
HAL Id: hal-02420588
https://hal.science/hal-02420588

Submitted on 20 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning about Universal Cubes in MCMT
Sylvain Conchon, Mattias Roux

To cite this version:
Sylvain Conchon, Mattias Roux. Reasoning about Universal Cubes in MCMT. ICFEM 2019 - 21st
International Conference on Formal Engineering Methods, Nov 2019, Shenzhen, China. pp.270–285.
�hal-02420588�

https://hal.science/hal-02420588
https://hal.archives-ouvertes.fr

Reasoning about Universal Cubes in MCMT

Sylvain Conchon and Mattias Roux

LRI, Université Paris Sud, CNRS, Orsay F-91405

Abstract. The Model Checking Modulo Theories (MCMT) framework
is a powerful model checking technique for verifying safety properties of
parameterized transition systems. In MCMT, logical formulas are used
to represent both transitions and sets of states and safety properties are
verified by an SMT-based backward reachability analysis. To be fully au-
tomated, the class of formulas handled in MCMT is restricted to cubes,
i.e. existentially quantified conjunction of literals. While being very ex-
pressive, cubes cannot define properties with a global termination con-
dition, usually described by a universally quantified formula.
In this paper we describe BRWP, an extension of the backward reach-
ability of MCMT for reasoning about validity properties expressed as
universal cubes, that is formulas of the form ∃i∀j.C(i, j), where C(i, j)
is a conjunction of literals. Our approach consists in a tight cooperation
between the backward reachability loop and a deductive verification en-
gine based on weakest-precondition calculus (WP). To provide evidence
for the applicability of our new algorithm, we show how to make Cubicle,
a model checker based on MCMT, cooperates with the Why3 platform
for deductive program verification.

1 Introduction

In this paper, we consider the problem of verifying safety properties of param-
eterized systems. The systems we are interested in are called array-based tran-
sition systems. This is a syntactically restricted class of parameterized systems,
introduced by Ghilardhi and Ranise [?] where states are represented as arrays
indexed by an arbitrary number of processes. Distributed systems with consen-
sus or commitment protocols are typical examples modeling with array-based
systems.

The verification of array-based systems as proposed in [?] led to a power-
ful model checking technique called Model Checking Modulo Theories (MCMT).
This is a symbolic SMT-based model checking technique where logical formulas
(expressed in a fragment of first-order logic) are used to represent both transi-
tions and sets of states, and safety properties are verified by backward reach-
ability analysis. A safety property to be verified in MCMT is expressed in its
negated form as a formula that represents unsafe states. Each unsafe formula
must be a cube, i.e., have the form ∃i.C(i), where C(i) is a conjunction of literals.

While the expressiveness of cubes is sufficient to encode a large class of safety
invariants, it is usually too weak for describing safety properties with a global

termination condition. For instance, in a consensus algorithm, one would like
to check that, at the end of the consensus, there is no process deciding a value
distinct from the value chosen by the others. Unfortunately, the “at the end of the
consensus” part of the sentence must take the form of a universally quantified
formula defining the condition for the processes to terminate. To cope with such
properties, MCMT must be extended to reason about universal cubes, that is
formulas of the form ∃i∀j.C(i, j), where C(i, j) is a conjunction of literals.

To handle such formulas, one can try to encode universal cubes as transi-
tions with universal guards, i.e., guards containing universally quantified global
conditions that check the state variables of all processes. However, since uni-
versal quantifiers in guards prevents the backward reachability algorithm to be
fully automated, solutions based on over approximations techniques have been
proposed [?,?,?]. One of the best solution is proposed in [?] as a syntactic trans-
formation which can be seen as the implementation of a crash-failure model
where an unbounded number of processes can die at any time. Unfortunately,
while very efficient, this over approximation technique results in false positives
for non fault-tolerant systems which are very common in distributed systems.

Another way to handle universal cubes would consist to give up model check-
ing techniques and instead to use a more expressive and powerful Hoare-style
reasoning. For instance, translating Cubicle systems to the input language of
the TLA+ system [?] is straightforward and would allow the user to use a proof
system like TLAPS [?]. Similarly, one can translate Cubicle’s input language
to DVF [?], a deductive verification framework dedicated to transition systems
which uses SMT solvers to prove the generated verification conditions. However,
while those frameworks offer automatic backends to discharge proof obligations,
an important and very painful part of the proof effort consists in finding man-
ually the auxiliary invariants of the system which are mandatory for the safety
property to be proved.

In this paper, we propose to bridge the gap between model checking and
deductive verification. Our technique consists in a tight cooperation between the
backward reachability loop of MCMT and a deductive verification engine based
on weakest-precondition calculus. To provide evidence for the applicability of
our technique, we show how to make Cubicle, a model checker based on MCMT,
cooperate with the Why3 platform for deductive program verification [?]. Our
contributions are as follows:

• A new algorithm, called BRWP, that extends the backward reachability al-
gorithm to handle universal cubes (Section 4).
• A translation schema from Cubicle to Why3 (Section 5).

In Section 2, we illustrate the problem of handling universal cubes in MCMT
on a simplified version of a splitter, a basic building block of renaming algorithms
in shared memory. We give an overview of our approach in Section 3.

2 The Problem of Universal Quantifiers in MCMT

Throughout this paper, we use a simplified version of a splitter algorithm to
illustrate the problems and solutions we are presenting.

Splitters have been first introduced by Lamport [?] to implement fast mutual-
exclusion algorithms, then used by Moir and Anderson to solve the renaming
problem in shared memory [?]. A splitter can be depicted graphically by the
schema in Figure 1. It is a concurrent object used to distinguish an arbitrary
number (n) of callers. Each process that calls the splitter gets a decision value
among stop, down and right. The decision values respect the following rules:

• There are only three possible decisions : Stop, Right and Down
• At most one process ends in Stop
• At most n− 1 processes end in Down
• At most n− 1 processes end in Right

Stop
≤ 1 process

Right
≤ n− 1 processes

Down
≤ n− 1 processes

n processes

Fig. 1. Splitter

The splitter algorithm for each process p is represented in Figure 2 as an
automaton with seven states (PC0 to PC3, Stop, Down and Right) and two boolean
variables X and Y. The initial state is PC0 where Y is supposed to be initialised to
false and X can contain any value. The first transition should be read as follows:
a process p in state PC0 can go to PC1 and assign X to p. Similarly, if Y is false
then a process p can go from PC1 to PC2 else it can go to state Right. A transition
from PC2 to PC3 assigns Y to true (>). Finally, the process p can go from PC3 to
Stop if X = p, otherwise it can go to Down.

Modeling this (simplified) splitter algorithm is immediate using array-based
transition systems. We assume given an enumeration type state with seven
constructors (PC0, . . ., PC3, Stop, Down and Right), two variables X and Y and
an array PC such that, for each process p, PC[p] contains a value of type state.
Initially, each process is in state PC0 and Y = ⊥, which is described by the
following universal formula Init:

Init : ∀p.PC[p] = PC0 ∧ Y = ⊥

PC0

PC1
X := p

RightPC2

PC3
Y := >

Stop

Down

Y¬Y

X = p

X 6= p

Fig. 2. Automaton for a process p representing the splitter with updates to shared
variables attached to the nodes and conditions labeled to edges

The six transitions of the automaton are described by the six formulas splxxx
given in Figure 3. Each formula relates the values of state variables before and
after the transition. We denote by X′ the value of the variable X after the execu-
tion of the transition. For instance, transition spl0 should read as: if there exists
a process p such that PC[p] contains PC0, then update PC[p] to PC1 and variable
X to p.

According to the conditions previously stated, proving the safety of the split-
ter amounts to checking that states satisfying one of the following three formulas
are not reachable:

ϕ1 : ∃ij. i 6= j ∧ PC[i] = Stop ∧ PC[j] = Stop
ϕ2 : ∀i.PC[i] = Down
ϕ3 : ∀i.PC[i] = Right

The reachability analysis in MCMT is performed by running a symbolic
backward algorithm. Starting from a formula describing the system’s unsafe
condition, its pre-images are iteratively computed for all transitions. Pre-images
that are subsumed by already visited nodes are not expanded anymore. This
process ends either when a formula in a node intersects the initial formula Init
or when there is no more pre-image to compute.

An important result about array-based systems is that pre-images of cubes
(existentially quantified conjunction of literals) are computable and can be rep-
resented as union (disjunction) of cubes [?]. Thus, starting from a cube, the
backward reachability analysis produces only cubes and is therefore automat-

spl0 : ∃p. PC[p] = PC0 ∧
PC’[p] = PC1 ∧ X’ = p

splright : ∃p.
PC[p] = PC1 ∧ Y ∧
PC’[p] = Right

spl1 : ∃p. PC[p] = PC1 ∧ ¬Y ∧
PC’[p] = PC2

spl2 : ∃p. PC[p] = PC2 ∧
PC’[p] = PC3 ∧ Y’ = >

splstop : ∃p. PC[p] = PC3 ∧ X = p ∧
PC’[p] = Stop

spldown : ∃p. PC[p] = PC3 ∧ X 6= p ∧
PC’[p] = Down

Fig. 3. Splitter transition system

able. For instance, the pre-image of the cube ϕ1 by splstop is the following for-
mula ϕ′1 which describes the states from which a state characterized by ϕ1 can
be reached by taking the transition splstop(i) (where the parameter i indicates
which process is concerned by the transition) :

ϕ′1 : ∃ij. i 6= j ∧ X = i ∧ PC[i] = PC3 ∧ PC[j] = Stop

The termination of this reachability analysis is guaranteed as long as one
can exhibit a well-quasi-ordering on the set of cubes generated during the algo-
rithm [?].

Concerning the second and third formulas ϕ2 and ϕ3, they are not cubes
as they contain universal quantifiers. The computation of their pre-images will
introduce existential quantifiers. For example, the pre-image of ϕ2 by spldown(j)
is the following ϕ′2 formula:

ϕ′2 : ∃j∀i. i 6= j =⇒ X 6= j ∧ PC[j] = PC3 ∧ PC[i] = Down

and the pre-image of ϕ′2 by the same transition will give the new formula ϕ′′2 :

ϕ′′2 : ∃jk∀i. i 6= j 6= k =⇒ X 6= j ∧ X 6= k ∧
PC[j] = PC3 ∧ PC[k] = PC3 ∧ PC[i] = Down

From ϕ′2 and ϕ′′2 , it may seem obvious that the reachability analysis of ϕ2 will
generate an infinite sequence of formulas where new existentially quantified pro-
cesses will be piled up, leading to the impossibility of reaching a fixpoint and
thus terminating.

For those reasons, the MCMT framework is restricted to the analysis of
cubes. However, as illustrated by the properties ϕ2 or ϕ3, some problems involve
formulas that are not cubes and that need to be handled.

As mention in the introduction, there exists techniques for extending MCMT
to universal quantifiers. In [?], a syntactic transformation is proposed which can
be interpreted as the implementation of a crash-failure model. The main idea is to
view a universal formula ∀i.ϕ as an infinite conjunction and to over approximate
it as a finite conjunction ∃i1, . . . , in.ϕ(i1) ∧ · · · ∧ ϕ(in), by considering that,
except for those n processes, all other processes crashed before reaching the
states described by this formula. For instance, using this technique, ϕ2 could be
seen as a cube ψ2 of the form

ψ2 : ∃i.PC[i] = Down

by considering that the number of processes that did not crash is exactly one.
Computing the pre-image of ψ2 is immediately simpler but we can see with utter
certainty that this state is not unsafe if more than one processes are involved in
subsequent transitions. From this example it is obvious that protocols that are
not fault-tolerant (like the splitter) would produce wrong results.

3 Reasoning about Universal Cubes in MCMT

In this section, we illustrate BRWP, an extended version of the backward reach-
ability of MCMT for reasoning about universal quantifiers using the splitter
given in Section 2. Our extension applies to universal cubes (u-cubes) which are
formulas of the form ∃i∀j.C(i, j), where C(i, j) is a conjunction of literals pa-
rameterized by two vectors i and j of distinct process variables. We proceed in
three steps to reason about u-cubes.

Step 1 : Reachability analysis in a finite domain. Instead of considering the
parameterized case, we first restrict the domain of processes to a finite set of
process identifiers (denoted in the rest of the paper by the symbols #1, #2, . . .).
The number chosen for the cardinality of the domain is arbitrary, but in our case
studies we fix the domain to contain only 3 or 4 processes.

Fixing the cardinality allows us to instantiate the universal part of u-cubes
and convert them to cubes. For instance, in a domain restricted to 3 distinct
processes #1, #2 and #3, the formula ϕ2 is transformed in the following cube ϕ#3

2

(with no quantifiers):

ϕ#3
2 : PC[#1] = Down ∧ PC[#2] = Down ∧ PC[#3] = Down

From these cubes, we run the (traditional) backward reachability algorithm of
MCMT, bounded by the finite cardinality of the domain of processes. Thereby,
for instance, the first pre-image of ϕ#3

2 by spldown(#1) is the following ϕ′#32 for-
mula:

ϕ′
#3
2 : PC[#1] = PC3 ∧ X 6= #1 ∧ PC[#2] = Down ∧ PC[#3] = Down

It is important to remark that ϕ′#32 has the same number of processes as ϕ#3
2 .

Indeed, the cardinality of the domain prevents us to add new (existential) quan-
tifiers.

If the reachability algorithm terminates with a pre-image that intersects the
initial formula, then we can conclude that the system is unsafe in the parameter-
ized case. Otherwise, if a fixpoint is reached (which is the case for the splitter), we
can only conclude that the property is valid for the chosen number of processes,
and we proceed to Step 2.

Step 2 : Generalising invariants. To go further and prove the properties defined
by u-cubes for the parameterized case, we try to exploit (a subset of) the pre-
images computed in Step 1 by trying to generalise those formulas for an infinite
domain. This is done by abstracting process constants by existential or universal
quantified variables.

The problem of generalising a pre-image computed in Step 1 is that it can
characterize unreachable states in a finite domain but reachable ones in an in-
finite domain (which seems normal since this kind of algorithms are not fault-
tolerant). For instance, consider the previous formula ϕ′#32 obtained by comput-
ing the pre-image of ϕ#3

2 by spldown(#1). The states described by this formula are
unsafe (and unreachable from Init) if the domain is limited to three processes,
but they becomes safe if a fourth process exists as it could be in any state of the
automaton (PC0, PC1, Right,. . .) as shown by the graph in Figure 4.

To check if a pre-image represents unreachable states in an infinite domain,
we first transform it into a cube by replacing process constants with existential
variables, then we replay the reachability algorithm of MCMT. If this cube is
shown to be unreachable, then we keep it for Step 3. Otherwise, we transform the
pre-image as a u-cube by only abstracting with existential variables the process
constants involved in a transition and using universal quantifiers for abstracting
the other constants. The u-cubes generated by this generalisation technique are
safe (but nevertheless less informative) invariants that we keep for Step 3.

For instance, the pre-image ϕ′#32 is first generalised as a cube by abstracting
the process constants #1, #2 and #3 by three existentially quantified variables p1,
p2 and p3:

ϕ′
∃
2 : ∃p1p2p3

p1 6= p2 6= p3 ∧ X 6= p1 ∧ PC[p1] = PC3 ∧
PC[p2] = Down ∧ PC[p3] = Down

Running a backward reachability from ϕ′
∃
2 shows that it describes states reach-

able from Init. Therefore, we can filter this formula out as it is actually safe
and can’t be treated as an invariant of the system.

Now, when looking closely at the pre-image ϕ′#32 , it appears that process #1
has been used by a transition when #2 and #3 remained untouched. In terms of

PC0

PC1

RightPC2

PC3
#1#4

Stop

Down
#2#3

X 6= #1(X = #4?)

X = p

X 6= p

Fig. 4. Processes #2 and #3 are in Down and process #1 is in PC3, ready to go in Down,
but a fourth process #4 could be in all other states

quantifiers, this can be semantically captured by (1) adding a fresh existential
variable p1 for representing #1 and (2) by representing processes #2 and #3 with
the same universally quantified variable p2. Therefore, ϕ′

#3
2 can be generalised

by the following u-cube

ϕ′
∃∀
2 : ∃p1.∀p2.p1 6= p2 =⇒ X 6= p1 ∧ PC[p1] = PC3 ∧ PC[p2] = Down

which represents states that are unsafe if there exists a process p1 in PC3 such
that X 6= p1 and that all other processes are in Down.

Step 3 : Deductive verification. Given a property ϕ, the result of Steps 1 and 2
is a set of (u-)cubes {I∃∀k1

, . . . , I∃∀kp
} representing invariants of the original system

computed from the finite backward reachability of ϕ.

To prove ϕ, our last step consists in proving the following conjunction ψ
using a deductive verification technique.

ψ : ϕ ∧ I∃∀k1
∧ · · · ∧ I∃∀kp

For that, we translate the array-based parameterized transition system, as well
as the formula ψ, in the input language of a deductive verification engine.

Considering the impressive number of back-ends (SMT or TPTP solvers) sup-
ported by the Why3 platform, we have chosen to translate array-based systems
to WhyML, the input language of Why3. However, the translation requires great
attention as (1) the semantic gap between array-based systems and WhyML is

important, and (2) the way transition systems are represented may have a strong
impact on the deductive engine (see Section 5).

4 Formalising BRWP

The implementation of BRWP is given in Algorithm 1. It’s an extended version
of the backward reachability procedure of MCMT for reasoning about universal
cubes.

This algorithm takes as input a formula ϕ and an integer c. It starts by
initiating two variables, V, the set of the visited nodes initially empty and Q,
the queue of pending nodes initialised with the instantiated version ϕ#c of ϕ.
The formula ϕ#c is instantiated as seen in Step 1 with a cardinality fixed to c.
BRWP iteratively computes the transitive closure of pre-images FinitePre∗(ϕ#c)
until it reaches one of the two following termination conditions :

– the safety check (line 7) fails which means that the treated node corresponds
to a possible initial state and thus that the system is unsafe

– there are no more nodes in Q which means that a fixpoint has been reached
and the system is safe (for a finite domain)

If the first termination condition has been reached, the system is not safe for
a finite number of processes and can not be safe for an infinite number of them.
However, if the second condition has been reached, the visited nodes need to
be treated to correspond to the infinite domain as seen in Step 2. When these
filtering and generalisation have been computed (see next subsections for a de-
scription of this step), the new invariants are delivered to a deductive verification
engine by calling the function Check_inductive_invariant (see Section 5).

4.1 Generalisation and Filtering

The code of the generalisation and filtering function Generalize_and_filter is
given in the Algorithm 2. It takes as input the set V#c of instantiated formulas
computed during the finite backward reachability. Its goal is to transform those
formulas in cubes by renaming the processes and binding them to existential
quantifiers. However, before doing so, a simplification step (function Simplify)
is performed since the finitness of our domain allows us to transform multiple
differences in an equality. For example, considering again the formula ϕ′#32 seen
in Section 3:

ϕ′
#3
2 : PC[#1] = PC3 ∧ X 6= #1 ∧ PC[#2] = Down ∧ PC[#3] = Down

Its pre-image by transition spldown(#2) gives the following formula:

X 6= #1 ∧ X 6= #2 ∧ PC[#2] = PC3 ∧ PC[#3] = Down

In this case, the fact that we’re facing a finite domain actually helps us. Since
there are only three processes, the literals X 6= #1 and X 6= #2 implies that X = #3.
This formula is thus transformed first as follows:

Algorithm 1: Backward reachability and deductive verification
Variables :
V: visited nodes
Q: work queue

1 function BRWP(ϕ, c) : begin
2 ϕ#c := Instantiate (ϕ, c);
3 V:= ∅;
4 push(Q, ϕ#c);
5 while not_empty(Q) do
6 ϕ#c := pop(Q);
7 if (I ∧ ϕ#c sat) then
8 return unsafe
9 else if (ϕ#c 6|= V) then

10 V:= V ∪ {ϕ#c};
11 push(Q, FinitePre(ϕ#c, c));
12 end
13 end
14 S1, V’ := Generalize_and_filter(V);
15 S2:= Universal_Generalization(V’);
16 Check_inductive_invariant(ϕ ∧ S1 ∧ S2)
17 end

X = #3 ∧ PC[#2] = PC3 ∧ PC[#3] = Down

then, it is generalised as the following cube:

∃p2, p3. X = p3 ∧ PC[p2] = PC3 ∧ PC[p3] = Down

After this generalisation and simplification transformation has been performed,
the cube ϕ thus obtained is given to the same backward reachability engine (BWD),
but this time without the finite domain constraint. If the model checker returns
safe, ϕ is saved in the set variable S1 for the deductive verification engine and the
instantiated formula ϕ#c is filtered out from the set V of formulas to be given to
the second generalisation algorithm implemented in Universal_Generalization.

4.2 Universal Generalisation

The code of the function Universal_Generalization is given in Algorithm 3.
Similarly to the previous generalisation function, Universal_Generalization
takes as input the set V#c of instantiated cubes.

To explain the main part of this algorithm, we illustrate its uses in Figure 5,
starting from the following property ϕ of the splitter

ϕ : ∀p.PC[p] = Down

Algorithm 2: Generalise and filter
1 function Generalize_and_filter(V#c) : begin
2 V:= V#c;
3 S1:= ∅;
4 forall ϕ#c ∈ V#c do
5 ∆∃ := > ;
6 forall p ∈

−→
V #c do

7 v := Fresh_Variable();
8 ∆∃ := ∆∃∧ v;
9 Replace(p, v, ϕ#c); /* Replace all occurrences of the process

p with the fresh process v */
10 end
11 D = Distinct(∆∃); /* All variables are different */
12 ϕ = ∆∃ ∧ D ∧ ϕ#c;
13 Simplify(ϕ);
14 if BWD(ϕ) safe then
15 S1:= S1 ∪{ϕ};
16 V:= V \{ϕ#c}
17 end
18 end
19 return (S1, V)
20 end

which, after instantiation (for instance when c is 3), is given to the generalisation
function as the following formula:

ϕ#c : PC[#1] = Down ∧ PC[#2] = Down ∧ PC[#3] = Down

This formula is first tagged with a vector of processes
−→
V #c describing which

processes are from the same quantifier. Here,
−→
V #3 = {#1, #2, #3}∀, where the

meaning of the annotation ∀ is that the 3 processes come from the univer-
sal quantifier. When computing the pre-image from the transition spldown :
∃i.PC[i] = PC3 ∧ X 6= i ∧ PC’[i] = Down, we end up with the new formula

ϕ#3
1 = PC[#1] = #3 ∧ X 6= #1 ∧ PC[#2] = Down ∧ PC[#3] = Down

and the new vector
−→
V #3 = {#1}∃, {#2, #3}∀. The reasoning behind this comes

from the fact that transitions in Cubicle are existentially quantified. Thus, since
processes #2 and #3 have not been involved in the transition, they remain at-
tached to the universal quantifier. On the contrary, process #1 becomes attached
to a new existential quantifier.

When generalised, all literals containing an existential-tagged processes (we
use the notation

−→
V #3∃ to denote this set of variables) are kept with their processes

being renamed in new distinct existential processes and all the literals containing
an universal-tagged process (we use the notation

−→
V #3∀ to denote this set of

variables) are merged into one literal quantified by a fresh universal process. For
instance, the formula ϕ#3

1 is generalised as follows:

∃p1.∀p2.p1 6= p2 =⇒ PC[p1] = PC6 ∧ PC[p2] = Down

Algorithm 3: Universal Generalisation
1 function Universal_Generalization(V#c) : begin
2 V:= ∅;
3 forall ϕ#c(tagged by

−→
V #n) ∈ V#c do

4 ∆∃ := > ;
5 ∆∀ := > ;
6 forall p ∈

−→
V #n∃ do

7 v := Fresh_Variable();
8 ∆∃ := ∆∃∧ v;
9 Replace(p, v, ϕ#c); /* Replace all occurrences of the process

p with the fresh process v */
10 end
11 if

−→
V #n∀ 6= ∅ then

12 v := Fresh_Variable();
13 ∆∀ := v;
14 Remove_and_Replace(p, v, ϕ#c); /* Remove all the literals

parameterized by processes from
−→
V #n∀ and adds a new

literal parameterized by v */
15 end
16 binop := if ∆∀ = > then ∧ else =⇒ ;
17 D = Distinct(∆∃,∆∀); /* All variables are different */
18 ϕ = ∆∃ ∧ ∆∀ ∧ D binop ϕ#c;
19 V:= V ∪{ϕ};
20 end
21 end

5 Deductive Verification

The last function call Check_inductive_invariant(ϕ ∧ S1 ∧ S2) of BRWP re-
quires the help of a deductive verification engine. In our implementation, we are
using the Why3 platform [?].

Given a program P and its specification T (a set of theories, program in-
variants and properties), Why3 tries to check that P satisfies T by perform-
ing an inductive invariant check with a compositional reasoning and a weakest-
precondition (WP) engine. Verification conditions generated by the WP calculus
of Why3 are discharged to a large number of automatic or interactive solvers
(SMT, TPTP, Coq, etc.).

∀p.PC[p] = Down

PC[#1] = Down ∧ PC[#2] =
Down ∧ PC[#3] = Down
−→
V #3 = {#1, #2, #3}∀

X 6= #1 ∧ PC[#1] = PC3 ∧ PC[#2] =
Down ∧ PC[#3] = Down
−→
V #3 = {#1}∃, {#2, #3}∀

∃p1.∀p2.p1 6= p2 ⇒
X 6= p1 ∧ PC[p1] =
PC3 ∧ PC[p2] = Down

X 6= #1 ∧ X 6=
#2 ∧ PC[#1] = PC3 ∧ PC[#2] =

PC3 ∧ PC[#3] = Down
−→
V #3 = {#1}∃, {#2}∃, {#3}∀

X = #3 ∧ PC[#1] = PC3 ∧ PC[#2] =
PC3 ∧ PC[#3] = Down

−→
V #3 = {#1}∃, {#2}∃, {#3}∀

∃p1p2p3.p1 6= p2 6= p3 ∧ X =
p3 ∧ PC[p1] = PC3 ∧ PC[p2] =

PC3 ∧ PC[p3] = Down

PC[#1] = PC4 ∧ PC[#2] =
Down ∧ PC[#3] = Down
−→
V #3 = {#1}∃, {#2, #3}∀

∃p1.∀p2.p1 6= p2 ⇒ PC[p1] =
PC4 ∧ PC[p2] = Down

instantiate(#3)

unsafe
universal generalisation simplification

generalise and filter

unsafe
universal generalisation

spldown(#1)

spldown(#2)spl4b(#1)

Fig. 5. First nodes and their simplification, filtration and generalisation for the splitter

The implementation of Check_inductive_invariant is essentially based on
the translation of array-based transition systems to WhyML, the input language
of Why3. However, the gap between the semantics of MCMT and WhyML is
important. Indeed, Why3 is a platform designed to work with sequential, deter-
ministic and terminating programs, while the semantics of array-based transition
systems is concurrent, non-deterministic and non-terminating. To see how to
bridge the gap between these two languages, we illustrate our translation using
the splitter example (Section 2).

State declaration. Our encoding starts with types declarations. The type proc
of processes is represented by integers (int in WhyML). The system’s state is
encoded by a record with two mutable variables x and y, as well as an array pc
(implicitly indexed by integers) containing values of type state.

type proc = int
type system = {

mutable x : proc;
mutable y : bool;
pc : array state;

}

Initial states. The initial formula of the splitter defines initial states with the
following formula Init

Init : ∀p.PC[p] = PC0 ∧ Y = ⊥

where only Y and PC[] are given a value, the other variable x can contain an
arbitrary value. Since Why3 expects every variable to be initialised, we give to
x a random value in the range of possible values.

let s = {
y = false;
pc = Array.make _n PC0;
x = Random.random_int _n;

} in

Infinite execution. The semantics of an array-based transition system is given
by a single infinite loop which repeatedly execute two steps:

1. evaluate all the guards of transitions, given the current values of the global
state

2. arbitrarily choose one of the commands whose guard is true and execute it,
updating the variables

Translating infinite loops in Why3 is problematic, in particular when one want
to check invariants when exiting it. A solution to this problem is to consider that
the loop ends when it reaches a bound given as a parameter of our system. The
resulting program in Why3 is then bounded by the number of processes and the
number of steps allowed in the loop.

let splitter1 (_n : int) (maxsteps : int) : system
requires { 0 < _n }
...
=
(* ... *)
while (!nbsteps < maxsteps) do

variant { maxsteps - !nbsteps }
incr nbsteps;
(* ... *)

done;
s

end

Nondeterminism. There are two sources of nondeterminism in array-based sys-
tems. The first one can be illustrated by considering the following transitions t1
and t2:

t1 : ∃p.PC[p] = PC0 ∧ PC’[p] = PC1

t2 : ∃p.PC[p] = PC0 ∧ PC’[p] = PC2

If PC[p] = PC0 for some process p, then both transition can be triggered, result-
ing in a state where PC[p] equals to PC1 or PC2.

In order to mimic this nondeterminism in Why3, we add a coin toss to each
translation of a transition’s guard. This coin toss does not need to be specified,
it just allows Why3 to explore all the possibilities.
val coin () : bool
if coin () && pc.[i] = PC0
then pc.[i] <- PC1
if coin () && pc.[i] = PC0
then pc.[i] <- PC2

The second source of nondeterminism comes from the fact that, at each step
of the loop, transitions need to be taken by random unique processes. The Why3
program thus needs to know that it can take the transition of its choice with the
processes of its choice if the guards hold true with such processes.

This is done by specifying a function that takes two arguments, the max num-
ber of processes n and the number of needed processes k (e.g. the max number
of processes involved in transition guards, updates, etc.). This function ensures
that all the processes it creates will be different. There is no need to implement
it as we just use its specification to help the deductive verification. Why3 having
difficulty with lists and algebraic data types to reason inductively, the result re-
turned by this function is an array of the size of the number of processes needed.
The value k is determined by the maximum number of parameters (processes)
in a transition. In the splitter case, k will then be equal to 1.
val k_random (k:int) (n:int) : (result:array int)

requires { 0 <= k }
requires { k <= n }
ensures { length result = k }
ensures { forall i j:int. 0 <= i < n /\ 0 <= j < n /\ i <> j ->

result[i] <> result[j] }
ensures { forall i:int. 0 <= i < n -> 0 <= result[i] < n }

Invariants. Finally, as it is (when all the transitions have been added), this file
can not be proven by Why3 since it lacks important loop invariants. The algo-
rithms to find such invariants are independent of BRWP and by lack of space, we
omit to describe them. In our implementation, these invariants are found during
the backward reachability loop using the BRAB technique of Cubicle [?,?], a
model checker based on MCMT. Those invariants are automatically added to
the Why3 file as invariant formulas.
while (!nbsteps < maxsteps) do

invariant { 0 <= s.x < _n }
invariant { forall _p1 : int. 0 <= _p1 < _n /\

s.x = _p1 -> s.pC[_p1] <> Down }
invariant { exists _p1 : int. 0 <= _p1 < _n /\ s.pC[_p1] <> Down }
(* ... *)

6 Conclusion and Perspectives

In this paper, we have presented an extension of the MCMT framework for rea-
soning about universal cubes, that formulas with both existential and universal
quantifiers. Our approach tightly combines the backward reachability algorithm
of MCMT with a deductive verification engine.

We have implemented our framework in the Cubicle model checker, with the
help of the Why3 platform for program verification. Our first experiments are
very promising as we have been able to prove automatically algorithms like the
splitter which were out of scope the Cubicle model checker.

As future work, we plan to design an even more tight integration between our
backward reachability algorithm and a weakest-precondition calculus in order to
implement a complete roundtrip loop between these algorithms.

