an implicit measure in which participants have been 350 shown to underestimate the delay between a voluntary action and its consequence. Here, while 351 actuating the front device with the right hand, participants were asked to press a button with their left 352 hand whenever they felt the urge to do so, and had to estimate the delay between this key press and the 353 onset of a sound played 200, 500, or 800 ms after. In experiment 2, a linear mixed effects on ranked 354 response times revealed no main effect of condition (F(1,16.01) = 2.85, p = 0.11), but a main effect of delay (F(2,15.99) = 93.57, p < 0.001), showing that participants reported longer durations when the 355 356 delay between their key press and the sound onset increased. More importantly, the model revealed a 357 significant interaction between delay and condition (F(2,1888.48) = 3.96, p < 0.02), indicating that 358 participants judged the intervals as significantly shorter in the asynchronous vs synchronous condition, 359 and that this effect was present mainly for long delay (see Fig. 6, left panel). In other words, we found 360 a relative compression of time between a voluntary action and its outcome, if participants were 361 receiving additional asynchronous vs synchronous sensorimotor stimulation.

362 The same analysis confirmed these results in Experiment 3, where participants actuated the front robot

with their right hand, received tactile feedback on their left hand, and used the left hand to press a key

whenever they felt the urge to do so. We found a main effect of delay (F(2,17.28) = 90.23, p < 0.001),

indicating again that participants adapted their response as a function of the delay, and a main effect of

366 condition (F(1,15.05) = 11.81, p < 0.004), showing that participants reported overall shorter times in

367 the asynchronous vs. synchronous conditions (i.e., intentional binding). As in Experiment 2, a

368 significant interaction between condition and delay (F(2,1782.10) = 5.76, p < 0.004) indicated that this

369 effect was more pronounced at longer delays (see Fig. 6, right panel).

370

Figure 6: boxplots of estimated response times as a function of delay in the asynchronous (in red) andsynchronous (in green) conditions in Experiment 2 (left panel) and Experiment 3 (right panel).

373

374 Questionnaire results

375 Regarding the questionnaire results in the 3 experiments we found that participants felt as if they were

touching their own body as significantly higher in the synchronous condition (mean = 2.58, SD = 1.94

377 for Experiments 1 and 2 and mean = 4.44, SD = 1.15 for Experiment 3) than in the asynchronous

378 condition (mean = 1.48, SD = 1.30 for Experiments 1 and 2 and mean = 2.72, SD = 1.71 for

379 Experiment 3; F(1,32) = 13.36, p < 0.001, $\eta_{P}^{2} = 0.29$ for Experiments 1 and 2 combined and F(1,17) =

380 24.53, p < 0.001, $\eta_{P}^{2} = 0.59$ for Experiment 3). Participants also reported a forward-drift in self-

381 location in the synchronous condition (mean = 1.12, SD = 1.56) compared to the asynchronous

382 condition (mean = 0.97, SD = 1.61) for Experiments 1 and 2 (F(1,32) = 7.49, p = 0.01, $\eta_{P}^{2} = 0.19$). No

383 other questions were found significantly different between conditions.

384 Discussion

385 In three independent experiments, we examined the influence of sensorimotor conflicts on two distinct 386 cognitive functions, namely metacognitive and action monitoring. While sensorimotor conflicts were 387 induced between the right hand and back (Experiments 1 and 2) or between the right hand and left 388 hand (Experiment 3), we asked participants to estimate the confidence they had regarding their 389 performance on a concurrent auditory task (i.e., metacognitive monitoring), or to estimate the delay 390 between a keypress they made spontaneously and an auditory cue (i.e., action monitoring). These two 391 measures served as a proxy to quantify metacognitive performance and intentional binding, 392 respectively.

393 *Sensorimotor processing and metacognitive monitoring*

394 Regarding metacognitive performance, mixed effects logistic regression analyses showed that when 395 receiving asynchronous sensorimotor feedback on their back, participants were less able to adjust their 396 confidence to performance, and overperformed when reporting guessing. This indicates that 397 sensorimotor conflicts may impair metacognitive monitoring. We replicated these results in a new 398 independent group of participants, and ruled out several experimental confounds. First, the possibility 399 that this decrease in metacognitive performance derived from differences at the perceptual level was 400 excluded by equating first-order performance across conditions, and by re-analysing confidence 401 judgments with a signal detection theory approach which accounts for potential differences in first-402 order performance (Maniscalco & Lau, 2012). Of note, this approach assumes that confidence 403 estimates are computed based on the same evidence as the perceptual task, while the mixed effects 404 logistic regression approach assumes that confidence can be based both on decisional and post-405 decisional cues (see Pereira et al., 2018 for recent results disentangling decisional and post-decisional 406 contributions to confidence). As metacognitive impairments were found relying on signal detection 407 theory and mixed logistic regression approaches, we cannot determine whether they have a decisional 408 or post-decisional origin. Second, it is unlikely that participants performed poorly in the asynchronous 409 condition simply due to tactile stimuli they could not predict based on their motor behaviour (i.e., 410 attentional capture). Indeed, we measured similar metacognitive performance in the baseline 411 condition, in which participants passively received tactile stimulation without having to move their 412 right arm to actuate the front robot. Therefore, we argue that this decrease in metacognitive monitoring 413 is neither inherent to deficits at the perceptual level nor due to attentional capture, but rather that it 414 stems from the full-body sensorimotor conflict. Interestingly, this specific decrease in metacognitive 415 monitoring did not occur when the same sensorimotor conflicts were applied on the participants' 416 hands rather than the back. This null result was corroborated by Bayesian analyses supporting the null 417 hypothesis. A possibility is that sensorimotor conflicts applied to the left hand were less potent as the 418 same hand was later used to respond. However, under such scenario we would expect hand

sensorimotor conflicts to have no influence on intentional binding either, which is not what we found(see below).

421 The role of sensorimotor processing for metacognitive monitoring has been a topic of resent research, 422 notably with studies showing a role of motor actions for confidence (e.g., Siedlecka, Paulewicz, & 423 Wierzchoń, 2016; Gadjos et al., 2018; Faivre et al., 2018; Pereira et al., 2018). The present study is the 424 first pointing at the specificity of trunk-related signals and bodily self-consciousness for metacognitive 425 monitoring. Trunk-related multisensory processing is known to modulate global and unitary bodily 426 representations, as described in neurological patients suffering from disorders of bodily self-427 consciousness, and in healthy volunteers experiencing sensorimotor conflicts similar to the one we 428 used (for review see Blanke et al., 2015). By contrast, sensorimotor conflicts restricted to the hand 429 typically induce local changes in bodily self-consciousness, such as illusory ownership in the rubber 430 hand illusion (Botvinick & Cohen, 1998). In light of these findings, we could speculate that 431 metacognitive monitoring is modulated by global and unitary bodily representations rather than local 432 ones, even though a more conclusive assessment would require within-subject comparisons of trunk 433 vs. hand manipulations.

434

435 Sensorimotor processing and action monitoring

436 We also estimated how sensorimotor conflicts modulated another aspect of self-monitoring, namely 437 the capacity to monitor one's actions. As an implicit measure, we used intentional binding, defined as 438 the underestimation of the delay between a voluntary action and its consequence (Haggard et al., 2002; 439 Wenke & Haggard, 2009). In two experiments, we measured that intentional binding was stronger in 440 the asynchronous vs synchronous condition, indicating that when participants were exposed to 441 asynchronous sensorimotor conflicts, they perceived actions that were not immediately followed by 442 consequences as their own. This suggests that they monitored the consequences of their actions less 443 accurately in the presence of sensorimotor conflicts known to alter the way they represent their body. 444 As opposed to what we observed for metacognitive monitoring, intentional binding was increased both 445 when sensorimotor conflicts were applied to the trunk or to the hand, suggesting that this effect was 446 not specific to full-body manipulations, but rather to the sensorimotor conflict per se, reminiscent of 447 dynamic temporal recalibrations in sensorimotor pathways (Stetson et al., 2006). The directionality of 448 this effect (i.e., more binding in asynchronous vs. synchronous condition) remains to be further 449 explored. One potential issue here is that the dependent variable (i.e., (a)synchrony between an action 450 performed with the left hand and its auditory consequence) was closely related to the manipulation 451 (i.e., (a)synchrony between an action performed with the right hand and its tactile consequence). 452 Therefore, one possibility is that the observed differences of intentional binding may reflect 453 differences in temporal processing unspecific to action monitoring. Future experiments altering the

bodily self with other means than asynchronous multisensory conflicts will allow disentangling thesetwo aspects.

456 Sensorimotor processing and bodily self-consciousness

457 The type of sensorimotor conflicts we used are known to induce alterations of bodily selfconsciousness, defined as a set of prereflective representations of integrated bodily signals giving rise 458 459 to self-identification (the conscious experience of identifying with the body) and self-location (the 460 experience of where "I" am in space) (for reviews see Blanke & Metzinger, 2009; Blanke, Slater & 461 Serino, 2015; Ehrsson 2012). Namely, asynchrony between an action and its sensory consequences on 462 the back were found to modulate self-location and to induce the feeling of a presence (Blanke et al., 463 2014). Therefore, our experimental settings allowed investigating the interplay between bodily self-464 consciousness and cognitive functions by measuring the quality of metacognitive monitoring while 465 bodily representation was being manipulated through the application of sensorimotor conflicts. Our 466 results suggest that the monitoring of one's thoughts and actions may rely on integrated bodily signals 467 underlying bodily self-consciousness, even though there was no correlation between questionnaire 468 ratings assessing modulations of bodily self-consciousness and the decrease in metacognitive 469 performance. Of note, other bodily signals that are highly relevant for bodily-self consciousness were 470 found to modulate metacognitive monitoring. Notably, it was shown that disgust cues modulating 471 bodily reactions like heart rate and pupil dilation also modulate confidence judgments, suggesting that 472 interoceptive bodily signals that are independent of the decisional process can guide metacognition 473 (Allen et al., 2016).

474 Conclusion

475 Together, our results extend the recent studies documenting the impact of the bodily self on low-level 476 vision (Faivre et al., 2017; see Faivre, Salomon & Blanke, 2015 for review), and semantic processing 477 of words (Canzoneri et al., 2016; Noel, Blanke, Serino & Salomon, 2017), by further showing that the 478 bodily self may serve as a scaffold for high-level mental capacities which enable the monitoring of 479 one's thoughts and actions. This is broadly consistent with the idea that there exist deep interactive 480 loops between the self, metacognition and perceptual awareness (Cleeremans, 2011; Timmermans, 481 Schilbach, Pasquali & Cleeremans, 2012), an hypothesis that is at the core of Cleeremans' Radical 482 Plasticity Thesis.

483

484

485 Acknowledgments

This work was supported by Swiss National Science Foundation 51AU40_125759, the Bertarelli
Foundation and a European Research Council Advanced Grant RADICAL to A.C., N.F. was an Ecole

488 Polytechnique Fédérale de Lausanne Fellow cofunded by Marie Skłodowska-Curie. R.S. was489 supported by the National Center of Competence in Research (SYNAPSY: The Synaptic Bases of

- 490 Mental Diseases), financed by Swiss National Science Foundation 51AU40_125759. A.C. is a
- 491 Research Director with the F.R.S.-FNRS (Belgium).

492 **References**

- Allen, M., Frank, D., Schwarzkopf, D. S., Fardo, F., Winston, J. S., Hauser, T. U., & Rees, G. (2016).
 Unexpected arousal modulates the influence of sensory noise on confidence. *Elife*, *5*, e18103.
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using
 lme4. *arXiv preprint arXiv:1406.5823*.
- Bernasconi, F., Grivel, J., Murray, M. M., & Spierer, L. (2010). Plastic brain mechanisms for attaining
 auditory temporal order judgment proficiency. *Neuroimage*, 50(3), 1271-1279.
- Blakemore, S. J., & Frith, C. (2003). Self-awareness and action. Current opinion in
 neurobiology, 13(2), 219-224.
- Blanke, O., & Metzinger, T. (2009). Full-body illusions and minimal phenomenal selfhood. *Trends in cognitive sciences*, 13(1), 7-13.
- Blanke, O. (2012). Multisensory brain mechanisms of bodily self-consciousness. *Nature Reviews Neuroscience*, 13(8), 556-571.
- Blanke, O., Pozeg, P., Hara, M., Heydrich, L., Serino, A., Yamamoto, A., ... & Arzy, S. (2014).
 Neurological and robot-controlled induction of an apparition. *Current Biology*, 24(22), 2681-2686.
- Blanke, O., Slater, M., & Serino, A. (2015). Behavioral, neural, and computational principles of bodily
 self-consciousness. *Neuron*, 88(1), 145-166.
- 509 Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. *Spatial vision*, *10*, 433-436.
- 510 Botvinick, M., & Cohen, J. (1998). Rubber hands 'feel' touch that eyes see. Nature, 391(6669), 756.
- 511 Canzoneri, E., Di Pellegrino, G., Herbelin, B., Blanke, O., & Serino, A. (2016). Conceptual processing
- 512 is referenced to the experienced location of the self, not to the location of the physical body.
- **513** *Cognition*, *154*, 182-192.
- 514 Cleeremans, A. (2011). The radical plasticity thesis: how the brain learns to be conscious. *Frontiers in psychology*, 2, 86.
- 516 Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. *The American Statistician*, *35*(3), 124-129.
- 518 Ehrsson, H. H. (2012). 43 The concept of body ownership and its relation to multisensory519 integration. The New Handbook of Multisensory Process.
- Faivre, N., Salomon, R., & Blanke, O. (2015). Visual consciousness and bodily self-consciousness. *Current opinion in neurology*, 28(1), 23-28.
- 522 Faivre, N., Doenz, J., Scandola, M., Dhanis, H., Ruiz, J. B., Bernasconi, F., ... & Blanke, O. (2017).
- 523 Self-Grounded Vision: Hand Ownership Modulates Visual Location through Cortical β and γ 524 Oscillations. *Journal of Neuroscience*, *37*(1), 11-22.
- Faivre, N., Filevich, E., Solovey, G., Kühn, S., & Blanke, O. (2018). Behavioral, modeling, and
 electrophysiological evidence for supramodality in human metacognition. Journal of
 Neuroscience, 38(2), 263-277.
- 528 Filevich, E., Koβ, C., and Faivre, N. (2019). Response-related signals increase confidence but not
 529 metacognitive performance. bioRxiv; https://doi.org/10.1101/735712.
- 530 Fleming, S. M., Maniscalco, B., Ko, Y., Amendi, N., Ro, T., & Lau, H. (2015). Action-specific
- 531 disruption of perceptual confidence. *Psychological science*, *26*(1), 89-98.

- Fox, J. (2003). Effect displays in R for generalised linear models. *Journal of statistical software*, 8(15), 1-27.
- 534 Gajdos, T., Fleming, S., Garcia, M. S., Weindel, G. & Davranche, K. Revealing subthreshold
- 535Motorcontributionstoperceptualconfidence.Preprintat536https://www.biorxiv.org/content/early/2018/05/25/330605 (2018)
- 537 Gallagher, S. (2000). Philosophical conceptions of the self: implications for cognitive science. *Trends*538 *in cognitive sciences*, 4(1), 14-21.
- Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. *Nature neuroscience*, 5(4), 382-385.
- 541 Haggard, P. (2017). Sense of agency in the human brain. *Nature Reviews Neuroscience*, 18(4), 196.
- 542 Hara, M., Rognini, G., Evans, N., Blanke, O., Yamamoto, A., Bleuler, H., & Higuchi, T. (2011,
- 543 September). A novel approach to the manipulation of body-parts ownership using a bilateral master-
- slave system. In *Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on*(pp. 4664-4669). IEEE.
- Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What's new in
 Psychtoolbox-3. *Perception*, 36(14), 1.
- 548 Koriat, A. (2006). *Metacognition and consciousness*. Institute of Information Processing and Decision
 549 Making, University of Haifa.
- 550 Kornbrot, D. E. (2006). Signal detection theory, the approach of choice: Model-based and distribution-551 free measures and evaluation. *Perception & Psychophysics*, *68*(3), 393-414.
- 552 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2015). Package 'lmerTest'. *R package* 553 *version*, 2.
- Levitt, H. C. C. H. (1971). Transformed up-down methods in psychoacoustics. *The Journal of the Acoustical society of America*, 49(2B), 467-477.
- Maniscalco, B., & Lau, H. (2012). A signal detection theoretic approach for estimating metacognitive
 sensitivity from confidence ratings. *Consciousness and cognition*, 21(1), 422-430.
- Maniscalco, B., & Lau, H. (2014). Signal detection theory analysis of type 1 and type 2 data: meta-d',
 response-specific meta-d', and the unequal variance SDT model. In *The cognitive neuroscience of metacognition* (pp. 25-66). Springer, Berlin, Heidelberg.
- Moore, J. W., & Obhi, S. S. (2012). Intentional binding and the sense of agency: a review.
 Consciousness and cognition, 21(1), 546-561.
- 563 Morey, R. D., Rouder, J. N., Jamil, T., & Morey, M. R. D. (2015). Package 'BayesFactor'.
- Noel, J. P., Blanke, O., Serino, A., & Salomon, R. (2017). Interplay between narrative and bodily self
 in access to consciousness: No difference between self-and non-self attributes. *Frontiers in psychology*, *8*, *72*.
- 567 Orne, M. T. (1962). On the social psychology of the psychological experiment: With particular reference to demand characteristics and their implications. *American psychologist*, *17*(11), 776.
- Pereira, M., Faivre, N., Iturrate, I., et al. Disentangling the origins of confidence in speeded perceptual
 judgments through multimodal imaging. *BioRxiv*, 2018, https://doi.org/10.1101/496877.
- 571 Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into
 572 movies. *Spatial vision*, 10(4), 437-442.

- 573 Pleskac, T. J., & Busemeyer, J. R. (2010). Two-stage dynamic signal detection: a theory of choice,
 574 decision time, and confidence. Psychological review, 117(3), 864.
- 575 Pouget, A., Drugowitsch, J., & Kepecs, A. (2016). Confidence and certainty: distinct probabilistic
 576 quantities for different goals. *Nature neuroscience*, *19*(3), 366-374.
- Rausch, M., Müller, H. J., & Zehetleitner, M. (2015). Metacognitive sensitivity of subjective reports
 of decisional confidence and visual experience. *Consciousness and cognition*, *35*, 192-205.
- 579 Rochat, P. (2003). Five levels of self-awareness as they unfold early in life. *Consciousness and cognition*, 12(4), 717-731.
- 581 Siedlecka, M., Paulewicz, B. & Wierzchoń, M. But I was so sure! Metacognitive judgments are less
 582 accurate given prospectively than retrospectively. Front. Psychol. 7:1–8 (2016).
- Singmann, H., Bolker, B., Westfall, J., Højsgaard, S., Fox, J., & Lawrence, M. (2015). afex: Analysis
 of factorial experiment. *R package version 0.13–145*.
- 585 Stetson, C., Cui, X., Montague, P. R., & Eagleman, D. M. (2006). Motor-sensory recalibration leads to
 586 an illusory reversal of action and sensation. Neuron, 51(5), 651-659.
- Timmermans, B., Schilbach, L., Pasquali, A., & Cleeremans, A. (2012). Higher order thoughts in
 action: consciousness as a unconscious re-description process. *Philosophical Transcations of the Royal Society B*, 367, 1412-1423.
- Wenke, D., & Haggard, P. (2009). How voluntary actions modulate time perception. *Experimental brain research*, 196(3), 311-318.
- 592 Wickham, H. (2009). ggplot2: elegant graphics for data analysis. *Springer New York*, 1(2), 3.
- Yeung, N., & Summerfield, C. (2012). Metacognition in human decision-making: confidence and
 error monitoring. *Phil. Trans. R. Soc. B*, *367*(1594), 1310-1321.