Sylvain Conchon

David Declerck

Fatiha Zaïdi

Cubicle-W: Parameterized Model Checking on Weak Memory

Keywords: Parameterized Model Checking, MCMT, SMT, Weak Memory

We present Cubicle-W, a new version of the Cubicle model checker to verify parameterized systems under weak memory models. Its main originality is to implement a backward reachability algorithm modulo weak memory reasoning using SMT. Our experiments show that Cubicle-W is expressive and efficient enough to automatically prove safety of concurrent algorithms, for an arbitrary number of processes, ranging from mutual exclusion to synchronization barriers.

Introduction

Concurrent algorithms are usually designed under the sequential consistency (SC) memory model [START_REF] Lamport | How to make a multiprocessor computer that correctly executes multiprocess programs[END_REF] which enforces a global-time linear ordering of (read or write) accesses to shared memories. However, modern multiprocessor architectures do not follow this SC semantics. Instead, they implement several optimizations which lead to relaxed consistency models on shared memory where read and write operations may be reordered. For instance, in x86-TSO [START_REF] Owens | A better x86 memory model: X86-TSO[END_REF][START_REF] Sewell | X86-TSO: A rigorous and usable programmer's model for x86 multiprocessors[END_REF] writes can be delayed after reads due to a store buffering mechanism. Other relaxed models (PowerPC [START_REF] Alglave | The semantics of power and arm multiprocessor machine code[END_REF], ARM) allow even more types of reorderings.

The new behaviors induced by these models may make out-of-the-shelf algorithms incorrect for subtle reasons mixing interleaving and reordering of events. In this context, finding bugs or proving the correctness of concurrent algorithms is very challenging. The challenge is even more difficult if we consider that most algorithms are parameterized, that is designed to be run on architectures containing an arbitrary (large) number of processors.

One of the most efficient technique for verifying concurrent systems is model checking. While this technique has been used to verify parameterized algorithms [START_REF] Clarke | Reasoning about networks with many identical finite-state processes[END_REF][START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF][START_REF] Abdulla | Regular model checking without transducers[END_REF][START_REF] German | Reasoning about systems with many processes[END_REF][START_REF] Apt | Limits for automatic verification of finite-state concurrent systems[END_REF][START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF] and systems under some relaxed memory assumptions [START_REF] Alglave | Software verification for weak memory via program transformation[END_REF][START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF][START_REF] Bouajjani | Lazy tso reachability[END_REF][START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF][START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF], hardly any state-of-the-art model checker support both parameterized verification and weak memory models [START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF].

In this paper, we present Cubicle-W [1], the new version of the Cubicle [START_REF] Conchon | Cubicle: A parallel smtbased model checker for parameterized systems: Tool paper[END_REF][START_REF] Conchon | Invariants for Finite Instances and Beyond[END_REF][START_REF] Conchon | Certificates for parameterized model checking[END_REF] model checker for verifying safety properties of parameterized array-based transition systems on weak memory. Cubicle-W is a conservative extension which allows the user to manipulate both SC and weak variables. Its relaxed consistency model is similar to x86-TSO : each process has a FIFO buffer of pending store operations whose side effect is to delay the outcome of its memory writes to all processes.

Like Cubicle, Cubicle-W is based on the MCMT framework of Ghilardi and Ranise [START_REF] Ghilardi | MCMT: A model checker modulo theories[END_REF]. Its core extends the SMT-based backward reachability procedure with a new pre-image computation which takes into account the delays between write and read operations. In order to consider only coherent read/write pairs, Cubicle-W relies on a buffer-free memory model inspired by the logical framework of [START_REF] Alglave | Herding cats: Modelling, simulation, testing, and data mining for weak memory[END_REF] which is implemented as a new theory in its SMT solver. Cubicle-W is an open-source software freely available at http://cubicle.lri.fr/cubiclew.

Tool Presentation

The syntax of Cubicle-W extends Cubicle's with new constructs for manipulating weak memories. The reader can refer to [START_REF] Conchon | Cubicle: A parallel smtbased model checker for parameterized systems: Tool paper[END_REF] for the description of Cubicle's input language.

Variable and array declarations can now be prefixed by the keyword weak for defining weak memories.

weak var X : int weak array A[proc] : bool

Transitions in Cubicle-W have the same syntactic guard/action form as in Cubicle and they are also supposed to be executed atomically. The new feature is that they must now have at least one parameter which represents the process that performs the operations. This parameter is identified using the [.] notation. For instance, in the following example, the parameter [i] of transition t1 represents the process performing all read/write operations on X, A[i] and A[j] when t1 is triggered.

transition t1 ([i] j) requires { X = 42 && A[i] = False } { A[j] := False }
Even if there is no use of parameter [i] in transitions' guards and actions, this parameter is still mandatory, as in the transition t2 below, to indicate which process performs the operations. transition t2 ([i]) { X := 42 } Note that, as Cubicle-W's transitions are atomic, having several processes performing reads or writes operations in the same transition would require an unrealistic powerful synchronization mechanism between processes.

The main aspect of our relaxed memory semantics is that, from a global viewpoint, the effect of a write operation on a weak memory is not immediately visible to all processes. It is only locally visible to the process that performs it. For instance, if some process i executes the transition t2 above, then X = 42 is true for i after the transition (as the effect of the assignment is immediately locally visible), while all other processes can still read a different value for X.

To enforce the global visibility of a write operation, one has to use a memory barrier. In Cubicle-W, barriers are provided as a new built-in predicate fence(). When used in the guard of a transition, fence is true only when the FIFO buffer of the parameter [i] of the transition is empty. For instance, if a process executes t2 then the following transition t3:

transition t3 ([i]) requires { fence() }{ ... }
the fence predicate in t3's guard ensures that the effect of all previous assignments done by i are visible to all processes after t3. Note that fence is not an action: it does not force buffers to be flushed on memory, but just waits for a buffer to be empty. As a consequence, it can only be used in a guard.

Implicit memory barriers are also activated when a transition contains both a read and a write to weak variables (not necessarily the same). For instance, the execution of the following transition t4 guarantees that the buffer of process i is empty before and after t4.

transition t4 ([i]) requires { A[i] = False } { X := 1 }
Because there is no unique view of the contents of weak variables, one can not talk about the value of X, but rather the value of X from the point of view of a process i, denoted i@X in Cubicle-W. This notation is used when describing unsafe states. For instance, in the following formula, a state is defined as unsafe when there exist two (distinct) processes i and j reading respectively 42 and 0 in the weak variable X: unsafe (i j) { i@X = 42 && j@X = 0 } This notation is not used for describing initial states as Cubicle-W implicitly assumes that all processes have the same view of each weak variable in those states. For instance, the following formula defines initial states where, for all processes, X equals 0 and all cells of array A contain False.

init (i) { X = 0 && A[i] = False }
Finally, it is important to note that non weak arrays are restricted to be used only locally by processes: given a non weak array T, only i can read or write to

T[i].
The core of Cubicle-W is an extension of Cubicle's symbolic backward reachability algorithm [START_REF] Conchon | Cubicle: A parallel smtbased model checker for parameterized systems: Tool paper[END_REF][START_REF] Conchon | Invariants for Finite Instances and Beyond[END_REF]. We first briefly recall how the original Cubicle works, then we give details about our new algorithm.

States in Cubicle are represented by cubes, i.e., formulas of the form ∃ ī.(∆ ∧ F), where ī is a set of process variables, ∆ is the conjunction of all disequations between the variables in ī and F is a conjunction of literals. Each literal in F is a comparison (=, =, <, ≤) between two terms. A term can be a constant (integer, boolean, real, constructor), a process variable (i), a variable (X) or an array access (A[i], where i is a process variable). All process variables in a state are implicitly existentially quantified. Initial states are represented by a universally quantified formula I of the form ∀ ī.(∆ ∧ F), where ∆ and F are as described above.

The core of Cubicle is a symbolic backward reachability loop that maintains two collections of states: Q contains the states to visit (it is initialized with the states declared as unsafe), and V is filled with the visited states (initially empty). Each iteration of the loop performs the following operations:

1. (pop) retrieve and remove a formula ϕ from Q 2. (safety test) check the satisfiability of ϕ ∧ I, i.e. determine if the states described by ϕ intersect with the initial states I. If so, the system is declared as unsafe 3. (fixpoint test) check if ϕ |= V is valid, i.e. determine if the states described by ϕ have already been visited. If so, discard ϕ and go back to 1 4. (pre-image computation) compute the pre-image pre(ϕ, t) of ϕ for all instances of transitions t, i.e. determine the set of states that can reach ϕ in one step by applying t with the processes identifiers #1, . . . , #n as parameters, add these states to Q and add ϕ to V.

If Q is empty at step 1, then all the states space has been explored and the system is declared safe. Note that the (non-trivial) fixpoint and safety tests are discharged to an embedded SMT solver. Cubicle-W uses the same procedure but some operations have been extended to reason modulo an axiomatic description of our weak memory model. This axiomatization uses the notion of events to describe weak memory accesses and a global-happens-before (ghb) relation defined as a partial order relation over these events. This relation is used to determine if an execution is valid.

Our logic is extended with new literals to represent read and write operations on weak memories. We assume given a (countable) set of events E. A literal of the form e:Rd X (i) denotes a read access on variable X by a process i labeled with an event identifier e ∈ E. Similarly, literals of the form e:Wr X (i) represent write accesses. The value returned by a read (resp. assigned by a write) is given by the term val(e), where e is the event identifier associated to the operation. Operations on weak arrays are represented by literals of the form e:Rd A (i, j) and e:Wr A (i, j), which represent an access by a process i to the cell j of an array A. Last, there is also literals of the form e:fence(i) which indicate that a process i has a memory barrier on the event e, where e is an event identifier associated to a read by the same process.

The reachability loop of Cubicle-W implements a new pre-image computation. At step 4, pre(ϕ, t) is modified so that read and write operations from t give rise to Rd and Wr literals labeled with fresh event identifiers. These new events are ordered w.r.t the older ones in the ghb relation expressed by predicates of the form ghb(e 1 , e 2), indicating that event e 1 is ghb-before (i.e., occurs before) event e 2 . The ghb-ordering of events is built w.r.t. the following rules:

• New read events are ghb-before old read and write events from the same process.

• New write events are ghb-before old write events from the same process, however they are ghb-before old reads events from the same process only if there is a fence on these reads.

• New write events are ghb-before all the old write events to the same variable.

• New read events are ghb-before all the old write events to the same variable.

Finally, when a memory fence is encountered, a literal e:fence(i) is added on all old reads events e which belong to the process i executing the transition.

The treatment of write events is also specific when we have to consider the delays introduced by store buffers: when a new write event e is produced, all possible combinations of e with older compatible reads are considered (unlike in SC), as a write operation may or may not satisfy subsequent reads. By compatible read, we mean a read on the same variable or array cell as the write, though we may also consider the constant values associated to these events in order to obtain a more accurate set of compatible reads. The connection between a write and an older read obeys the following rules:

• When the write event satisfies an old read event from a different process, the write is ghb-before the read.

• When the write event does not satisfy an old read event from a different process, the read is ghb-before the write.

• When the write and the read events belong to the same process, none of them is considered ghb-before the other (unless there is a fence on the read event).

In order to show how our reachability procedure works, we consider the simple parameterized mutual exclusion algorithm and the exploration graph given below. Cubicle-W starts with the unsafe formula in node 1. Then, each node represents the result of a pre-image computation by an instance of a transition (denoted by the label of the edge). Remark that formulas in the graph's nodes are implicitly existentially quantified and that a process identifier i is written # i . We focus on node 3 which results from the pre-image of node 1 by t_enter(#2) then t_enter(#1). In this state, both processes have read False in X (events e 1 and e 2). Also, since there is a memory barrier in t_enter, both reads are associated to a fence literal. The pre-image of node 3 by t_req(#2) introduces a new write event e3:WrX(#2,#2) with an associated value val(e3) = True. Since there is a memory barrier e1:fence(#2) on e1 by the same process #2, we add ghb(e3,e1) in the formula. Now, this new write event may or may not satisfy the read e2, so we must consider both cases (node 4 and 5).

In node 4, event e3 satisfies e2. The equality val(e2) = val(e3) is then added to the formula which obviously makes it inconsistent. In node 5, the write e3 does not satisfy the read e2, then the value val(e3) is discarded and ghb(e2,e3) is added to the formula. Similarly, the pre-image of node 5 by t_req(#1) yields the formula in state 6 where the new write e4 does not satisfy the read e1. Now, the ghb relation is not a valid partial order as the sequence ghb(e2, e3), ghb(e3, e1), ghb(e1, e4), ghb(e4, e2) forms a cyclic relation. Therefore, this state is discarded and the program is declared safe.

Remark that if we removed the fence predicate in t_enter, then we would only have ghb(e3, e1), ghb(e4, e2) in state 6, which is a valid partial order relation, so the formula would intersect with the initial state and the program would be unsafe.

We have evaluated Cubicle-W on some classical parameterized concurrent algorithms (available on the tool's webpage). Most of these algorithms are abstraction of real world protocols, expressed with up to eight transitions and up to four weak variables or two unbounded weak arrays. The spinlock example is a manual translation of an actual x86 implementation of a spinlock from the Linux 2.6 kernel. We compared Cubicle-W's performances with state-of-the-art model checkers supporting the TSO weak memory model, since our model is similar. The model checkers we used are CBMC [START_REF] Alglave | Software verification for weak memory via program transformation[END_REF], Trencher [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF][START_REF] Bouajjani | Lazy tso reachability[END_REF], MEMORAX [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] and Dual-TSO [START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF]. As most of these tools do not support parameterized systems, we used them on fixed-size instances of our benchmarks and increased the number of processes until we obtained a timeout (or until we reached a high number of processes, i.e. 11 in our case). Dual-TSO supports a restricted form of parameterized systems, but does not allow process-indexed arrays, which are often needed to express parameterized programs. When it was possible, we used it on both parameterized and non parameterized versions of our benchmarks.

Cubicle Memorax Memorax Trencher CBMC CBMC Dual W SB PB Unwind 2 Unwind 3 TSO naive US 0.04s [N] - - - - - NT [N] mutex TO [6]
TO [START_REF] Bouajjani | Lazy tso reachability[END_REF] TO [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] 23.6s [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF] 5m37s [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF] TO [START_REF] Alglave | The semantics of power and arm multiprocessor machine code[END_REF] 7m54s [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] 12m02s [START_REF] Apt | Limits for automatic verification of finite-state concurrent systems[END_REF] 10.1s [START_REF] Abdulla | Regular model checking without transducers[END_REF] 14.7s [START_REF] Bouajjani | Lazy tso reachability[END_REF] 3m39s [START_REF] Bouajjani | Lazy tso reachability[END_REF] 1m12s

[5] naive S 0.30s [N] - - - - - NT [N] mutex TO [5]
TO [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF] TO [START_REF] Alglave | The semantics of power and arm multiprocessor machine code[END_REF] TO [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] TO [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] TO [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] 23.3s [START_REF] Abdulla | Regular model checking without transducers[END_REF] 2m28s [START_REF] Bouajjani | Lazy tso reachability[END_REF] 54.8s [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] 2m24s [START_REF] Abdulla | Regular model checking without transducers[END_REF] 19.4s [START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF] 35.7s [START_REF] Abdulla | Regular model checking without transducers[END_REF]

lamport US 0.10s [N] - - - - - NT [N] TO [4]
TO [START_REF] Abdulla | Regular model checking without transducers[END_REF] KO [START_REF] Abdulla | Regular model checking without transducers[END_REF] 7m42s [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF] TO [START_REF] Alglave | Software verification for weak memory via program transformation[END_REF] TO [6] 17.4s [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] 25.4s [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] 1.73s [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] 4m29s [START_REF] Bouajjani | Lazy tso reachability[END_REF] 5m12s [START_REF] Alglave | The semantics of power and arm multiprocessor machine code[END_REF] 13m12s

[5] lamport S 0.60s [N] - - - - - NT [N] TO [3]
TO [START_REF] Abdulla | Regular model checking without transducers[END_REF] KO [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] TO [START_REF] Abdulla | Regular model checking without transducers[END_REF] TO [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] TO [4] 0.14s [START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF] 3m02s [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] 3.37s [START_REF] Abdulla | Regular model checking without transducers[END_REF] 8m39s [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] 1m55s

[2] 9.42s [3] spinlock S 0.07s [N] - - - - - TO [N] [22]
TO [START_REF] Abdulla | Parameterized verification of infinite-state processes with global conditions[END_REF] TO [START_REF] Alglave | Software verification for weak memory via program transformation[END_REF] TO [START_REF] Alglave | Software verification for weak memory via program transformation[END_REF] TO [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] TO [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] TO [START_REF] Alglave | The semantics of power and arm multiprocessor machine code[END_REF] 8m51s [START_REF] Abdulla | Regular model checking without transducers[END_REF] TO [START_REF] Abdulla | Regular model checking without transducers[END_REF] TO [START_REF] Abdulla | Regular model checking without transducers[END_REF] TO [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF] TO [START_REF] Bouajjani | Checking and enforcing robustness against tso[END_REF] TO [3] commit 39.7s [3] 7.08s A [START_REF] Abdulla | Memorax, a precise and sound tool for automatic fence insertion under TSO[END_REF] 12m39s [START_REF] Bouajjani | Lazy tso reachability[END_REF] 13m41s [START_REF] Bouajjani | Lazy tso reachability[END_REF] 12.3s [START_REF] Abdulla | The benefits of duality in verifying concurrent programs under TSO[END_REF] The table above gives the running time for each benchmark, with the number of processes between square brackets, where N indicates the parametric case. The second column indicates whether the program is expected to be unsafe (US) or safe (S). Unsafe programs have a second version that was fixed by adding fence predicates. A indicates that a tool gave a wrong answer. KO means that a tool crashed. NT indicates a benchmark that was not translatable to Dual-TSO.

The tests were run on a MacBook Pro with an Intel Core i7 CPU @ 2,9 Ghz and 8GB of RAM, under OSX 10.11.6. The timeout (TO) was set to 15 minutes. These results show that in spite of the relatively small size of each benchmark, state-of-the-art model checkers suffer from scalability issues, which justifies the use of parameterized techniques. Cubicle-W is thus a very promising approach to the verification of concurrent programs that are both parameterized and operating under weak memory. We have yet to tackle larger programs, which can be achieved by adapting Cubicle's invariant generation mechanism to our weak memory model.

 type loc = Idle | Want | Crit weak array X[proc] : bool array PC[proc] : loc init (i) {PC[i] = Idle && X[i] = False} unsafe (i j) {PC[i] = Crit && PC[j] = Crit} transition t_req ([i]) requires { PC[i] = Idle } { X[i] := True ; PC[i] := Want } transition t_enter ([i]) requires { PC[i] = Want && fence() && forall_other k. X[k] = False } { PC[i] := Crit } transition t_exit ([i]) requires { PC[i] = Crit } { X[i] := False ; PC[i] := Idle } PC[#1] = Crit, PC[#2] = Crit PC[#1] = Want, PC[#2] = Idle, e1:RdX(#2,#1), val(e1) = False, e2:RdX(#1,#2), val(e2) = False, e3:WrX(#2,#2), . e1:fence(#2), e2:fence(#1) ghb(e3,e1), ghb(e2,e3) PC[#1] = Idle, PC[#2] = Idle e1:RdX(#2,#1), val(e1) = False, e2:RdX(#1,#2), val(e2) = False, e3:WrX(#2,#2), . e4:WrX(#1,#1), . e1:fence(#2), e2:fence(#1) ghb(e3,e1), ghb(e2,e3) ghb(e4,e2), ghb(e1,e4) PC[#1] = Want, PC[#2] = Idle, e1:RdX(#2,#1), val(e1) = False, e2:RdX(#1,#2), val(e2) = False, e3:WrX(#2,#2), val(e3) = True, e1:fence(#2), e2:fence(#1), ghb(e3,e1), ghb(e3,e2), val(e2) = val(e3) PC[#1] = Want, PC[#2] = Want, e1:RdX(#2,#1), val(e1) = False, e2:RdX(#1,#2), val(e2) = False, e1:fence(#2), e2:fence(#1) PC[#1] = Crit, PC[#2]

Work supported by the French ANR project PARDI (ANR-16-CE25-0006)